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Abstract. In this paper, a novel type of feed-forward neural network with a simple structure is proposed and inves-
tigated for pattern classification. Because the novel type of forward neural network’s parameter setting is mirrored
with those of the Extreme Learning Machine (ELM), it is termed the mirror extreme learning machine (MELM). For
the MELM, the input weights are determined by the pseudoinverse method analytically, while the output weights
are generated randomly, which are completely different from the conventional ELM. Besides, a growing method is
adopted to obtain the optimal hidden-layer structure. Finally, to evaluate the performance of the proposed MELM,
abundant comparative experiments based on different real-world classification datasets are performed. Experimental
results validate the high classification accuracy and good generalization performance of the proposed neural network
with a simple structure in pattern classification.

1. Introduction

Pattern classification, being one of the most crucial areas of artificial intelligence, is the construction of a classi-
fication function or classification model to map a dataset to a given category [1–7]. It has widely applied in various
scientific and engineering fields. Therefore, a variety of pattern classification methods are developed by scholars and
researchers [2, 3, 5–8, 11]. At present, artificial neural networks have become superior methods for pattern classifica-
tion because of its extraordinary system modeling characteristics, self-learning and self-adaptive ability [3, 7, 9, 10].
The common neural networks used for pattern classification include BP [12, 13], SVM [11, 14], RBF [15] neural
networks and so on.

Remarkably, Huang el at. proposed a single hidden layer feed-forward neural network in 2004, called extreme
learning machine (ELM), which is a simple and effective learning algorithm [16, 17]. Traditional neural network
learning algorithms (such as BP algorithm) need to set a large number of network training parameters, and they are
easy to produce a local optimal solution [18–20]. ELM only needs to set the number of hidden-layer neurons in the
network. It does not need to adjust the input weights of the network, which are generated randomly, and the offset of
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the hidden neurons in the process of executing the algorithm. In addition, the output weights of ELM are determined
directly by the following formula [16]:

β̂ = H+T,

where the H+ denotes the pseudoinverse of matrix H. Therefore, ELM has the advantages of fast learning and well
generalization performance and has been extensively applied in many fields [16–29]. Huang et al. first proposed
the primary concept and theory of ELM in [17]. In [24], Huang et al. applied ELM to the regression and multi-
class classification. Wen et al. proposed a hybrid structure-adaptive radial basis function-extreme learning machine
(HSARBF-ELM) network in [25]. Based on acoustic feature transfer learning, Deng et al. used ELM for recognizing
emotions from whispered speech [26]. Akusok et al. presented and constructed a high-performance ELM toolbox for
big data [27]. Wang and Han proposed a online sequential extreme learning machine with kernels (OS-ELMK) for
predicting nonstationary time series [28]. Based on sample entropy, a dynamic ensemble extreme learning machine
was proposed to overcome the problems of instability and over-fitting, and increase the prediction accuracy [29] No-
tably, the so called WASD (weights and structure-determination) neural networks are also ELM-like neural networks
[3, 30, 31].

It is important to highlight the fact that the aforementioned ELM and ELM-like neural networks all generate
randomly the input weights and analytically the output weights [16–31]. As a consequence, one has a question
whether it is possible to exchange the determination methods of the input weights and the output weights. However,
to the best of the author’s knowledge, this issue has not been answered and investigated in any literature. In this
paper, a new type of neural network is proposed and investigated, of which the input weights are determined by the
pseudo-inverse method and the output weights are generated randomly. Because the new type of neural network
happens to be a mirror image of the ELM, we term it the mirror ELM (MELM). The strict theoretical deduction is
also provided to prove the feasibility of this algorithm. In addition, to obtain the optimal hidden-layer structure, we
adopt the growing method. That is, the number of hidden-layer neurons increases one by one and stops increasing
when the classification accuracy is not changed. Finally, abundant comparative experiments are performed to validate
the performance of MELM.

The remainder of this paper is organized as follows. In Section 2, the detailed design process of MELM, including
the model, the weight determination method and the structure determination method, is proposed and investigated. In
Section 3, comparative experiments based on different real-world classification datasets are conducted to valuate the
performance of MELM. Section 4 presents the discussions and conclusions.

2. Design of Mirror Extreme Learning Machine

In this section, the MELM model is first given. Afterwards, the formula for input weights determination is derived
in theory. The growing method for structure determination is also presented in this section. Finally, the detailed
description of MELM algorithm is given.

