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Abstract. Traditional back-propagation (BP) neural networks can implement complex nonlinear mapping
relationships, and solve internal mechanism problems. However, as number of samples increases, training
BP neural networks may consume a lot of time. For this reason, to improve the efficiency as well as prediction
accuracy of the neural network model, in this paper, we propose an intelligent optimization algorithm, by
leveraging the beetle antennae search (BAS) strategy to optimize the weights of neural network model, and
apply it to the population prediction. A series of experiments demonstrate the improved accuracy of the
proposed algorithm over BP neural networks. In particular, the calculation time spent of neural network
model via the proposed algorithm is only 20% of the one of BP neural network model. Finally, we present
a reasonable trend of population growth in China, and analyze the causes of changes in population trends,
which may provide an effective basis for the department to adjust population development strategies.

1. Introduction

In 2010, when Chinese GDP surpassed Japanese, it officially became the second largest economy in
the world [1], and the corresponding per capita real GDP growth rate was over 5% per year. China’s
development is attracting more and more attention, especially for the population [2]. Population has a
significant impact on a country, which is embodied in the ecological environment [3, 4], labor employment
[5], economic development [6, 7], and so on. However, China faces enormous challenges in the aging
of its population. To maintain the country’s sustainable development, the government urgently needs to
adjust its population development strategy. Hence, population must be accurately predicted to ensure the
scientific strategy.

There are many factors that affect population growth, such as economy, culture, and disease [8]. Hence,
predicting population is highly challenging [9]. However, many researchers have developed different
methods to carry out population predictions, and have made some progress [10–15]. For instance, statistical
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method proposed by Shang et al. [10] was a multilevel functional data method, in which mortality and
migration were jointly modeled and predicted for females and males. Hui [11] considered the temporal
trends of population from the spatial structure of distribution, based on the combination of distance
dynamics, occupancy scaling, and spatial autocorrelation domain models, proposed a model that predicts
population trends only from their spatial distribution. Raftery et al. [12] proposed a novel Bayesian method
based on probabilistic population prediction that could serve all countries. By introducing the reproductive
health or fertility factor (“Allee’s effect”) into the Verhulst demographic dynamic logistic model, Miranda
et al. [13] developed a new analytical procedure as a new method for dealing with a common evolutionary
growth process, applied to time evolution and prediction. Zhang et al. proposed a forecast method
named multiple sine functions decomposition [16], and used it to predict the potential saturation of the
world’s population [14]. Standard cohort-component [2, 15] was the most classic method of population
prediction. United Nations publishes the population prediction every two years in a report called the
World Population Prospects (WPP) [2], and it is widely used by researchers, international organizations, and
governments. In the latest report WPP (2017 version), population forecasts were made for 233 countries
and regions in the world, providing a prospect for population trends for countries.

Artificial neural networks (ANNs) [17–20], which is a mathematical model simulating human brain
structure, and external stimulus response mechanisms based on network topology knowledge. It is com-
posed of a large number of nodes connected to each other, and the connection between each node represents
a weighted value for the signal passing through the connection, which is called weight. Accordingly, ANNs
can fully approximate any complex nonlinear relationship, and it has the ability to solve the issues in the
real-world [21–26], so it has attracted the attention of many researchers [27–31]. For instance, Xiang et
al. [32] improved Z-type neural network for computing real-time-dependent matrix pseudoinverse under
noisy environments. To compute the Drazin inverse of a real matrix, Stanimirović et al. [33, 34] proposed a
recurrent neural network (RNN) consisting of n independent parts (subnetworks), it has the computational
advantages over the existing algorithms. Li et al. [35] proposed two improved neural network models
to overcome the two limitations of the existing RNN solutions for manipulator control. Liao et al. [36]
proposed a new Taylor-type numerical differentiation formula, which is used to discretize continuous-time
Zhang neural network. Zhang et al. [37] introduced a weights and structure-determination neural network
model activated by Chebyshev polynomials of class 1 for data fitting, and apply it to Asian population
prediction. The above studies shows that neural networks, through training and testing, can find the
approximate correct solution to the problem [38–40]. Training algorithm used by ANNs is conventionally
a back-propagation (BP) [41, 42], and the weights between the layers are gradually adjusted by the training
error. The algorithm based on this adjustment process is generally the gradient descent [43]. Recently,
Fahad et al. [44] proposed gradient and divergence estimation methods to achieve a control law for tracking
dynamic concentration level curves only by concentration measurement.

