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Available at: http://www.pmf.ni.ac.rs/filomat

Polynomial Helices in the n-Dimensional Semi-Euclidean Space with
Index Two
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Abstract. In this article, we investigate polynomial helices in the n-dimensional semi-Euclidean space
with index two for n ≥ 4. We obtain some families of spacelike and timelike polynomial helices. These
helices have spacelike or timelike or null axes. After that, we give some examples of the spacelike and the
timelike polynomial helices in the n-dimensional semi-Euclidean space with index two for n = 4, 5 and 6.

1. Introduction

Helices have been one of the most fruitful subject for the differential geometry since it has many
applications in the other branches of science. For instance, in biology, in simulation of kinematic motion,
in the design of highways, in engineering and so on [1, 2].

The notion of helix is stated in 3-dimensional Euclidean space by M. A. Lancret in 1802. Helix is a curve
whose tangent vector field make a constant angle with a fixed direction called the axis of the helix. In 1845,
B. de Saint Venant gave the necessary and sufficient condition of a curve to be a general helix. Namely, a
curve is a general helix if and only if the ratio of the curvature to the torsion is constant [13]. In Literature,
there are several characterizations for helices in the Euclidean 3-space [5, 12].

In [11], Özdamar and Hacısalihoğlu defined harmonic curvature functions in the n-dimensional Eu-
clidean space and used them to extend the concept of the helix from 3-dimensional Euclidean space to
n-dimensional Euclidean space for n > 3. Since then, the characterization of helices has been studied in
many ambiant spaces. For example, in n-dimensional Euclidean space [2, 3], in 3-dimensional Lorentzian
space forms, which are de Sitter and anti de Sitter space [8], in Galilean space [4, 9], in Lie group [17], in
n-dimensional Minkowski space [1, 15, 16].

Semi-Euclidean geometry has been an active research area in general relativity and mathematics, after
Einstein’s formulation of general relativitiy as a theory of space, time and gravitation in the semi-Euclidean
space [14]. As far as we know, there is little information available in literature about helices in the semi-
Euclidean space with index two. The main goal of this article is to obtain families of non-null polynomial
helices depend on its casual character in the semi-Euclidean space with index two. In addition, we consider
casual character of the axis of the helix.
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The remainder of this article is organized as follows. First, we give basic information about a non-
degenerate curve of local differential geometry in the n-dimensional semi-Euclidean space with index two.
After, we give some families of the spacelike and the timelike polynomial helices in the n-dimensional
semi-Euclidean space with index two. This part was adopted from Minkowski spacetime in [1]. Finally,
give some examples in the n-dimensional semi-Euclidean space with index two for n = 4, 5 and 6.

2. Preliminary

In this section, we give the basic theory of non-degenerate curves of local differential geometry in the
n-dimensional semi Euclidean space with index two. For more details and background about this space,
see [10].
Let {e1, e2, . . . , en} be the standard orthonormal basis of real vector spaceRn and the vector spaceRn endowed
with the scalar product,

1
(
x, y

)
= −x1y1 − x2y2 +

n∑
i=3

xiyi,

for all x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn. The couple
{
Rn, 1 (, )

}
is called n-dimensional semi-

Euclidean space with index two, which is denoted by En
2 . Recall that a vector v ∈ Rn is called spacelike

if 1 (v, v) > 0, timelike if 1 (v, v) < 0 and null (lightlike) if 1 (v, v) = 0. In addition, if the vector v = 0, then

v is still called spacelike. The norm of a vector v ∈ Rn is defined by ‖v‖ =
√∣∣∣1 (v, v)

∣∣∣. A curve in En
2 is a

smooth mapping α : I→ En
2 , where I is an open interval inR. A curve α : I→ En

2 is called regular provided
α′(t) , 0 for all t. The regular curve α : I → En

2 is said to be spacelike or timelike if its velocity vector α′ (t)
is a spacelike or a timelike vector at any t ∈ I.

Let {V1,V2, . . . ,Vn}be non-null Frenet frame along a non-null arbitrary curveα inEn
2 . Since {V1,V2, . . . ,Vn}

is an orthonormal frame, then 1
(
Vi,V j

)
= δi jεi whereby εi ∈ {−1, 1} for

(
i, j = 1, 2, . . . ,n

)
. Now, we can give

Frenet-Serret formulas according to the causal character of the curve α. It means that if ε1 = 1 and ε1 = −1,
then α (t) is the spacelike and timelike curve in En

2 , respectively. Then, the Frenet equations are as follows,



V′1
V′2
V′3
...