2.1. MELM Model

The generalized MELM model, which consists of multiple inputs and multiple outputs, is presented for pattern
classification and shown in Fig. 1. As displayed in Fig. 1, the MELM model is similar to the traditional three-layer-
structure ELM, constructed by the input layer, hidden layer and output layer. In this paper, we assume that the MELM
model has J inputs and K outputs. That is, there are J neurons in the input layer and K neurons in the output layer,
which are activated by a simple linear activation function. The hidden layer neurons, of which the number is M, are
activated by a monotonous nonlinear activation function f (·).

In addition, the connection weight of the mth (with m = 1, 2, ...,M) hidden layer neuron to the kth (with k =
1, 2, ...,K) output layer neuron, which is called the output weight, is denoted by umk and randomly generated within
a interval [a1, a2]. The connection weight of the jth (with j = 1, 2, ..., J) input layer neuron to the mth hidden layer
neuron, which is called the input weight, is denoted by w jm and determined by the pseudo-inverse method in the next
section. Furthermore, the bias bm of the mth hidden layer neuron is randomly generated in a interval [a3, a4], and the
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Figure 1: Model of MELM

biases of the input layer and output layer neurons can be set to zero in theory. Therefore, the output of the kth output
layer neuron can be obtained as

yk =

M∑
m=1

ukm f (
J∑

j=1

wmjx j − bm), (1)

where x j corresponds to the input of the jth input-layer neuron. The compact matrix form of Eq. (1) is

y = U f (Wx − b), (2)

where y = [y1, y2, · · · , yK]T
∈ RK×1, x = [x1, x2, · · · , xJ]T

∈ RJ×1, b = [b1, b2, · · · , bM]T
∈ RM×1, U and W

are output weight matrix and input weight matrix respectively. Thereinto,

U =


u11 u12 · · · u1M
u21 u22 · · · u2M
...

...
. . .

...
uK1 uK2 · · · uKM

 ∈ RK×M,

W =


w11 w12 · · · w1J

w21 w22 · · · w2J
...

...
. . .

...
wM1 wM2 · · · wMJ

 ∈ R
M×J.
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Table 1: Features of different real-world classification datasets

Dataset No. of Attributes No. of Classes No. of Samaples
Iris 4 3 150
Liver Disorders (LD) 6 2 345
Pima Indians Diabetes (PID) 8 2 768
Wine 13 3 178
Ionosphere 34 2 351
Glass 9 7 214
Zoo 16 7 100
WFRN 24 4 5456
SL 35 19 186

2.2. Weight Determination of MELM

In this paper, we assume that the number of distinct samples is N. Therefore, one could obtain a matrix-form
output as follows:

Y = U f (WX − B), (3)

where the matrix-form outputs Y = [y1, y2, · · · , yN] ∈ RK×N, the matrix-form inputs X = [x1, x2, · · · , xN] ∈ RJ×N,
and the matrix-form offsets of the hidden-layer neurons B = [b, b, · · · , b] ∈ RM×N. To obtain the optimal input
weights, we have the following theorem.

Theorem 2.1. Assume that activation function f (·) is strictly monotonous. When output weights U and bias B are
chosen from [a1, a2] and [a3, a4] respectively, the optimal input weights are

W = ( f−1(U+Y) + B)X+, (4)

where f−1(·) denotes the unique inverse function of f (·).

Proof: Left multiplying U+ in both sides of Eq. (3), one can obtain

U+Y = U+U f (WX − B) = f (WX − B).

Then, solving the inverse function of the above equation, we have

f−1(U+Y) =WX − B.

The above equation can be rewritten as

WX = f−1(U+Y) + B.

Right multiplying X+ in both sides of the above equation, we finally obtain

WXX+ = ( f−1(U+Y) + B)X+,

that is,

W = ( f−1(U+Y) + B)X+.

The proof is thus completed. �
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Figure 2: Training Confusion Matrix of Iris dataset.

