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Abstract. In this paper, we study iterative algorithms for solving fixed point problems and equilibrium
problems in Hilbert spaces. We present an extragradient algorithm with CQ technique for finding a
common element of the fixed points of pseudocontractive operators and the solutions of pseudomonotone
equilibrium problems. Strong convergence result of the proposed algorithm is proved.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty closed and
convex subset of H. Let f : C × C→ R be a bifunction. The equilibrium problem, in the sense of Blum and
Oettli [5] aims to find a point q̃ ∈ C such that

f (q̃, p) ≥ 0, ∀p ∈ C. (1)

By EP( f ,C), we denote the solution set of equilibrium problem (1).
Now, it is well known that the equilibrium problem (1) has been applied to solve a variety of mathe-

matical models, such as variational inequalities ([4, 6, 11, 14, 16, 21, 22, 26, 30–37]), optimization problems,
saddle point problems, fixed point problems ([7, 8, 27–29, 38]), Nash equilibrium in noncooperative games
theory ([3, 5, 9, 10, 17, 23]). An important method for solving (1) is proximal point method which was orig-
inally introduced by Martinet [15] and further developed by Rockafellar [19] for finding a zero of maximal
monotone operators. Particularly, in [5, 9], the resolvent of bi-function f was used to solve (1). For every
τ > 0 and x ∈ H, there exists a point z ∈ C such that

f (z, y) +
1
τ
〈z − x, y − x〉 ≥ 0,∀y ∈ C.
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Consequently, Tada and Takahashi [20] introduced an iterative algorithm for solving equilibrium problem
(1) and a fixed point problem of nonexpansive mappings:pn ∈ C such that 〈 f (pn, p) + 1

τn
〈p − pn, pn − xn〉 ≥ 0, ∀p ∈ C,

xn+1 = (1 − µn)xn + µnTpn,n ≥ 0.
(2)

However, we note that some strong monotonicity assumptions are needed to impose on f in order to
guarantee the existence of the iterates. But, if f is pseudomonotone, the iterates generated by (2) may not be
well-defined. To overcome this difficulty, Tran et al. [23] applied extragradient method to solve equilibrium
problem (1) when f is pseudomonotone and satisfies certain Lipschitz-type condition. They proposed the
following iterative procedure: for given x0, compute the sequence {xn+1} by the form

vn = arg min
z∈C
{ f (un, z) +

1
2τn
‖un − z‖2},

un+1 = arg min
z∈C
{ f (vn, z) +

1
2τn
‖un − z‖2},

(3)

where τn ∈ (0,min{ 1
2τ1
, 1

2τ2
}) with τ1 and τ2 being the Lipschitz constants of f .

Recently, Vuong, Strodiot and Nguyen [24] suggested an extragradient method for solving equilibrium
problem (1) and a fixed point problem of nonexpansive mappings:

Step 0. Choose the sequences {αn} ⊂ [0, 1), {βn} ⊂ (0, 1) and {τn} ⊂ (0, 1].
Step 1. Let x0 ∈ C. Set n = 0.
Step 2. Compute the sequences {yn} and {zn} byyn = miny†∈C{τn f (xn, y†) + 1

2‖xn − y†‖2},
zn = miny†∈C{τn f (yn, y†) + 1

2‖xn − y†‖2}.

Step 3. Compute tn = αnxn + (1 − αn)[βnzn + (1 − βn)Szn]. If yn = xn and tn = xn, then stop. Otherwise, go
to step 4.

Step 4. Compute xn+1 = PCn∩Dn [x0], where

Cn = {z ∈ C : ‖tn − z‖ ≤ ‖xn − z‖}

and

Dn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0}.

Step 5. Set n := n + 1 and go to Step 2.
Very recently, iterative algorithms for solving (1) and fixed point problems have been future studied in

the literature, see, for instance [2, 12, 13, 25].
Motivated and inspired by the above work in the literature, the main purpose of this paper is to inves-

tigate fixed point problem of pseudocontractive operators and the pseudomonotone equilibrium problem.
We suggest an iterative algorithm for finding a common solution of the pseudomonotone equilibrium
problem and fixed point of pseudocontractive operators. Strong convergence analysis of the proposed
procedure is given.