The research of meta-heuristic algorithm is an interesting topic in recent years [45], it is generally in-
spired by the regularity of natural biology, through the modelling of biological and natural intelligence, to
solve increasingly complex problems, with the characteristics of easy implementation, high precision, fast
convergence and so on. Eberhart et al. [46] proposed a particle swarm optimization algorithm, which orig-
inated from the enlightenment of bird predation, and then used group intelligence to continuously search
for optimal solutions in the solution space. Inspired by the hunting behavior of humpback whales, Mirjalili
et al. [47] proposed a whale optimization algorithm and applied it to other fields to solve optimization prob-
lems in engineering. Rao et al. [48] proposed an algorithm called teaching-learning-based optimization,
which can obtain the global solution of nonlinear functions with less computational complexity. Different
from the previous optimization algorithms, a new optimization algorithm, beetle antennae search (BAS)
[49, 50], only needs one individual to solve the optimization problems, so its calculation speed is very
fast. Nowadays, the trend of intelligent algorithms and neural networks to solve engineering problems is
increasing. Mohamad et al. [51] study investigated the application of hybrid neural network model based
on particle swarm optimization in the prediction of rock unconfined compressive strength. Momeni et al.
[52] suggest that ANN model based on genetic algorithm has advantages as a highly-reliable, efficient and
practical tool for predicting the pile bearing capacity. Kankal et al. [53] studies the performance of an ANN
with teaching-learning-based optimization for modeling electric energy demand in Turkey. However, the
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Figure 1: Three-layer neural network model using the proposed intelligent optimization algorithm.

performance impact of the BAS strategy on neural networks has not been reported in the existing litera-
tures. To overcome disadvantages of above mentioned BP neural networks, we propose a novel intelligent
optimization algorithm by using the BAS strategy to improve the training performance of the neural net-
work model. The proposed algorithm intelligently and automatically optimizes the weights during neural
network training process to improve the prediction accuracy as well as time efficiency.

A summary of our contributions follows.

• A novel intelligent optimization algorithm is proposed by leveraging the BAS strategy to automat-
ically adjust the weights of the neural network model, achieves higher prediction accuracy and
computational speed.

• The effectiveness of BAS strategy to find the optimal solution of the objective function are illustrated
via two numerical examples.

• The associated neural network model equipped with the proposed algorithm can be applied to the
population prediction. Via Chinese population prediction, the associated model is compared with
the BP neural network, and the prediction results are analyzed.

The above mentioned advantages are the motivation to use the associated neural network model to
predict Chinese population, and provide an effective basis for the population development strategies by the
government. The rest of this paper is organized as follows. Section 2 introduces the neural network model
used to predict Chinese population. Section 3 presents the proposed intelligent optimization algorithm to
optimize the weights of neural network model. In Section 4, the BAS strategy is used to find the optimal
solution for two test functions, which shows the effectiveness and versatility of the strategy. In Section 5, the
associated neural network model equipped with the proposed algorithm is compared with the conventional
BP neural network in performance, and the comprehensive prediction results of Chinese population are
presented and discussed. Section 6 discusses the conclusions and future research directions.

2. Preliminaries

Due to the unique nonlinear adaptive information processing capability to overcome the defects of
traditional artificial intelligence information processing of unstructured, ANNs have attracted considerable
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attention [54–57]. The feed-forward neural networks are the representatives. It has a simple structure, can
approximate arbitrary continuous functions and square integrable functions with arbitrary precision, and
can accurately implement any finite training sample set. It is worth noting that the activation function of
the traditional BP neural networks generally adopts a sigmoid function or a linear function. Under certain
application scenarios, such an activation function does not apply. Later studies showed that the application
of linearly independent and orthogonal activation functions in feed-forward neural networks is better than
the sigmoid function [58–61]. Therefore, this paper uses power function as the activation function for the
three-layer neural network model.

