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Abstract. Compared to the linear activation function, a suitable nonlinear activation function can ac-
celerate the convergence speed. Based on this finding, we propose two modified Zhang neural network
(ZNN) models using different nonlinear activation functions to tackle the complex-valued systems of linear
equation (CVSLE) problems in this paper. To fulfill this goal, we first propose a novel neural network
called NRNN-SBP model by introducing the sign-bi-power activation function. Then, we propose another
novel neural network called NRNN-IRN model by introducing the tunable activation function. Finally,
simulative results demonstrate that the convergence speed of NRNN-SBP and the NRNN-IRN is faster than
that of the FTRNN model. On the other hand, these results also reveal that different nonlinear activation
function will have a different effect on the convergence rate for different CVSLE problems.

1. Introduction

With the development of science and technology, the study for the CVSLE has made great progress,
such as a two-step scale-splitting iteration technique for the symmetric CVSLE [1], the blind extraction of
communications sources (complex-valued sources) [2], the robot manipulators’ control [3], the time-varying
linear matrix equation’s solution [4], the control of manipulators using image visual servoing scheme [5],
the redundant manipulators’ control using an adaptive projection neural network [6] and the redundant
manipulators’ control for tacking the periodic noise [7]. We can describe the CVSLE as

HC(t) = a ∈ Cn, (1)

where H ∈ Cn×n and a ∈ Cn represent the coefficients in complex field, and C(t) ∈ Cn represents a complex-
valued vector. Because a complex matrix is composed of the imaginary part and the real part, the complex
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matrix H, C, and a can be represented as H = Hre + jHim, C = Cre + jCim, and a(t) = are(t)+ jaim(t), respectively.
In the above equation, the symbol j =

√
−1 represents an imaginary unit. So, we can rewrite the equation

(1) as

[Hre + jHim][Cre(t) + jCim] = are + jaim ∈ C
n, (2)

where Hre,Him ∈ Rn×n, Cre,Cim ∈ Rn, and are, aim ∈ Rn. Based on the complex equation’s principle, we can
rewrite the equation (2) as the following equation [8],{

HreCre(t) −HimCim(t) = are ∈ Rn,
HimCre(t) + HreCim(t) = aim ∈ Rn,

(3)

Now we can represent the equation (3) as the following compact matrix form[
Hre −Him
Him Hre

] [
Cre(t)
Cim(t)

]
=

[
are
aim

]
∈ R2n. (4)

Now the equation (4) can be written as

Ux(t) = V ∈ R2n. (5)

where U =

[
Hre −Him
Him Hre

]
, x(t) =

[
Cre(t)
Cim(t)

]
, and V =

[
are
aim

]
. Therefore, we can solve the CVSLE in the real

domain. Now the methods to tackle the real-valued system of linear equation can be employed to tackle
the CVSLE [9–14]. Compared with the Frobenius norm, the lagging error is more suitable to act as the
performance criterion of the error matrix. So, the ZNNs using the the lagging error can obtain a desired
solution at exponential convergence rate instead of infinitely long time [15–17]. Considering we cannot
obtain the original ZNN models’ desired solution in finite time, Xiao et al. proposed a novel design formula
to improve the ZNN models, which can obtain the desired solution within finite time [18]. Using the above
design formula proposed by Xiao, Ding et al. proposed a FTRNN model to solve the CVSLE [19].

Compared with a linear activation function, a suitable nonlinear activation function can accelerate the
convergence rate to some extent. In [20–25] the sign-bi-power activation function is employed to improve
the ZNN models, and it can be represented as

Ψ(1) = sgnb(1) + sgn1/b(1), (6)

where 0 < b < 1 and

sgnb(1) =


|1|b, if 1 > 0
0, if 1 = 0
−|1|b, if 1 < 0.

Furthermore Miao et al. proposed a tunable activation function [26], and

Ψ(1) = sign(1)(r1|1|
b + r2|1| + r3|1|

1
b ), (7)

where 0 < p < 1, r1 > 0, r2 > 0, r3 > 0 and

sign(1) =


1, if 1 > 0
0, if 1 = 0
−1, if 1 < 0.