2. Preliminaries

Let C be a nonempty closed and convex subset of a real Hilbert space H. Let h : C → (−∞,+∞] be a
function.

• h is said to be convex if h(αu‡ + (1 − α)v‡) ≤ αh(u‡) + (1 − α)h(v‡) for every u‡, v‡ ∈ C and α ∈ [0, 1].
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• h is said to be ρ-strongly convex (ρ > 0) if

h(αu‡ + (1 − α)v‡) +
ρ

2
α(1 − α)‖u‡ − v‡‖2 ≤ αh(u‡) + (1 − α)h(v‡)

for every u‡, v‡ ∈ C and α ∈ (0, 1).

Let h : C→ (−∞,+∞] be a convex function. The subdifferential ∂h of h is defined by

∂h(u) := {v‡ ∈ H : h(u) + 〈v‡,u‡ − u〉 ≤ h(u‡),∀u‡ ∈ C} (4)

for each u ∈ C.
Recall that an operator T : C→ C is said to be pseudocontractive if

‖Tu − Tu‡‖2 ≤ ‖u − u‡‖2 + ‖(I − T)u − (I − T)u‡‖2

for all u,u‡ ∈ C and T is called L-Lipschitz if

‖Tu − Tu‡‖ ≤ L‖u − u‡‖

for all u,u‡ ∈ C.
For fixed z ∈ H, there exists a unique z† ∈ C satisfying

‖z − z†‖ = inf{‖z − z̃‖ : z̃ ∈ C}.

Denote z† by projC[z].
The following inequality is an important property of projection projC: for given x ∈ H,

〈x − projC[x], y − projC[x]〉 ≤ 0, ∀y ∈ C. (5)

The following symbols are needed in the paper.

• xn ⇀ p† indicates the weak convergence of xn to p† as n→∞.

• xn → p† implies the strong convergence of xn to p† as n→∞.

• Fix(T) means the set of fixed points of T.

• ωw(xn) = {p† : ∃{xni } ⊂ {xn} such that xni ⇀ p†(i→∞)}.

Lemma 2.1 ([3]). Let C be a nonempty closed and convex subset of a real Hilbert space H. Let a function h : C→ R
be subdifferentiable. Then u† is a solution to the following minimization problem

min
x∈C

h(x)

if and only if 0 ∈ ∂h(u†) + NC(u†), where NC(u†) means the normal cone of C at u† defined by

NC(u†) = {ω ∈ H : 〈ω,u − u†〉 ≤ 0,∀u ∈ C}. (6)

Lemma 2.2 ([18]). Let H be a real Hilbert space. Then, the following equalities hold

(i) 2〈x − y,u − v〉 = ‖x − v‖2 + ‖y − u‖2 − ‖x − u‖2 − ‖y − v‖2, ∀x, y,u, v ∈ H.

(ii) ‖κu + (1 − κ)u†‖2 = κ‖u‖2 + (1 − κ)‖u†‖2 − κ(1 − κ)‖u − u†‖2, ∀u,u† ∈ H,∀κ ∈ [0, 1].

(iii) ‖u − v‖2 = ‖u‖2 − ‖v‖2 − 2〈u − v, v〉, ∀u, v ∈ H.

Lemma 2.3 ([40]). Let C be a nonempty closed and convex subset of a real Hilbert space H. Let T : C → C be an
L-Lipschitz pseudocontractive operator. Then, for all ũ ∈ C and u‡ ∈ Fix(T), we have

‖u‡ − T[(1 − β)ũ + βTũ]‖2 ≤ ‖ũ − u‡‖2 + (1 − β)‖ũ − T[(1 − β)ũ + βTũ]‖2,

where 0 < β < 1
√

1+L2+1
.
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Lemma 2.4 ([1]). Let C be a nonempty closed and convex subset of a real Hilbert space H. Assume that the bi-
function f : C × C → R satisfies assumptions (A1)-(A4) stated in Section 3. Let {τn}

∞

n=0 be a sequence satisfying
τn ∈ [ρ, ρ] ⊂ (0, 1]. For given xn ∈ C, let yn be the unique solution of the following strongly convex program

min
u‡∈C

{
f (xn,u‡) +

1
2τn
‖xn − u‡‖2

}
.