On the premise of guaranteeing the performance of the neural network, we simplified its structure so
as to be able to reduce the computational complexity and facilitate us to do research and analysis. In this
paper, a three-layer feed-forward neural network (input layer, hidden layer and output layer) is constructed
for the population of China from the year 2 to 2017. The structure is shown in Figure 1. In fact, an ANNs
with a hidden layer reduces the complexity of the model and reduces the likelihood of the model being
overwritten, and it has been shown that any complex problem can be approximated using a hidden layer
ANNs model. In this model, ti represents the ith input of the neural network, pi is the ith output of the
neural network, and di is the expected output corresponding to the ith input data. Obviously, {(ti, di)|

J
i=1} is

the data set of the sample pair. We define the input vector t, the output vector p and the desired output
vector d respectively as follows:

t = [t1, t2, · · · , tJ]T
∈ RJ, (1)

p = [p1, p2, · · · , pJ]T
∈ RJ, (2)

d = [d1, d2, · · · , dJ]T
∈ RJ, (3)

where RJ represents a collection of real numbers. Activation matrix H can be expressed as

H =


Φ1(t1) Φ2(t1) · · · ΦK(t1)
Φ1(t2) Φ2(t2) · · · ΦK(t2)

· · · · · ·
. . .

...
Φ1(tJ) Φ2(tJ) · · · ΦK(tJ)

 ∈ RJ×K, (4)

whereΦn(ti) indicates that nth neuron in the hidden layer is activated by a set of power functions, which is
expressed in the form of

Φn(ti) = tn−1
i , (5)

where n = 1, 2, . . . ,K, and i = 1, 2, . . . , J. Each input and output layer has only one neuron activated by a
linear marker function. It should be noted that in order to simplify the model structure, the weight between
the input layer neurons and the hidden layer neurons is fixed to 1, and all offset values in the neural network
are set to 0. Then, the relationship between input ti and output pi can be established as

pi =

K∑
n=1

ωnΦn(ti), (6)

where ωn represents the connection weight between the nth hidden layer neuron and the output layer. We
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define the following root-mean-square error (RMSE) as a performance indicator:

RMSE(ω) =

√√√
1
J

J∑
i=1

(Pmea − Pfor)2

=

√√√√√√ J∑
i=1

(di − pi)2

J

=

√√√√√√ J∑
i=1

(di −
K∑

n=1
ωnΦn(ti))2

J

=
‖d −Hω‖2
√

J
,

(7)

where Pmea represents the actual observation value and Pfor represents the output value of the model.

Algorithm 2.1 (BAS strategy for weight updating of neural network model). Input: Source x and maximum
budget for weight search Kmax;

Output: Weight Ubes and minimum error value fbes;
1: Initialize s, µ;
2: Read input data x;
3: Input data normalization;
4: Beetle initial search direction← Initialize weights U;
5: fbes ← f (U) via equation (7);
6: for k = 1 to Kmax do
7: Calculate the sensing length;
8: Ulef, Urig ← Search in variable space;
9: Update weights U← Update the state variable;

10: if f (U) < fbes then
11: Ubes ← U;
12: fbes ← f (U);
13: end if
14: Update s via equation (13);
15: end for
16: Return (Ubes, fbes)

3. Methodology

A new intelligent optimization algorithm, BAS, has been developed recently. Different from the previous
swarm intelligence algorithms, BAS only needs one individual, so it can greatly reduce the calculation time,
which gives us the motivation to update the weight of neural network model with BAS strategy, so as to
achieve a more efficient and accurate results than the traditional methods.

3.1. BAS strategy
Similar to the previous intelligent optimization methods, the BAS strategy does not need to know the

specific form of the function, and any gradient information. Hence, BAS strategy can realize high speed
function optimization. Compared to the swarm intelligence optimization algorithm, BAS only needs one
individual, so its computation time will be greatly reduced.