Compared with the ZNN models using the linear activation function, the ZNN models using the suitable
nonlinear activation function will have better convergent effect. As we know, different nonlinear activation
function will have different convergence performance, so two different kinds of neural network models for
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Figure 1: Output trajectories of neural states C(t) synthesized by FTRNN model (12) of example 1
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Figure 2: Output trajectories of neural states C(t) synthesized by IRNN-SBP model (13) of example 1

tackling the CVSLE can be derived by using a sign-bi-power activation function and a tunable activation
function [27–31].

The remaining parts are divided into three sections. Section 2, two different kinds of finite time con-
vergent neural network models for tackling CVSLE are presented. Section 3, the corresponding simulation
results are given to verify the performance of the two improved neural network models. Finally, the
corresponding conclusions are given in section 4.

Now we can summarize the main contributions of this paper as follows:

1) Two modified ZNN models using different nonlinear activation functions to tackle the CVSLE prob-
lems are proposed in this paper.

2) As compared to the ZNN using linear activation function, our proposed models using different
nonlinear activation functions have better convergence performance. Furthermore, the corresponding
theoretical proof is given to guarantee the convergence property of our proposed models.

3) The results reveal that different nonlinear activation function will have a different effect on the
convergence rate for different CVSLE problems.
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Figure 3: Output trajectories of neural states X(t) synthesized by IRNN-IRN model (14) of example 1
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Figure 4: The evolution of the corresponding residual errors of example 1.

2. Two Different Finite Time Zhang Neural Network

Now according to the equation (5), we can write the error function F(t) of ZNN as the following formula

F(t) = Ux(t) − V ∈ R2n. (8)

So from the ZNN’s design formula Ḟ(t) = −qΨ(F(t)), we can derive the following formula

Uẋ(t) = −qΨ(Ux(t) − V), (9)

where q > 0 is a coefficient for adjusting the convergence rate, and Ψ(·) represents an activation function
array. This is an original ZNN model for online tackling the CVSLE .

If we use the new design formula proposed by Xiao [18], we will have

dF(t)
dt

= −qΨ(s1F(t) + s2Fw/z(t)), (10)

where s1 and s2 meet s1 > 0, s2 > 0, and z and w are the odd integer and meet z > w > 0. Then we have

Uẋ(t) = −qΨ(s1(Ux(t) − V) + s2(Ux(t) − V)w/z). (11)
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Figure 5: Output trajectories of neural states C(t) synthesized by FTRNN model (12) of example 2
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Figure 6: Output trajectories of neural states C(t) synthesized by IRNN-SBP model (13) of example 2.

If we choose a linear activation function, we can have the following formula

Uẋ(t) = −q(s1(Ux(t) − V) + s2(Ux(t) − V)w/z), (12)

which is called the FTRNN model for online dealing with the CVSLE [19].

2.1. NRNN-SBP Model
If we introduce a sign-bi-power activation function (6), we can rewrite the equation (12) as

Uẋ(t) = −q(sgnb(s1(Ux(t) − V) + s2(Ux(t) − V)w/z)

+sgn1/b(s1(Ux(t) − V) + s2(Ux(t) − V)w/z)),
(13)

here q > 0, 1 > b > 0, s1 > 0, s2 > 0, and

sgnb(1) =


|1|b, if 1 > 0
0, if 1 = 0
−|1|b, if 1 < 0.

This model is called the NRNN-SBP model for online tackling the CVSLE.
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Figure 7: Output trajectories of neural states C(t) synthesized by IRNN-IRN model (14) of example 2
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Figure 8: The evolution of the corresponding residual errors of example 2.