If {xn} is bounded, then {yn} is also bounded.

Lemma 2.5 ([39]). Let C be a nonempty closed and convex subset of a real Hilbert space H. If the operator T : C→ C
is continuous pseudocontractive, then

(i) the fixed point set Fix(T) ⊂ C is closed and convex;

(ii) T satisfies demi-closedness, i.e., un ⇀ z̃ and Tun → z‡ as n→∞ imply that Tz̃ = z‡.

Lemma 2.6 ([3]). For given a sequence {un} ⊂ H and a fixed point u ∈ H, if ωw(un) ⊂ C and ‖un −u‖ ≤ ‖u−PC[u]‖
for all n ∈N, then un → PC[u].

3. Main results

In this section, we introduce an iterative algorithm for solving the fixed point problems and pseu-
domonotone equilibrium problems. Consequently, we show the convergence analysis of the suggested
algorithm.

Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → C be a Lipschitz
pseudocontractive operator with Lipschitz constant L > 0. Let f : C×C→ R be a bifunction which satisfies
the following assumptions:

(A1): f (z‡, z‡) = 0 for all z‡ ∈ C;

(A2): f is pseudomonotone on C, i.e., f (u‡,u) ≥ 0 implies f (u,u‡) ≤ 0 for all u,u‡ ∈ C;

(A3): f is jointly sequently weakly continuous on C × C (recall that f is called jointly sequently weakly
continuous on C × C, if xn ⇀ x‡ and yn ⇀ y‡, then f (xn, yn)→ f (x‡, y‡));

(A4): f (z‡, ·) is convex and subdifferentiable for all z‡ ∈ C;

(A5): f satisfies the Lipschitz-type condition: ∃µ1, µ2 > 0 such that

f (x‡, y‡) + f (y‡, z‡) ≥ f (x‡, z‡) − µ1‖x‡ − y‡‖2 − µ2‖y‡ − z‡‖2, ∀x‡, y‡, z‡ ∈ C.

Let {τn} ⊂ (0,∞), {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) be three sequences satisfying the following restrictions:

(C1): τn ∈ [τ, τ], where 0 < τ ≤ τ < min{
1

2µ1
,

1
2µ2
};

(C2): 0 < α < αn < α < βn < β <
1

√

1 + L2 + 1
,∀n ≥ 0.

Algorithm 3.1. Step 0. (Initialization) Fix x0 ∈ C.
Step 1. (Fixed point step) For given {xn}, compute the sequence {zn} by

zn = (1 − αn)xn + αnT[(1 − βn)xn + βnTxn]. (7)

Step 2. (Extragradient technique) Solve the successively strong convex programs

min
{

f (zn, x‡) +
1

2τn
‖zn − x‡‖2 : x‡ ∈ C

}
(8)
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and

min
{

f (yn, x‡) +
1

2τn
‖zn − x‡‖2 : x‡ ∈ C

}
, (9)

to achieve their unique solutions yn and un, respectively.
Step 3. (CQ technique) Construct the following two half-spaces to cut C:

Cn = {q‡ ∈ C : ‖un − q‡‖ ≤ ‖xn − q‡‖} (10)

and

Qn = {q‡ ∈ C : 〈xn − q‡, x0 − xn〉 ≥ 0}. (11)

Step 4. (Projection technique) Compute the sequence {xn+1} by the following projection method

xn+1 = PCn∩Qn [x0]. (12)

Step 5. Set n := n + 1 and return to Step 1.

Theorem 3.2. Suppose that Fix(T) ∩ EP( f ,C) , ∅. Then, the sequence {xn} generated by (12) converges strongly to
u‡ = PFix(T)∩EP( f ,C)[x0].

Proof. Pick any p ∈ Fix(T) ∩ EP( f ,C). Then, f (p, yn) ≥ 0. By virtue of the pseudomonotonicity (A2) of f , we
deduce

f (yn, p) ≤ 0. (13)

By (8) and Lemma 2.1, we have

0 ∈ ∂2

{
f (zn, ·) +

1
2τn
‖zn − ·‖

2
}
(yn) + NC(yn).