The biological principle of the beetle antennae search strategy is: when the beetle go out for food, it
doesn’t know the exact location of the food, it will rely on two antennae to judge. When the left antennae
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has a large concentration of odors, it will fly to the left. When the right antennae receive a large odor
concentration, it will fly to the right. We can imagine the smell of the food as a function, each point of the
function value is equivalent to the smell of the food concentration. Beetle is collecting the function value
of two points near it. If it is to find the minimum value, it will fly to the point where the function value is
small; if the maximum, it will fly to the point where the function value is large. By constantly searching for
the global maximum and minimum smell, we can find the global optimal point of the function and achieve
efficient function optimization.

Considering beetle search behavior, a random search direction of beetle as follows

a =
rnd(b, 1)
‖rnd(b, 1)‖

, (8)

where rnd(·) represents a random function, and b represents the dimension of the search space. The sensing
length of the antennae dt indicates the exploit ability, showing as follows

dt =
st

c
, (9)

where st denotes the step length, and c denotes the constant. Based on the direction of the antennae, the
search behavior of the left and right antennae can be simulated as follows:

xl = xt − dta,
xr = xt + dta,

(10)

where xl denotes the position in the left-hand search area at time t, and xr denotes that of the right-hand
side. Finally, based on the function value of the left and right search area, the position of beetle at time t
can be determined as follows:

xt = xt−1 + asign( f (xr) − f (xl))st, (11)

where sign(·) is a sign function, f (·) denotes the fitness function, and xt represents the position of beetle in
the search area at time t.

3.2. Weights updating
In the beginning, the input data is normalized and specific process can be seen in subsection (5.1). For

the initial weight setting, we utilize the following method:

U =
2 ∗HT

trace(HTH)
, (12)

where H represents the activation matrix equation (4), trace(·) is a function of calculation sum of diagonal
elements, and U takes the first column in the result.

Input the data into the neural network model, process it through the network weights and activation
functions, and obtain the output values. Compare the desired output di with the resulting output pi
to calculate the error, and save the result in the variable fbes. The dimension of beetle search space is
determined by the number of hidden layer neurons (i.e., dimension of weight vector). Determine the
search direction of the beetle antennae, and then determine the position in the left and right search areas,
Ulef and Urig, respectively. Calculate their corresponding values of the fitness function. It’s worth noting
that the fitness function is equation (7). Update the weight U and calculate the current error value. Compare
local and global best values, if the local best is better than the global best, then the global best alternative is
local best. Otherwise, keep the global best unchanged. The step factor can be used to control the ability of
beetle area search, and initial step size should be as large as possible, which can cover the current search
area and avoid falling into a local minimum. Step update can adopt a linear decrement strategy to ensure
the refinement of search, i.e.,

st+1 = µst, (13)
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Figure 2: The BAS strategy is used to find the optimal value of Bohachevsky function.
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Figure 3: The BAS strategy is used to find the optimal value of Ackley function.

where µ is the attenuation factor, generally can take the value between [0, 1]. Finally, determine whether the
fitness function value converges or iterates to the maximum number of times. If the condition is satisfied,
the program stop; otherwise, the program continues to run. When the algorithm stops iterating, it returns
Ubes and fbes, which is the optimal weight and minimum error value of the neural network model. For
more details of the algorithm process, refer to Algorithm 2.1.

For the convenience of the reader, we also briefly introduce the BP neural network, which is often used
to solve prediction problems. In the process of learning, the data is input to the model, the appropriate
output value is obtained through the model processing. Compare the output value with the expected
value, propagate the resulting error back to the network, adjust the weights in the network model, and
repeat the process until the error reaches the threshold. This whole learning process is the BP algorithm. In
mathematical expression, weight update formula is expressed as

ω(k + 1) = ω(k) + ∆ω(k), (14)

where

∆ω(k) = −η
∂E(ω)
∂w

∣∣∣∣∣
ω=ω(k)

(15)

In addition, the weight updates formula of this paper can be changed to

ω(k + 1) = ω(k) − ηHT(Hω(k) − d), (16)

where η = 0.5/trace(HTH).
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Table 1: Training error obtained by training the data before a specified year using different hidden-
neuron number.