2.3. Structure Determination of MELM

For illustrative purposes, we first define the classification accuracy CA as

CA =
Nsc

Ntc

where Nsc is the number of successful classification samples, and Ntc is the number of total classification samples.
For the structure determination of MELM, we adopt a growing method. First, the hidden-layer neurons are in-

creased one by one. When the classification accuracy CA no longer changes, we continue to increase one hidden-layer
neuron. If the classification accuracy CA still stay the same, it is deemed the optimal CA and the training is completed.
The number of hidden-layer neurons that first reached the optimal CA is the optimal number. Therefore, the structure
of MELM is determined.

Based on Theorem 1 and the growing method, a simple learning algorithm for the MELM can be summarized as
below.

Description of MELM:
Definition:
− J The number of input-layer neurons
−M The current number of hidden-layer neurons
−Mopt The optimal number of hidden-layer neurons
− CA The current classification accuracy of MELM
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− CAmax The maximal CA found
Initialization
− Initialize M = 1 and CAmax = 0
− Generate the output-layer weights u1 randomly within interval [a1, a2]
− Generate the hidden-layer bias (i.e., b1) randomly within interval [a3, a4]
− Compute input-layer weight w1 using Eq. (4), and initialize counter c = 0
Step 1 Let M←M + 1
Step 2 Randomly generate the output-layer weights and hidden-layer biases corresponding to the new neuron
Step 3 Compute input-layer weights using W = ( f−1(U+Y) + B)X+ and obtain the current CA of MELM
Step 4 If CAmax < CA let CAmax ← CA, Mopt ← M and return to Step 1. Otherwise, let c← c + 1 , and proceed

to the next step
Step 5 If c < 3, return to Step 1. Otherwise, proceed to the next step
Step 6 Stop the procedure, let Mopt ← M − 2, and delete the corresponding output-layer weights, input-layer

weights and hidden-layer biases.
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Figure 3: Test Confusion Matrix of Iris dataset.

Besides, for a better understanding, we also present the pseudo code of MELM as follows.

Algorithm 2.2 (MELM Algorithm). 1: procedure MYPROCEDURE
2: U,W,B← Weight and bias of MELM
3: M← Number of hidden-layer neurons of MELM
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Figure 4: MELM classification accuracy for Iris dataset.

4: top:
5: if CA(i) <= CAmax and CA(i − 1) <= CAmax and CA(i − 2) <= CAmax then return W, U, B
6: M← i − 2
7: loop:
8: CA(i) = Nsc/Ntc.
9: if CA(i) > CAmax then

10: CAmax ← CA(i).
11: c← 0.
12: U = randi([a1 a2],K, i).
13: B = randi([a3 a4], i,N).
14: W = ( f−1(U+Y) + B)X+.
15: else if CA(i) <= CAmax and c < 3 then
16: c = c + 1.
17: i = i − 1.
18: else
19: goto top.
20: close;
21: i← i + 1.
22: goto loop.

3. Pattern Classification Experiments

In this section, comparative experiments for pattern classification are performed to evaluate the performance of
the proposed MELM. Experimental datasets are obtained from the UCI machine learning library [32]. The features of
the involved datasets are shown in Table 1. For comparative purpose, in the following experiments, half of the dataset
is selected randomly for training, and the rest of the dataset is used for testing, which is the same as literature [3]. For
simplicity’s sake and with out loss of generality, the biases B of hidden-layer neurons are set as 0, the output weights
U are randomly assigned in [−1, 1]. In addition, the arctan function is used as the activation function, and its inverse
function is the tan function.
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Table 2: Performance comparison of MELM with the number of hidden-layer neurons fixed and with the growing
method for pattern classification based on the Iris dataset

MELM Accuracy Rate (%)
Training Testing Neurons
90.48 92.84 1
95.89 98.60 2
96.00 98.68 3
96.00 98.68 4

Fixed 96.00 98.67 5
Number 96.00 98.67 10

96.00 98.67 20
96.00 98.67 50
96.00 98.67 100

Growing method 96.00 98.68 3

Table 3: Comparison of Testing Classification Accuracy of MELM, SOCPNN-W, MOCPNN-W, MLP-ELM,
MLP-LM as well as Regularized RBFNN and SVM for Pattern Classification

Dataset Average Classification Accuracy (%) / Rank of Testing Classification Accuracy
MELM SOCPNN-W [3] MOCPNN-W [3] MLP-ELM [3] MLP-LM [3] RBFNN [3] SVM [3]