V′n−1
V′n


=



0 νε2κ1 0 · · · 0 0
−νε1κ1 0 νε3κ2 · · · 0 0

0 −νε2κ2 0 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 −νεn−1κn−1
0 0 0 · · · −νεnκn−1 0





V1
V2
V3
...

Vn−1
Vn


where V1 = α′

‖α′‖ , ν = ‖α′ (t)‖ and κi the ith curvatures of the curve α for 1 ≤ i ≤ n − 1 [6]. In this work, we
assume all curvatures κi of the curve α are nowhere vanish. Such curves are called non-degenerate curve.

3. Spacelike Polynomial Helices in En
2

In this section, after giving the definition of a helix in En
2 , we give families of polynomial spacelike

helices in En
2 . For doing this, we have two cases where n is even or odd. In the case of n is even, there are

three subcases; n = 4,n = 6 and n ≥ 8. If n is odd there are also two subcases; n = 5 and n ≥ 7.

Definition 3.1. A regular curve β : I ⊂ R → E3
1 parameterized by arc length is called a helix if and only if there

exist a constant vector U ∈ E3
1 with L (T(s),U) is a constant where T(s) is tangent vector of the curve β and L (, ) is

the Lorentzian metric. Any line parallel this direction U is called the axis of the curve β [7].

Similar to the definition above, we define helix in En
2 as follows,
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Definition 3.2. A curve β : I ⊂ R→ En
2 is called a helix if and only if there exist a nonzero constant vector U ∈ En

2
with 1 (V1,U) is a nonzero constant where V1 is the tangent vector field of the curve β. Any line parallel this direction
U is called the axis of the curve β.

3.1. Spacelike polynomial helices in En
2 when n is even

In this subsection, we give families of spacelike polynomial helices with spacelike, timelike or null axis
for n is even.

Theorem 3.3. Let n = 4 and β : (1, d) ⊂ R→ E4
2, d > 1, be a curve defined by

β (t) =
(a1

2
t2,

a2

3
t3, a3t,

a4

5
t5 +

a5

3
t3
)
.

If

a2
1 = 2b1b2, a2

2 = 2b1b3, a3 = b1, a4 = b3, a5 = b2,

with 1 ≤ j ≤ 3, b j ∈ R+, b3 + b2 > b1 then β is a spacelike polynomial helix with the spacelike axis U = (0, 0, 1,−1).

Proof. From the straightforward calculations, we have

1
(
β′ (t) , β′ (t)

)
=

(
b3t4 + b2t2

− b1

)2
,

V1 (t) =
1

b3t4 + b2t2 − b1

(
a1t, a2t2, b1, b3t4 + b2t2

)
,

1 (V1 (t) ,U) = −1.

Therefore, β is a spacelike polynomial helix.

Example 3.4. If we choose b1 = 1, b2 = b3 = 2 in Theorem 3.3, then we have the spacelike polynomial helix

β (t) =

(
t2,

2t3

3
, t,

2t5

5
+

2t3

3

)
with the spacelike axis

U = (0, 0, 1,−1)

and the tangent vector

V1 (t) =
1

2t4 + 2t2 − 1

(
2t, 2t2, 1, 2t4 + 2t2

)
.

Also,

1 (V1 (t) ,U) = −1.

Theorem 3.5. Let n = 6 and β : (1, d) ⊂ R→ E6
2, d > 1, be a curve defined by

β (t) =
(a1

2
t2,

a2

3
t3, a3t,

a4

4
t4,

a5

5
t5,

a6

7
t7 +

a7

5
t5
)
.

If

a2
1 = 2b1b2, a2

2 = 2b1b3 − b2
2, a3 = b1, a2

4 = 2b2b3 − 2b1b4, a2
5 = 2b2b4, a6 = b4, a7 = b3,
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with 1 ≤ j ≤ 4, b j ∈ R+,
4∑

j=2
b j > b1; 2b1b3 > b2

2; b2b3 > b1b4, then β is a spacelike polynomial helix with the axis

U =

(
0,

b2

a2
, 1, 0, 0,−1

)
and the tangent vector

V1 (t) =
1

−b1 + b2t2 + b3t4 + b4t6

(
a1t, a2t2, a3, a4t3, a5t4, a6t6 + a7t4

)
.

Proof. We omit the proof since it is analogous to the proof of the Theorem 3.3.