Hidden-neuron number 30 40 50 53 65 80

2010 0.0518 0.0503 0.0390 0.0358 0.0303 0.0299
2011 0.0532 0.0508 0.0430 0.0383 0.0301 0.0261
2012 0.0547 0.0504 0.0395 0.0382 0.0341 0.0283
2013 0.0559 0.0499 0.0418 0.0420 0.0305 0.0313
2014 0.0557 0.0515 0.0416 0.0379 0.0332 0.0295
2015 0.0570 0.0531 0.0407 0.0337 0.0337 0.0309
Avg 0.0547 0.0510 0.0409 0.0376 0.0319 0.0293

4. Numerical experiments

We briefly describe two classic test functions, i.e., Bohachevsky function, and Ackley function. Then,
we try to use BAS strategy to find the optimal solution of these two functions, which indicated that BAS
has the ability of optimization, and that is one of the motivations for us to use it to optimize the weight of
the neural network model.

4.1. Test via Bohachevsky function

The Bohachevsky functions [62] is a continuous convex body defined in two-dimensional space. Its
shape is similar to a bowl, as shown in Figure 2(a), it obviously has a global minimum.

Now, considering the Bohachevsky function:

f (x) = x2
1 + 2x2

2 − 0.3 cos(3πx1) − 0.4 cos(4πx2) + 0.7, (17)

the function is usually evaluted on the square xi ∈ [−100, 100], for all i = 1, 2. Its global minimum point is
located at x∗ = (0, 0), and the corresponding minimum value is f (x∗) = 0. The BAS strategy looks for the
optimal solution of the function as shown in Figure 2(b). The parameter configuration is that the sensing
length is dt = 4, and step size s follows rule (13) with initialized value s = 0.98, µ = 0.97. We can see that
the BAS strategy can find the global minimum point of function from Figure 2(c). Numerically, the final
solution point found by BAS is xbes = (−1.2023e-08,−5.1518e-09), and the corresponding function value
f (xbes) = 2.8866e-15 is approximated by f (x∗).

4.2. Test via Ackley function

The Ackley function [62] is widely used to test optimization algorithms. In its two-dimensional form,
as shown in the 3(a), it is characterized in that an almost flat region is modulated by a cosine wave to form
a hole or a peak, thereby making the surface undulating. This function has the risk that the optimization
algorithm is trapped in many of its local minimum values.

We also consider the Ackley function:

f (x) = −a exp

−b

√√√
1
d

d∑
i=1

x2
i

 − exp

1
d

d∑
i=1

cos(cxi)

 + a + exp(1). (18)

Recommended variable values are: a = 20, b = 0.2 and c = 2π. The function is usually evaluated on the
hypercube xi ∈ [−32.768, 32.768], for all i = 1, . . . , d, although it may also be restricted to a smaller domain.
The minimized value satisfies f (x∗) = 0 locating in x∗ = (0, 0) in i = 2 dimension. Similarly, the number of
iteration steps is also from 0 to 500. Here, the sensing length dt is set to 3, and the step number updating
follows (13), s = 0.99, µ = 0.95. Figure 3(b) shows the visualization of the optimal path for function (18), and
Figure 3(c) shows the trend of the function value changing with the number of iterations in the optimization
process. The solution achieved by the strategy in numerical experiments is xbes = (3.8045e-13,−7.3645e-13),
the corresponding function value is f (xbes) = 2.3457e-12, which is sufficiently close to the global minimum
point f (x∗).
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Figure 4: The relationship between projection factor α and learning error.

Table 2: Testing error between the specified year and 2017 using different hidden-neuron number.

Hidden-neuron number 30 40 50 53 65 80

2010 0.1770 0.1360 0.0503 0.0306 0.0320 0.0906
2011 0.1702 0.1273 0.0520 0.0137 0.0313 0.0798
2012 0.1598 0.1128 0.0316 0.0202 0.0239 0.0975
2013 0.1426 0.0995 0.0293 0.0212 0.0289 0.0788
2014 0.1299 0.0969 0.0180 0.0061 0.0179 0.0848
2015 0.1288 0.0890 0.0162 0.0039 0.0238 0.0628
Avg 0.1513 0.1102 0.0329 0.0159 0.0263 0.0823

5. Application to population prediction

In this section, we apply the associated neural network model equipped with the proposed intelligent
optimization algorithm to the Chinese population prediction, and analyze the trends of Chinese future
population through numerical results. In addition, comparisons with the conventional BP neural networks
shows the feasibility and superiority of the associated neural network model equipped with the proposed
algorithm.