Iris 98.68/1 97.08/2 95.35/4 94.38/6 95.33/5 94.16/7 96.56/3
LD 69.77/1 66.78/2 66.78/2 58.93/5 60.34/4 57.64/7 58.90/6
PID 75.71/3 76.29/1 76.29/1 64.56/6 69.02/4 60.66/7 65.10/5
Wine 98.89/1 92.03/4 97.76/2 50.12/6 94.41/3 87.39/5 41.78/7
Ionosphere 86.86/2 86.30/3 86.30/3 82.90/7 85.24/6 86.19/5 91.41/1
Glass 73.83/1 47.21/6 62.09/4 45.14/7 62.89/2 57.87/5 67.76/3
Zoo 90.00/4 93.37/2 92.48/3 86.31/7 89.66/5 95.00/1 87.54/6
WFRN 52.38/6 46.5/7 75.73/4 67.68/5 92.00/1 85.88/3 88.25/2
SL 79.57/2 29.97/7 78.80/3 63.86/6 75.12/4 84.47/1 74.91/5
Avg. Rank 2.33 3.78 2.89 6.11 3.78 4.56 4.22

3.1. Pattern Classification on Iris dataset
In this subsection, the Iris dataset, of which the feature is shown in Table 1, is first utilized to check the effective-

ness of MELM. The corresponding results are displayed in Fig. 2 through Fig. 4 and Table 2. Figures 2 and 3 are
the confusion-matrix graphs. In Figs.2 and 3, the numbers on the diagonal of the matrix represent the number of sam-
ples classified correctly, while the numbers at other locations represent the number of samples that are misclassified.
Clearly, it can be observed that the MELM accomplishes the classification task well either in testing or in training. In
addition, as seen from Fig. 4, the optimal classification accuracy is around 98% and 96% in testing and in training,
respectively. Note that, Fig. 4 reveals a fact that the generalization performance of MELM is very stable starting
from a small number of hidden-layer neurons. This fact is also verified in Table 2. Specifically, when the number of
hidden-layer neurons is 3, the classification accuracy achieves optimal and holds steady. It is worth pointing out that
it is also true to other cases. Regarding Table 2, one more thing needs to be explained. Herein, to test the presented
growing method, the number of hidden-layer neurons of MELM is manually tuned by an interval of 1 or automatically
tuned by the growing method. As shown in the table, the presented growing method could find the optimal structure
of MELM. As a consequence, the effectiveness of MELM for pattern classification is preliminary confirmed.

3.2. Performance Comparison on Different Datasets
In this subsection, the performance comparison of the proposed MELM and the other existing neural networks

(including the SOCPNN-W, MOCPNN-W, MLP-ELM, MLP-LM, RBFNN and SVM) is conducted for all of the real-



B. Liao et al. / Filomat 34:15 (2020), 4985–4996 4993

Table 4: Comparison of Network Structures of MELM, SOCPNN-W, MOCPNN-W, MLP-ELM, MLP-LM as well
as Regularized RBFNN and SVM for Pattern Classification

Dataset Number of Hidden-Layer Neurons (Average Value of All Trials)/Ranking
MELM SOCPNN-W [3] MOCPNN-W [3] MLP-ELM [3] MLP-LM [3] RBFNN [3] SVM [3]

Iris 3.00/1 12.06/3 47.99/6 15.17/4 10.73/2 75.00/7 30.34/5
LD 4.00/1 11.80/2 23.60/5 13.58/3 14.08/4 173.00/7 172.88/6
PID 6.00/1 12.44/2 24.88/5 15.78/4 12.78/3 384.00/6 384.00/6
Wine 3.00/1 16.68/3 48.67/5 20.48/4 12.54/2 90.00/6 90.00/6
Ionosphere 4.00/1 11.30/3 22.60/4 24.76/5 10.95/2 176.00/7 89.35/6
glass 9.00/1 10.01/2 70.12/5 18.85/4 15.92/3 109.00/7 99.59/6
Zoo 14.00/2 15.91/3 76.51/7 18.16/4 10.82/1 52.00/6 39.15/5
WFRN 22.00/1 74.36/4 399.70/5 57.16/3 22.74/2 2729.00/7 1562.43/6
SL 9.00/1 33.24/4 471.37/7 22.20/3 14.89/2 97.00/6 95.83/5
Avg. Rank 1.11 2.89 5.44 3.78 2.33 6.56 5.67

world classification datasets shown in Table 1 [3]. Meanwhile, to avoid the influence generated by the randomness
in the setting process of initial parameters, 100 trials are performed for all the algorithms and the average results are
displayed in Tables 3 and 4.