It follows that there exists wn ∈ ∂2 f (zn, ·)(yn) such that

1
τn

(zn − yn) − wn ∈ NC(yn). (14)

Thanks to the definition (6) of the normal cone NC, we get

NC(yn) = {ω ∈ H : 〈ω,u − yn〉 ≤ 0, ∀u ∈ C}. (15)

Combining (14) and (15), we have〈 1
τn

(zn − yn) − wn,u − yn

〉
≤ 0, ∀u ∈ C,

which yields

〈wn,u − yn〉 ≥
1
τn
〈zn − yn,u − yn〉, ∀u ∈ C. (16)

According to the definition (4) of subgradient of f (zn, ·) at yn, we obtain

f (zn,u) − f (zn, yn) ≥ 〈wn,u − yn〉, ∀u ∈ C. (17)

In the light of (16) and (17), we deduce

f (zn,u) − f (zn, yn) ≥
1
τn
〈zn − yn,u − yn〉, ∀u ∈ C. (18)

Similarly, we can show

f (yn,u) − f (yn,un) ≥
1
τn
〈un − zn,un − u〉, ∀u ∈ C. (19)
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Setting u = p in (19) and combining with (13), we obtain

f (yn,un) ≤
1
τn
〈un − zn, p − un〉. (20)

Applying the Lipschitz property (A5) of f , it results

f (yn,un) ≥ f (zn,un) − f (zn, yn) − µ1‖zn − yn‖
2
− µ2‖yn − un‖

2. (21)

By virtue of (20) and (21), we deduce

1
τn
〈un − zn, p − un〉 ≥ f (zn,un) − f (zn, yn) − µ1‖zn − yn‖

2

− µ2‖yn − un‖
2.

(22)

Setting u = un in (18), we have

f (zn,un) − f (zn, yn) ≥
1
τn
〈zn − yn,un − yn〉. (23)

In terms of (22) and (23), we get

〈un − zn, p − un〉 ≥ 〈zn − yn,un − yn〉 − µ1τn‖zn − yn‖
2

− µ2τn‖yn − un‖
2.

(24)

Applying Lemma 2.2 (i), it yields

2〈un − zn, p − un〉 = ‖zn − p‖2 − ‖un − zn‖
2
− ‖un − p‖2. (25)

Combining (24) and (25), we derive

‖zn − p‖2 − ‖un − zn‖
2
− ‖un − p‖2 ≥ 2〈zn − yn,un − yn〉 − 2µ1τn‖zn − yn‖

2
− 2µ2τn‖yn − un‖

2,

which implies that

‖un − p‖2 ≤ ‖zn − p‖2 − ‖un − zn‖
2
− 2〈zn − yn,un − yn〉

+ 2µ1τn‖zn − yn‖
2 + 2µ2τn‖yn − un‖

2

= ‖zn − p‖2 − (1 − 2µ2τn)‖un − yn‖
2
− (1 − 2µ1τn)‖yn − zn‖

2.

(26)

On the basis of (7) and Lemma 2.2 (ii) and Lemma 2.3, we obtain

‖zn − p‖2 = ‖(1 − αn)(xn − p) + αn(T[(1 − βn)xn + βnTxn] − p)‖2

= (1 − αn)‖xn − p‖2 − αn(1 − αn)‖T[(1 − βn)xn + βnTxn] − xn‖
2

+ αn‖T[(1 − βn)uxn + βnTxn] − p‖2

≤ (1 − αn)‖xn − p‖2 − αn(1 − αn)‖T[(1 − βn)xn + βnTxn] − xn‖
2

+ αn(‖xn − p‖2 + (1 − βn)‖xn − T[(1 − βn)xn + βnTxn]‖2)

= ‖xn − p‖2 − αn(βn − αn)‖xn − T[(1 − βn)xn + βnTxn]‖2

≤ ‖xn − p‖2.

(27)

Substituting (27) into (26), we have

‖un − p‖2 ≤ ‖xn − p‖2 − αn(βn − αn)‖xn − T[(1 − βn)xn + βnTxn]‖2

− (1 − 2µ2τn)‖un − yn‖
2
− (1 − 2µ1τn)‖yn − zn‖

2.
(28)

Now, we prove Fix(T) ∩ EP( f ,C) ⊂ Cn ∩Qn for all n ≥ 0. By (28), we deduce that ‖un − p‖ ≤ ‖xn − p‖ which
implies that p ∈ Cn. Therefore, Fix(T) ∩ EP( f ,C) ⊂ Cn for all n ≥ 0.