5.1. Input data normalization
The normalization processing of input data can not only accelerate the calculation speed [63], but also

help to find the global optimal solution when evaluating the loss function. Therefore, we project the time
interval [2, 2017] onto the projection interval (which can be understood as the “normalized interval”) [0,
α], where α is the projection factor [37]. In order to further analyze the influence of α on experimental
results, corresponding numerical experiments were performed. The results are shown in Figure 4, we can
intuitively see the relationship between the projection factor α and the learning error (i.e., RMSE). Different
α effects on experimental results exist. In addition, we can see from the map observation that there is a
global minimum point, i.e., α = 1.038, corresponding to the minimum value of RMSE = 0.0480 (i.e., average
relative error of all Chinese population data before 2017). Therefore, all subsequent experiments will use
this value to do normalization.

5.2. Population prediction
Just like the BP neural networks, the degree of convergence of the neural network model equipped with

the proposed algorithm calculation results is also affected by the iteration index k. In general, the iteration
index k is set according to the space size of the feasible solution, and the standard of selecting k is to obtain
a better convergence effect in a short time. The k chosen in this paper is 1 × 105, 2 × 105, 3 × 105, 4 × 105,
5×105, 6×105, 7×105, 8×105, 9×105, respectively. In order to select a representative k, we use the proposed
neural network model to train all the data before 2017. Because the BAS strategy has randomness (random
direction of the antennae), it runs 10 times on the basis of each iteration, such as Figure 6 which shows the
trend of the maximum, minimum and average values of the training error in 10 runs. As the iterative index
k increases, the training error gradually decreases. When k reaches 9 × 105, the training error converges. In
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Figure 5: Learning and prediction performance of the propose neural network model for Chinese population prediction with different
iteration.

order to better understand the relationship between k value and RMSE, the fitting of the training results
can be seen from Figure 5. The number of hidden layer neurons used in the experiment is 53, which will be
analyzed later.

We use different numbers of hidden layer neurons in the proposed neural network model to make test
errors. The iterative index k used is 1 × 106, run 10 times respectively, and the minimum value of the test
error results is taken. Table 1 shows the training errors obtained for training different neurons for a given
year. Take the first value 0.0518 as an example: it is the training error for 2010 (i.e., input data to 2010, with



Q. Wu et al. / Filomat 34:15 (2020), 4937–4952 4947

1 2 3 4 5 6 7 8 9

Iteration (one hundred thousand)

0.035

0.040

0.045

0.050

0.055

0.060

T
ra

in
in

g
 e

rr
o

r

BP neural network

The proposed (max value)

The proposed (avg value)

The proposed (min value)

Figure 6: Comparison of training errors by the proposed neural network model and BP neural network.
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Figure 7: Comparison of run time by the proposed neural network model and BP neural network.

the remaining data as a test). Table 2 shows the test error between the specified year and 2017. Take the
first value 0.1770 as an example: it represents the difference between the data from 2011 to 2017 obtained
from the model training and the test data. It can be seen from the table that when the number of neurons
is 80, although it has the smallest training error, its generalization ability is poor, and the test error is large.
When the number of neurons is 30, both training and testing errors are large. When the number of neurons
is 53, it has the best effect, not only the training error is small, but also the test error. Therefore, the number
of hidden layer neurons in the model was determined to be 53, and all experiments used this value. From
the test error results, we can infer that the neural network model equipped with the proposed algorithm
has the ability to accurately predict the population.