2.2. NRNN-IRN Model

If we introduce a tunable activation function (7), we will have the following formula

Uẋ(t) = − qsign(s1(Ux(t) − V) + s2(Ux(t) − V)w/z)(r1|s1(Ux(t) − V)

+ s2(Ux(t) − V)w/z
|
b + r2|s1(Ux(t) − V) + s2(Ux(t) − V)w/z

|

+ r3|s1(Ux(t) − V) + s2(Ux(t) − V)w/z
|

1
b ),

(14)

where q > 0, 1 > b > 0, r1 > 0, r2 > 0, r3 > 0, s1 > 0, s2 > 0, z and w are the odd integer and satisfy z > w > 0,
and

sign(1) =


1, if 1 > 0
0, if 1 = 0
−1, if 1 < 0.

Then the equation (14) is called the NRNN-IRN model for online tackling the CVSLE.

2.3. Theorem Analysis

Theorem: The state matrix x(t) of the model (13) (or the model (14)) will converge to its theoretical
solution, whatever its initial random value x(0) is.
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Figure 9: The evolution of the corresponding residual errors of example 3.

Proof: According the definition F(t) = Ux(t) − V, the model (13) can be written as

Ḟ(t) = −qΨ1(s1F(t) + s2F(t)w/z), (15)

where Ψ1(·) = sgnb(·). Now suppose R(F(t)) = s1F(t) + s2F(t)w/z, we have

Ḟ(t) = −qΨ1(R(F(t))). (16)

As we know, the matrix F(t)’s each element shows the identical dynamic, then we have

ḟij(t) = −qΨ1(R( fij(t))), (17)

where fij(t) represents the matrix F(t)’s i jth element. Now we define the following Lyapunov function
V f = f 2

ij(t). Then we have

V̇ f = −2q fij(t)Ψ1(R( fij(t))). (18)

As Ψ1(·) and R(·) are all odd and monotonic increasing functions, Ψ1(R( fij(t))) must be also monotonic
increasing. So we can find that V̇ f is negative definite and fij(t) will globally converge to 0. This means that
each element of matrix x(t) will obtain its theoretical solution with time.

Similarly, we can use the above method to prove the convergence property of the model (14).
This proof is successful. �

3. Computer Simulation

Now the following three illustrative examples will be carried to compare the NRNN-SBP model (13)
and the NRNN-IRN model (14) with the FTRNN model (12). To display the different convergent rate, the
trail of each neural-state and the residual error norm ||F(t)||2 are shown in the corresponding figures. For
comparison, we choose a same group of parameters q = 10, w = 1, b = 1

8 , z = 5, w = 1, r1 = r2 = r3 = 1,
s1 = s2 = 1 in the example 1, the example 2 and the example 3.

Example 1:

H1C1(t) = a1 ∈ C
n,

where

H1 =

 −0.5444+0.6754 j −0.8967−0.5434 j 0.2352−0.7875 j 0.7854+0.9544 j
0.7724+0.8944 j −0.8244+0.8478 j −0.8525−0.5486 j 0.8651−0.3564 j
0.8544−0.3521 j −0.8215−0.6234 j −0.7445+0.3647 j 0.7443+0.9634 j
0.7455−0.3647 j −0.7542+0.3645 j 0.7411+0.3644 j 0.8564−0.7565 j


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and

a1 =


4.5634 + 8.5445 j
2.3432 + 5.8452 j
3.4533 − 7.3564 j
4.5323 − 5.7842 j

 .
According to equation (5) we have

U1 =


−0.5444 −0.8967 0.2352 0.7854 −0.6754 0.5434 0.7875 −0.9544
0.7724 −0.8244 −0.8525 0.8651 −0.8944 −0.8478 0.5486 0.3564
0.8544 −0.8215 −0.7445 0.7443 0.3521 0.6234 −0.3647 −0.9634
0.7455 −0.7542 0.7411 0.8564 0.3647 −0.3645 −0.3644 0.7565
0.6754 −0.5434 −0.7875 0.9544 −0.5444 −0.8967 0.2352 0.7854
0.8944 0.8478 −0.5486 −0.3564 0.7724 −0.8244 −0.8525 0.8651
−0.3521 −0.6234 0.3647 0.9634 0.8544 −0.8215 −0.7445 0.7443
−0.3647 0.3645 0.3644 −0.7565 0.7455 −0.7542 0.7411 0.8564


and V1 = [4.5634 2.3432 3.4533 4.5323 8.5445 5.8452 − 7.3564 − 5.7842]T, where T represents the
matrix V1’s transpose.