Next, we show that Fix(T) ∩ EP( f ,C) ⊂ Qn for all n ≥ 0. First, it is obvious that Fix(T) ∩ EP( f ,C) ⊂ Q0.
Assume that Fix(T)∩EP( f ,C) ⊂ Qk. By (12) and the property (6) of projection, we get 〈q‡−xk+1, x0−xk+1〉 ≤ 0
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for all q‡ ∈ Fix(T)∩EP( f ,C) because of Fix(T)∩EP( f ,C) ⊂ Ck∩Qk. Thus, Fix(T)∩EP( f ,C) ⊂ Qk+1. Therefore,
Fix(T) ∩ EP( f ,C) ⊂ Cn ∩Qn(∀n ≥ 0) by induction.

According to (12), we get

〈x0 − xn+1, xn+1 − q‡〉 ≥ 0, ∀q‡ ∈ Cn ∩Qn. (29)

Since Fix(T) ∩ EP( f ,C) ⊂ Cn ∩Qn(∀n ≥ 0), from (29), we have

〈x0 − xn+1, xn+1 − u〉 ≥ 0, ∀u ∈ Fix(T) ∩ EP( f ,C). (30)

At the same time, we have

〈x0 − xn+1, xn+1 − u〉 = 〈x0 − xn+1, xn+1 − x0 + x0 − u〉

= −‖x0 − xn+1‖
2 + 〈x0 − xn+1, x0 − u〉

≤ −‖x0 − xn+1‖
2 + ‖x0 − xn+1‖‖x0 − u‖.

This together with (30) implies that

‖xn+1 − x0‖ ≤ ‖x0 − u‖, ∀u ∈ Fix(T) ∩ EP( f ,C). (31)

Therefore, the sequence {xn} is bounded. Consequently, the sequences {zn} and {un} are also bounded by
(26) and (27). Applying Lemma 2.4, we deduce that the sequence {yn} is bounded.

Noting that xn = PQn (x0) by (11) and xn+1 ∈ Qn by (12), we obtain

‖xn − x0‖ ≤ ‖xn+1 − x0‖,

which implies that limn→∞ ‖xn − x0‖ exists due to the boundedness of the sequence {xn}.
By Lemma 2.2 (iii), we deduce

‖xn+1 − xn‖
2 = ‖xn+1 − x0‖

2
− ‖xn − x0‖

2
− 2〈xn+1 − xn, xn − x0〉.

Since xn+1 ∈ Qn, we have

〈xn − xn+1, x0 − xn〉 ≥ 0.

It follows that

‖xn+1 − xn‖
2
≤ ‖xn+1 − x0‖

2
− ‖xn − x0‖

2.

Thus,

lim
n→∞
‖xn+1 − xn‖ = 0.

Since xn+1 ∈ Cn, we have

‖un − xn+1‖ ≤ ‖xn − xn+1‖,

and hence

‖xn − un‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − un‖

≤ 2‖xn+1 − xn‖

→ 0.
(32)

By (28), we have

αn(βn − αn)‖xn − T[(1 − βn)xn + βnTxn]‖2 + (1 − 2µ2τn)‖un − yn‖
2 + (1 − 2µ1τn)‖yn − zn‖

2

≤ ‖xn − p‖2 − ‖un − p‖2

≤ ‖xn − un‖[‖xn − p‖ + ‖un − p‖].

(33)

According to (32), (33) and the restrictions (C1) and (C2), we get

lim
n→∞
‖xn − T[(1 − βn)xn + βnTxn]‖ = 0 (34)
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and

limn→∞ ‖un − yn‖ = 0 and limn→∞ ‖yn − zn‖ = 0. (35)

From (7), we derive

‖zn − xn‖ = αn‖xn − T[(1 − βn)xn + βnTxn]‖,

which together with (34) and lim infn→∞ αn > 0 (by (C2)) implies that

lim
n→∞
‖zn − xn‖ = 0. (36)

On the other hand, using the Lipschitz property of T, we have

‖xn − Txn‖ ≤ ‖xn − T[(1 − βn)xn + βnTxn]‖ + ‖T[(1 − βn)xn + βnTxn] − Txn‖

≤ ‖xn − T[(1 − βn)xn + βnTxn]‖ + Lβn‖xn − Txn‖.