With the training of proposed neural network, we predict the number of Chinese population in the next
10 years, as shown in Figure 5. From Figure 5(a) and Figure 5(f) shows, the larger k value leads to the
smaller training error, which usually means better prediction performance. It can be seen that in the next
few years, the Chinese population will continue to grow at a relatively gradual pace because of the large
population base in China and the historical trend of continuous growth. However, after 2021, the Chinese
population began to slowly decline. In fact, in 1982, family planning was defined as a basic national policy.
It mainly advocates late marriage and late childbirth. This policy effectively controlled population growth.
The downward trend shown in Figure 5(f) may be affected by this policy.
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Table 3: Training error results of the two methods (in %, the lower the values the better). Boldface
indicates the best result among these two approaches, performance improvement ratios is shown in
parentheses.

Iteration RMSE Run time (s)

BP The proposed BP The proposed

1 × 105 0.0566 0.0501 (12.97) 32.86 51.00
2 × 105 0.0542 0.0471 (15.07) 125.06 103.25 (21.12)
3 × 105 0.0527 0.0464 (13.57) 293.18 160.00 (83.23)
4 × 105 0.0516 0.0431 (19.72) 524.90 212.10 (147.47)
5 × 105 0.0506 0.0432 (17.12) 822.39 260.34 (215.89)
6 × 105 0.0498 0.0430 (15.81) 1148.77 309.14 (271.60)
7 × 105 0.0491 0.0418 (17.46) 1446.89 346.48 (317.59)
8 × 105 0.0486 0.0400 (21.50) 1974.75 403.64 (389.23)
9 × 105 0.0480 0.0395 (21.51) 2292.01 457.76 (400.70)

Table 4: Comparison of testing error by the proposed neural network model and the BP neural network
model.

Neural network 2010 2011 2012 2013 2014 2015

BP neural network 0.1097 0.0979 0.0871 0.0772 0.0682 0.0598
The proposed 0.0306 0.0137 0.0202 0.0212 0.0061 0.0039

5.3. Comprehensive Comparison

BP neural network takes the same parameter settings as the experiment performed by the proposed
one. Table 3 shows the comparison of the training error and the run time results of the two models. Here,
the RMSE acquisition of the proposed neural network model is an average value. It is not difficult to see
that the proposed neural network model has stronger search capability than BP neural network. With the
increase in the iteration index, its computation time is much shorter than that of BP neural network, which
can be seen from Figure 7. As shown in Figure 6, even if the RMSE of the proposed takes the maximum
value, the error rate is less than BP neural network. When the k is 9×105, the time spent of proposed neural
network model is 20% of the BP neural network model, which benefits from the characteristics of the BAS
strategy, the fast convergence speed, the strong optimization ability, and integrate with neural networks to
give full play to its advantages. Table 4 shows the comparison of the test error values of the two models.
It’s obvious that compared with the BP neural network, the proposed neural network model may have a
better ability to predict the population and the test error is significantly smaller. As can be seen from Figure
8, the proposed neural network model is similar to WPP, and BP neural network has a higher population
prediction result. The numerical results show that the prediction of the neural network model equipped
with the proposed intelligent optimization algorithm is reasonable to some extent.

Further, we compare the performance of proposed algorithm with other neural network models, and
results are shown in Table 5. The proposed algorithm does not need to find the inverse of the matrix, which
reduces computational complexity, and because it is an individual search, it is faster than swarm search.
Hence, the proposed algorithm has some advantages, and it is a natural fit to optimize the neural network
model.

6. Conclusion and future work

In this paper, a neural network model has combined with meta-heuristic strategy (i.e., the BAS) to
construct a novel intelligent optimization algorithm. Through the practical application of predicting the
future population of China, the proposed neural network model and the BP neural network have conducted
a large number of comparative experiments. It has been found that the proposed neural network model
equipped with the novel intelligent optimization algorithm has overcome the shortcomings of BP neural
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Figure 8: Population prediction comparison of the results via the WPP, the proposed neural network model and BP neural network
model.

Table 5: The associated neural network model equipped with the proposed algo-
rithm to compare with other neural network models in performance.