Theorem 3.6. Assume n ≥ 8 is an even number,

a2
1 = 2b1b2, a2

2 = 2b1b3 − b2
2 > 0, a3 = b1, a2

n−1 = 2b n−2
2

b n+2
2
, an = b n+2

2
, an+1 = b n

2
,

a2
2k+1 = b2

k+1 − 2b1b2k+1 + 2
k∑

j=2

b jb2k− j+2 > 0 for 2 ≤ k ≤
n − 4

2

and

a2
2l = −2b1b2l + 2

l∑
j=2

b jb2l− j+1 > 0 for 2 ≤ l ≤
n − 2

2

such that 1 ≤ j ≤ n+2
2 , b j ∈ R+, b n+4

2
= b n+6

2
= · · · = bn−2 = 0 and

n+2
2∑

j=2
b j > b1. Then, the curve β : I→ En

2 defined by

β (t) =
(a1

2
t2,

a2

3
t3, a3t,

a4

4
t4,

a5

5
t5, . . . ,

an−1

n − 1
tn−1,

an

n + 1
tn+1 +

an+1

n − 1
tn−1

)
is a spacelike polynomial helix with axis U where

U =
b2

a2
e2 + e3 −

n−2
2∑

m=3

bm

a2m−1
e2m−1 − en,

I = (1, d) ⊂ R and d > 1.

Proof. By making calculations, we have

V1 (t) =
1∥∥∥β′ (t)∥∥∥ (

a1t, a2t2, a3, a4t3, a5t4, . . . , an−1tn−2, antn + an+1tn−2
)

=
1∥∥∥β′ (t)∥∥∥ (

a1t, a2t2, b1, a4t3, a5t4, . . . , an−1tn−2, b n+2
2

tn + b n
2
tn−2

)
.

Morever, we have

1
(
β′ (t) , β′ (t)

)
=

−b1 +

n+2
2∑

j=2

b jt2( j−1)


2

.

So, 1
(
β′ (t) , β′ (t)

)
> 0. In that case β is a spacelike polynomial curve with

1 (V1 (t) ,U) = −1.

Eventually, β is a spacelike polynomial helix.
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As a result of Theorem 3.6, we have the following corollary.

Corollary 3.7. It is easily seen that,

If
2a2

2 − b2
2

a2
2

+

n−2
2∑

m=3

b2
m

a2
2m−1

> 0, then the axis U is a spacelike vector,

If
2a2

2 − b2
2

a2
2

+

n−2
2∑

m=3

b2
m

a2
2m−1

< 0, then the axis U is a timelike vector

and

If
2a2

2 − b2
2

a2
2

+

n−2
2∑

m=3

b2
m

a2
2m−1

= 0, then the axis U is a null vector.

Similarly, from the Theorem 3.5, one easily see that the axis U is a spacelike, a timelike and a null vector
if 2a2

2 − b2
2 > 0, 2a2

2 − b2
2 < 0 and 2a2

2 = b2
2, respectively.

Now, we give an example of a spacelike polynomial helix with the null axis for n = 6.

Example 3.8. If we choose b1 = 1, b2 = 2, b3 = 3, b4 = 1 in Theorem 3.5, then we have the spacelike polynomial helix

β (t) =

(
t2,

√
2

3
t3, t,

√
5

2
√

2
t4,

2t5

5
,

t7

7
+

3t5

5

)
with the null axis

U =
(
0,
√

2, 1, 0, 0,−1
)

and the tangent vector

V1 (t) =
1

t6 + 3t4 + 2t2 − 1

(
2t,
√

2 t2, 1,
√

10 t3, 2t4, t6 + 3t4
)
.

Also,

1 (V1 (t) ,U) = −1.

Now, we give an example of a spacelike polynomial helix with the timelike axis for n = 6

Example 3.9. If we choose b1 = 2, b2 =
√

3, b3 = 2, b4 = 1 in Theorem 3.5, then we have the spacelike polynomial
helix

β (t) =


4√3
√

2
t2,

t3

3
, t,

√
2
√

3 − 1
8

t4,
4√12
5

t5,
t7

7
+

2t5

5


with the timelike axis

U =
(
0,
√

3, 1, 0, 0,−1
)

and the tangent vector

V1 (t) =
1

t6 + 2t4 +
√

3t2 − 1

(
4√

12 t, t2, 1,
√

4
√

3 − 2 t3,
4√

12 t4, t6 + 2t4

)
.