Example 2:

H2C2(t) = a2 ∈ C
n.

Suppose H2 = H1, and

a2 =


0.5121 + 0.3654 j
0.7451 + 0.3564 j
0.8542 − 0.3647 j
0.8422 − 0.3843 j

 .
Similarly, according to equation (5) we have

U2 =


−0.5444 −0.8967 0.2352 0.7854 −0.6754 0.5434 0.7875 −0.9544
0.7724 −0.8244 −0.8525 0.8651 −0.8944 −0.8478 0.5486 0.3564
0.8544 −0.8215 −0.7445 0.7443 0.3521 0.6234 −0.3647 −0.9634
0.7455 −0.7542 0.7411 0.8564 0.3647 −0.3645 −0.3644 0.7565
0.6754 −0.5434 −0.7875 0.9544 −0.5444 −0.8967 0.2352 0.7854
0.8944 0.8478 −0.5486 −0.3564 0.7724 −0.8244 −0.8525 0.8651
−0.3521 −0.6234 0.3647 0.9634 0.8544 −0.8215 −0.7445 0.7443
−0.3647 0.3645 0.3644 −0.7565 0.7455 −0.7542 0.7411 0.8564


and V2 = [0.5121 0.7451 0.8542 0.8422 0.3654 0.3564 − 0.3647 − 0.3843]T, where T represents the
matrix V2’s transpose.

Example 3:

H3C3(t) = a3 ∈ C
n.

Suppose H3 = H2, and

a3 =


1.5321 + 0.2444 j
1.2845 + 0.9589 j
1.2845 − 0.9589 j

1.5436


Then ccording to equation (5) we have

U3 =


−0.5444 −0.8967 0.2352 0.7854 −0.6754 0.5434 0.7875 −0.9544
0.7724 −0.8244 −0.8525 0.8651 −0.8944 −0.8478 0.5486 0.3564
0.8544 −0.8215 −0.7445 0.7443 0.3521 0.6234 −0.3647 −0.9634
0.7455 −0.7542 0.7411 0.8564 0.3647 −0.3645 −0.3644 0.7565
0.6754 −0.5434 −0.7875 0.9544 −0.5444 −0.8967 0.2352 0.7854
0.8944 0.8478 −0.5486 −0.3564 0.7724 −0.8244 −0.8525 0.8651
−0.3521 −0.6234 0.3647 0.9634 0.8544 −0.8215 −0.7445 0.7443
−0.3647 0.3645 0.3644 −0.7565 0.7455 −0.7542 0.7411 0.8564


and V3 = [1.5321 1.2845 1.2845 1.5436 0.2444 0.9589 − 0.9589 0]T, where T represents the matrix
V3’s transpose.
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From the Figs.1-9, we can find the NRNN-SBP model (13) and the NRNN-IRN model (14) have higher
convergence rate than the FTRNN model (12). Furthermore from the example 1 and the example 3, we
can find that the NRNN-IRN model has the fastest convergence rate. However, from the example 2,
we can find that the NRNN-SBP model has the fastest convergence rate. This phenomenon reveals that
different nonlinear activation function will have a different effect on the convergence rate for different
CVSLE problems.

4. Conclusions

It is the first time to build two different finite-time convergent ZNN models to tackle the CVSLE in this
paper. The results show that the convergence speed of NRNN-SBP and the NRNN-IRN is faster than that
of the FTRNN model, and also reveal that different nonlinear activation function will have a different effect
to accelerate the convergence rate for different CVSLE problems. So how to choose a suitable nonlinear
activation function for a different CVSLE problem will be our next research.
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