As seen from Table 3, one can find that the MELM achieves the highest or second highest testing classification
accuracy for most of the datasets. To comprehensive rank the generalization performances of these seven neural
networks, the average-rank ranking method is utilized [33], in which a smaller number means better generalization
performance. It is seen from Table 3 that the average rank of MELM is 2.00 (a smallest number), which implies that
the MELM performs the best in pattern classification with respect to all datasets among the seven neural networks.

In addition, the detailed numbers of hidden-layer neurons are displayed in Table 4. Table 4 illustrates an important
fact: the number of hidden-layer neurons of MELM is the least among the seven neural networks. That is say, the
MELM has the simplest structure, which also means that the computational complexities of MELM is lower than the
other six neural networks.

In summary, the above experimental results demonstrate the fantastic generalization performance and the ex-
tremely simple structure of the proposed MELM on pattern classification.

3.3. Regularized MELM

To improve the generalization performance of ELM and to make the solution more robust, Huang et al. proposed
a regularized ELM [34]. After adding a regularization term, the output weight of ELM is determined by the following
formula [34]:

β∗ = (
I
c
+HTH)−1HTT,

where I denotes an identity matrix and c is a constant that needs to be set by the users. The formula and related theories
have been fully proved to be effective for the ELM regularization [34]. Same as above, we derive the expression for
the regularization input weight of MELM as follows:

W = ( f−1(U∗Y) + B)X∗,

and

U∗ = (
I1

c
+UTU)−1UT,

X∗ = (
I2

c
+ XTX)−1XT,
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Table 5: Performance of regularized MELM at different constant c values.

Datasets Classification Accuracy (%)
c=1 c=10 c=100 c=1000

Iris Test 82.67 94.67 98.67 98.67
Train 88.00 96.00 96.00 96.00

LD Test 62.21 69.77 69.77 69.77
Train 59.54 71.68 68.79 67.33

PID Test 74.18 76.04 75.78 75.78
Train 71.35 75.78 75.00 75.00

Wine Test 38.2 91.01 96.63 98.88
Train 41.57 87.64 89.89 91.00

Lonsphere Test 87.47 87.38 86.86 86.89
Train 90.65 90.30 90.34 89.76

Glass Test 64.69 71.79 74.77 73.83
Train 60.75 66.36 67.29 67.29

Zoo Test 46.00 90.00 90.00 90.00
Train 50.98 86.27 88.24 88.24

WFRN Test 52.16 52.31 52.38 52.38
Train 51.39 51.25 51.28 51.39

SL Test 26.88 79.57 79.57 79.57
Train 21.51 87.10 91.40 91.40

where I1 is a M ×M identity matrix, I2 is a J × J identity matrix. The effects of regularized MELM are shown in the
Table 5. As seen from Table 5, when the constant c is large enough, the regularized MELM can achieve remarkable
classification accuracy with small number of hidden-layer neurons, which further reflects that the regularized MELM
has superior generalization performance and good stability.

4. Discussions and Conclusions

In this paper, a novel neural network, called MELM, has been proposed and investigated for pattern classification.
Compared with the existing neural networks, the MELM has several interesting and important characteristics, which
are summarized as below.

1) The MELM adopts a novel idea for the weight determination. That is, the input weights are tuned analytically
by the pseudoinverse method, and the output weights are assigned randomly. This is not only a complement to
the ELM in mathematics, but it also brings some other advantageous performance.

2) The growing method is employed for the structure determination. It together with the weight determination
method leads to a more simple structure of MELM than the existing neural networks.

3) The MELM does not degrade the generalization performance of feed-forward neural network. On the contrary,
the MELM possesses better classification accuracy for pattern classification.

The weight determination formula has been derived and proved in theory. Besides, the learning algorithm for the
MELM has been provided. Abundant experimental results based on various real-world classification datasets have
demonstrated that the MELM possesses the superior generalization performance and a simple structure. If MELM is
applied to other problems such as regression fitting, there may be surprising results. In addition, it is worth pointing
out that systematic investigations on the computational complexity and numerical stability of MELM can be a future
research direction of the work.
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