Method/Reference Performance

Speed Gradient Inversion Swarm

The Proposed Fast No No No
[37] Fast No Yes No
[51] Slow No No Yes
[52] Slow No No Yes
[53] Slow No No Yes
[64] Fast No Yes No
[65] Slow Yes No No

networks that slow learning speed and often falling into the local minimum value. Experimental results
show that the error rate of the former is smaller than the latter, and that the proposed neural network model
can save 80% computation time. This paper also has analyzed the trend of Chinese population in the next
10 years. The results obtained from the the proposed neural network model are that the population will
continue to grow slowly over the next few years, but after 2021, there will be a slow decline. Similar to the
results of WPP, it is reasonable to use the proposed neural network model to predict. In addition, we also
have provided high-quality population data that can support sociological researchers to further explore.
It is worth noting that the neural network model equipped with the proposed intelligent optimization
algorithm can be easily extended to predictive analysis of population in other countries and regions. As
a final remark of this paper, to the best of author’s knowledge, this is the first work in the field of neural
networks that is able to elegantly address the weight optimization by leveraging the BAS strategy, and
effectively apply to population prediction.

Future directions are listed as follows: (1) optimize the structure of neural network model and adaptively
find the appropriate number of hidden layer neurons; (2) the proposed intelligent optimization algorithm
is made in parallel and runs on a distributed platform; (3) population prediction for other countries or
regions.

Appendix A

This paper collects rough data from the past 2016-year (i.e., from 2 to 2017). In this appendix, for
convenience of further analysis by researchers and practitioners, these data are presented in Table 6.
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Table 6: Chinese population data used in this paper.

Year 2 57 75 88 105 125 140 144
Data (million) 59.59 21.01 34.13 43.36 53.26 48.69 49.15 49.73

Year 145 146 156 280 609 705 726 732
Data (million) 49.52 47.57 56.48 16.16 46.02 37.14 41.42 45.43

Year 740 742 754 755 760 764 820 1006
Data (million) 48.14 48.91 52.88 52.92 16.99 16.90 15.76 16.28

Year 1053 1066 1083 1122 1162 1187 1207 1281
Data (million) 22.29 29.09 24.97 46.73 33.11 44.71 45.82 58.83

Year 1291 1381 1393 1403 1502 1504 1578 1620
Data (million) 59.85 59.87 60.54 66.60 50.91 60.11 60.69 51.66

Year 1724 1741 1751 1764 1776 1790 1834 1844
Data (million) 126.11 143.41 181.81 205.50 208.10 301.49 401.01 419.44

Year 1887 1901 1911 1913 1928 1931 1935 1947
Data (million) 377.64 426.45 341.42 432.00 474.78 421.07 462.15 461.00

Year 1949 1950 1951 1955 1960 1965 1970 1971
Data (million) 541.67 551.96 563.00 614.65 662.07 725.38 829.92 852.29

Year 1972 1973 1911 1913 1928 1931 1935 1947
Data (million) 377.64 426.45 341.42 432.00 474.78 421.07 462.15 461.00

Year 1949 1950 1951 1955 1960 1965 1970 1971
Data (million) 541.67 551.96 563.00 614.65 662.07 725.38 829.92 852.29

Year 1972 1973 1974 1975 1976 1977 1978 1979
Data (million) 871.77 892.11 908.59 924.20 937.17 949.74 962.59 975.42

Year 1980 1981 1982 1983 1984 1985 1986 1987
Data (million) 987.05 1000.72 1016.54 1030.08 1043.57 1058.51 1075.07 1093.00

Year 1988 1989 1990 1991 1992 1993 1994 1995
Data (million) 1110.26 1127.04 1143.33 1158.23 1171.71 1185.17 1198.50 1211.21

Year 1996 1997 1998 1999 2000 2001 2002 2003
Data (million) 1223.89 1236.26 1247.61 1257.86 1267.43 1276.27 1284.53 1292.27

Year 2004 2005 2006 2007 2008 2009 2010 2011
Data (million) 1299.88 1307.56 1314.48 1321.29 1328.02 1334.50 1340.91 1347.35

Year 2012 2013 2014 2015 2016 2017
Data (million) 1354.04 1360.72 1367.82 1374.62 1382.71 1390.08
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