Also,

1 (V1 (t) ,U) = −1.
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3.2. Spacelike polynomial helices in En
2 when n is odd

In this subsection, we give families of spacelike polynomial helices with spacelike, timelike or null axis
when n is odd.

Theorem 3.10. Let n = 5 and β : (1, d) ⊂ R→ E5
2, d > 1, be a curve defined by

β (t) =
(a1

2
t2,

a2

3
t3, a3t,

a4

4
t4,

a5

5
t5
)
.

If

a2
1 = 2b1b2, a2

2 = 2b1b3 − b2
2, a3 = b1, a2

4 = 2b2b3, a5 = b3,

with 1 ≤ j ≤ 3, b j ∈ R+, b3 + b2 > b1 and b2
2 < 2b1b3 then β is a spacelike polynomial helix with the axis

U =

(
0,

b2

a2
, 1, 0,−1

)
and the tangent vector

V1 (t) =
1

−b1 + b2t2 + b3t4

(
a1t, a2t2, a3, a4t3, a5t4

)
.

Proof. We omit the proof since it is analogous to the proof of the Theorem 3.3.

Theorem 3.11. Assume n ≥ 7 is an odd number,

a2
1 = 2b1b2, a2

2 = 2b1b3 − b2
2 > 0, a3 = b1, a2

n−1 = 2b n−1
2

b n+1
2
, an = b n+1

2
,

a2
2k+1 = b2

k+1 − 2b1b2k+1 + 2
k∑

j=2

b jb2k− j+2 > 0 for 2 ≤ k ≤
n − 3

2

and

a2
2l = −2b1b2l + 2

l∑
j=2

b jb2l− j+1 > 0 for 2 ≤ l ≤
n − 3

2

such that 1 ≤ j ≤ n+1
2 , b j ∈ R+, b n+3

2
= b n+5

2
= · · · = bn−1 = 0 and

n+1
2∑

j=2
b j > b1. Then, the curve β : I→ En

2 defined by

β (t) =
(a1

2
t2,

a2

3
t3, a3t,

a4

4
t4,

a5

5
t5,

a6

6
t6, . . . ,

an−1

n − 1
tn−1,

an

n
tn
)

is a spacelike polynomial helix with the axis

U =
b2

a2
e2 + e3 −

n−1
2∑

m=3

bm

a2m−1
e2m−1 − en,

where I = (1, d) ⊂ R, d > 1 and the tangent vector

V1 (t) =
1

−b1 +

n+1
2∑

j=2
b jt2( j−1)

(
a1t, a2t2, a3, a4t3, a5t4, . . . , an−1tn−2, antn−1

)
.
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Proof. We omit the proof since it is analogous to the proof of the Theorem 3.6.

As a result of Theorem 3.11, we have the following corollary.

Corollary 3.12. It is easily seen that,

If
2a2

2 − b2
2

a2
2

+

n−1
2∑

m=3

b2
m

a2
2m−1

> 0, then the axis U is a spacelike vector,

If
2a2

2 − b2
2

a2
2

+

n−1
2∑

m=3

b2
m

a2
2m−1

< 0, then the axis U is a timelike vector

and

If
2a2

2 − b2
2

a2
2

+

n−1
2∑

m=3

b2
m

a2
2m−1

= 0, then the axis U is a null vector.

Similarly, from the Theorem 3.10, one easily see the axis U is a spacelike, a timelike and a null vector if
2a2

2 − b2
2 > 0, 2a2

2 − b2
2 < 0 and 2a2

2 = b2
2, respectively.

Now, we give an example of a spacelike polynomial helix with the spacelike axis for n = 5.

Example 3.13. If we choose b2 = 1, b1 = b3 = 2 in Theorem 3.10, then we have the spacelike polynomial helix

β (t) =

(
t2,

√
7

3
t3, 2t,

t4

2
,

2t5

5

)
with the spacelike axis

U =

(
0,

1
√

7
, 1, 0,−1

)
and the tangent vector

V1 (t) =
1

2t4 + t2 − 2

(
2t,
√

7 t2, 2, 2t3, 2t4
)
.

Also,

1 (V1 (t) ,U) = −1.

Now, we give an example of a spacelike polynomial helix with the timelike axis for n = 5.

