Research on ultrasound image of interventional catheterization processing method based on wavelet transform and fuzzy theory


Chenyang Liang, Ning He




Interventional catheterization can help patients to accurately assess the condition, early diagnosis and intervention. Confirming the location of catheter by ultrasound has the advantages of real-time imaging, non-invasive, radiative, fast and convenient. Due to speckle noise and similar acoustic impedance, ultrasound images are not clear. In this paper an ultrasonic image processing algorithm based on wavelet transform and fuzzy theory is proposed. First, logarithmic transformation of ultrasound images is used to convert multiplicative noise into additive noise. Then the wavelet coefficients of the image are obtained by multiscale wavelet transform. The high frequency wavelet coefficients of the image are denoised by thresholding, and the low-frequency wavelet coefficients of the image are processed by fuzzy enhancement. Finally, the processed image is obtained through wavelet reconstruction and exponential transformation. Experiments show that this proposed method can effectively improve the visual effect of images