It follows that

‖xn − Txn‖ ≤
1

1 − Lβn
‖xn − T[(1 − βn)xn + βnTxn]‖. (37)

Since lim infn→∞ βn < 1
L , combining (34) and (37), we deduce

lim
n→∞
‖xn − Txn‖ = 0. (38)

Note that the sequence {zn} is bounded. Selecting any x‡ ∈ ωw(zn), there exists a subsequence {zni } ⊂ {zn}

such that

zni ⇀ x‡ ∈ C. (39)

From (8), we obtain

f (zni , z
‡) ≥ f (zni , yni ) +

1
τni

〈zni − yni , z
‡
− yni〉, ∀z‡ ∈ C. (40)

Thanks to (35), (A1) and (A3), we get

lim
i→∞

f (zni , yni ) = 0.

This together with (40) implies that

f (x‡, z‡) ≥ 0, ∀z‡ ∈ C.

Therefore, x‡ ∈ EP( f ,C).
By (36) and (39), we have xni ⇀ x‡ ∈ C. Combining with (38), we deduce

lim
i→∞
‖xni − Txni‖ = 0.

Applying Lemma 2.5, we conclude that x‡ ∈ Fix(T). Therefore, x‡ ∈ Fix(T) ∩ EP( f ,C).
Setting u‡ = PFix(T)∩EP( f ,C)[x0], from (31), we obtain

‖xn+1 − x0‖ ≤ ‖x0 − u‡‖, ∀n ≥ 0. (41)

Applying Lemma 2.6 to (41), we conclude that xn → x‡.

Setting T = I, the identity operator, we obtain the following iterative algorithm for finding a solution in
EP( f ,C).
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Algorithm 3.3. Step 0. (Initialization) Fix x0 ∈ C.
Step 1.(Extragradient technique) For given {xn}, solve the successively strong convex programs

min
{

f (xn, x‡) +
1

2τn
‖xn − x‡‖2 : x‡ ∈ C

}
and

min
{

f (yn, x‡) +
1

2τn
‖xn − x‡‖2 : x‡ ∈ C

}
,

to achieve their unique solutions yn and un, respectively.
Step 2. (CQ technique) Construct the following two half-spaces to cut C:

Cn = {q‡ ∈ C : ‖un − q‡‖ ≤ ‖xn − q‡‖}

and

Qn = {q‡ ∈ C : 〈xn − q‡, x0 − xn〉 ≥ 0}.

Step 3. (Projection technique) Compute the sequence {xn+1} by the following projection method

xn+1 = PCn∩Qn [x0].

Step 4. Set n := n + 1 and return to Step 1.

Corollary 3.4. Suppose that EP( f ,C) , ∅. Then, the sequence {xn} generated by Algorithm 3.3 converges strongly
to u‡ = PEP( f ,C)[x0].

Setting f = 0, we obtain the following iterative algorithm for finding a point in Fix(T).

Algorithm 3.5. Step 0. (Initialization) Fix x0 ∈ C.
Step 1. (Fixed point step) For given {xn}, compute the sequence {zn} by

zn = (1 − αn)xn + αnT[(1 − βn)xn + βnTxn].

Step 2. (CQ technique) Construct the following two half-spaces to cut C:

Cn = {q‡ ∈ C : ‖zn − q‡‖ ≤ ‖xn − q‡‖}

and

Qn = {q‡ ∈ C : 〈xn − q‡, x0 − xn〉 ≥ 0}.

Step 3. (Projection technique) Compute the sequence {xn+1} by the following projection method

xn+1 = PCn∩Qn [x0].

Step 4. Set n := n + 1 and return to Step 1.

Corollary 3.6. Suppose that Fix(T) , ∅. Then, the sequence {xn} generated by Algorithm 3.5 converges strongly to
u‡ = PFix(T)[x0].

Remark 3.7. If T is nonexpansive, then the above conclusions hold.
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