Example 3.14. If we choose b1 = 1, b2 =
√

3, b3 = 2 in Theorem 3.10, then we have the spacelike polynomial helix

β (t) =

( 4√3
√

2
t2,

t3

3
, t,

4√3
2

t4,
2t5

5

)
with the timelike axis

U =
(
0,
√

3, 1, 0,−1
)
.

and the tangent vector

V1 (t) =
1

2t4 +
√

3t2 − 1

(
4√

12 t, t2, 1,
4√

48 t3, 2t4
)
.

Also,

1 (V1 (t) ,U) = −1.
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Now, we give an example of a spacelike polynomial helix with the null axis for n = 5.

Example 3.15. If we choose b1 = 1, b2 = 2, b3 = 3 in Theorem 3.10, then we have the spacelike polynomial helix

β (t) =

(
t2,

√
2

3
t3, t,

√
3

2
t4,

3t5

5

)
with the null axis

U =
(
0,
√

2, 1, 0,−1
)
.

and the tangent vector

V1 (t) =
1

3t4 + 2t2 − 1

(
2t,
√

2 t2, 1, 2
√

3 t3, 3t4
)
.

Also,

1 (V1 (t) ,U) = −1.

4. Timelike Polynomial Helices in En
2

In this section we give families of timelike polynomial helices with spacelike, timelike or null axis.

Theorem 4.1. Let n = 4 and β : I − {0} ⊂ R→ E4
2 be a curve defined by

β (t) =
(a1

5
t5 + a2t,

a3

4
t4,

a4

3
t3,−a2t

)
.

If

a1 = b2, a2 =
b2

1

b2
, a2

3 = 2b1b2, a4 = b1

with b1, b2 ∈ R+, then β is a timelike polynomial helix with the spacelike axis

U = (−1, 0, 1, 1) .

Proof. From the straightforward calculations, we have

1
(
β′ (t) , β′ (t)

)
= −

(
b1t2 + b2t4

)2
,

V1 (t) =
1

b2t4 + b1t2

(
b2t4 + a2, a3t3, b1t2,−a2

)
,

1 (V1 (t) ,U) = 1.

Therefore, β is a timelike polynomial helix.

Example 4.2. If we choose b1 = 2, b2 = 1 in Theorem 4.1, then we have the timelike polynomial helix

β (t) =

(
t5

5
+ 4t,

t4

2
,

2t3

3
,−4t

)
with the spacelike axis

U = (−1, 0, 1, 1)
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and the tangent vector

V1 (t) =
1

t4 + 2t2

(
t4 + 4, 2t3, 2t2,−4

)
.

Also,

1 (V1 (t) ,U) = 1.

Theorem 4.3. Let n = 5 and β : I − {0} ⊂ R→ E5
2 be a curve defined by

β (t) =
(a1

7
t7 +

a2

5
t5 + a3t,

a4

5
t5,

a5

4
t4,

a6

3
t3,−a3t

)
.

If

a1 = b3, a2 = b2, a3 =
b2

1

b2
, a2

4 = 2b1b3, a2
5 =

2b2
1b3 − 2b1b2

2

b2
> 0, a6 = b1

with 1 ≤ j ≤ 3, b j ∈ R+ then β is a timelike polynomial helix with the spacelike axis

U = (−1, 0, 0, 1, 1)

and the tangent vector

V1 (t) =
1

b1t2 + b2t4 + b3t6

(
a1t6 + a2t4 + a3, a4t4, a5t3, a6t2,−a3

)
.

Proof. We omit the proof since it is analogous to the proof of the Theorem 4.1.

Example 4.4. If we choose b1 = 2, b2 = 1, b3 = 2 in Theorem 4.3, then we have the timelike polynomial helix

β (t) =

(
2t7

7
+

t5

5
+ 4t,

2
√

2
5

t5,

√
3

2
t4,

2t3

3
,−4t

)
with the spacelike axis

U = (−1, 0, 0, 1, 1)

and the tangent vector

V1 (t) =
1

2t6 + t4 + 2t2

(
2t6 + t4 + 4, 2

√

2 t4, 2
√

3 t3, 2t2,−4
)
.

Also,

1 (V1 (t) ,U) = 1.

Theorem 4.5. Let n ≥ 6 and β : I − {0} ⊂ R→ En
2 be a curve defined by

β (t) =
( a1

2n − 3
t2n−3 +

a2

2n − 5
t2n−5 + · · · +

an−3

5
t5 + an−2t,

an−1

n
tn,

an

n − 1
tn−1,

an+1

n − 2
tn−2, . . . ,

a2n−4

3
t3,−an−2t

)
.

If

a2n−4 = b1, an−3 = b2, an−4 = b3, . . . , a2 = bn−3, a1 = bn−2,
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an−2 =
b2

1

b2
, a2

n−1 = 2b1bn−2, a2
2n−5 =

2b2
1b3 − 2b1b2

2

b2
> 0

and

a2
k = 2an−2ak−n+1 − 2a2n−4ak−n+2 > 0 for n ≤ k ≤ 2n − 6

with bi is a positive constant for 1 ≤ i ≤ n − 2 then β is a timelike helix with the spacelike axis

U = −e1 + en−1 + en

and the tangent vector

V1 (t) =
1

n−2∑
j=1

b jt2 j

(
a1t2n−4 + a2t2n−6 + · · · + an−3t4 + an−2, an−1tn−1, antn−2, an+1tn−3, . . . , a2n−4t2,−an−2

)
.

Proof. We omit the proof since it is analogous to the proof of the Theorem 4.1.

Theorem 4.6. Let n ≥ 4 and β : I − {0} ⊂ R→ En
2 be a curve defined by

β (t) =
( a1

2n − 3
t2n−3 +

a2

2n − 5
t2n−5 + · · · +

an−2

3
t3, an−1t,

an

2
t2,

an+1

3
t3, . . . ,

a2n−3

n − 1
tn−1

)
.

If

a1 = bn−1, a2 = bn−2, a3 = bn−3, . . . an−1 = b1

and

a2
n = 2b1b2, a2

n+1 = 2b1b3, . . . , a2
2n−3 = 2b1bn−1,

with bi is a positive constant for 1 ≤ i ≤ n − 1 then β is a timelike helix with the timelike axis

U = e1 − e2

and tangent vector

V1 (t) =
1

−b1 +
n−1∑
j=2

b jt2( j−1)

(
a1t2n−4 + a2t2n−6 + · · · + an−2t2, an−1, ant, an+1t2, . . . , a2n−3tn−2

)
.

Proof. We omit the proof since it is analogous to the proof of the Theorem 3.6.

Example 4.7. If we choose n = 4; b1 = 1, b2 = 2, b3 = 1 in Theorem 4.6, then we have the timelike polynomial helix

β (t) =

(
t5

5
+

2t3

3
, t, t2,

√
2t3

3

)
with the timelike axis

U = (1,−1, 0, 0)

and the tangent vector

V1 (t) =
1

t4 + 2t2 − 1

(
t4 + 2t2, 1, 2t,

√

2 t2
)
.

Also,

1 (V1 (t) ,U) = −1.
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Theorem 4.8. Let n ≥ 4 and β : I = (0, 1) ⊂ R→ En
2 be a curve defined by

β (t) =
( a1

2n − 3
t2n−3 +

a2

2n − 5
t2n−5 + · · · +

an−2

3
t3 + t,

an−1

n − 1
tn−1,

an

n − 2
tn−2, . . . ,

a2n−4

2
t2, t

)
.

If

a1 = −bn−2, a2 = bn−3, a3 = bn−4, . . . an−2 = b1

and

a2
n−1 = 2bn−2, a2

n = 2bn−3, a2
n+1 = 2bn−4, . . . , a2

2n−4 = 2b1

with bi is a positive constant for 1 ≤ i ≤ n − 2 and b1 ≥ bn−2 then β is a timelike helix with the null axis

U = e1 + en,

and tangent vector

V1 (t) =
1

t2

−bn−2t2n−6 +
n−2∑
j=2

b j−1t2( j−2)

(
a1t2n−4 + a2t2n−6 + · · · + an−2t2 + 1, an−1tn−2, antn−3, . . . , a2n−4t, 1

)
.

Proof. We omit the proof since it is analogous to the proof of the Theorem 3.6.

Example 4.9. If we choose n = 5; b1 = b2 = 2 and b3 = 1 in Theorem 4.8, then we have the timelike polynomial helix

β (t) =

(
−

2t7

7
+

2t5

5
+

2t3

3
+ t,

t4

2
,

2t3

3
, t2, t

)
with the null axis

U = (1, 0, 0, 0, 1)

and the tangent vector

V1 (t) =
1

−2t6 + 2t4 + 2t2

(
−2t6 + 2t4 + 2t2 + 1, 2t3, 2t2, 2t, 1

)
.

Also,

1 (V1 (t) ,U) = −1.
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