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Closedness, Separation and Connectedness in Pseudo-Quasi-Semi
Metric Spaces

Tesnim Meryem Barana
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Abstract. In this paper, we give the characterization of closed and strongly closed subsets of an extended
pseudo-quasi-semi metric space and show that they induce closure operator. Moreover, we characterize
each of Ti, i = 0, 1, 2 and connected extended pseudo-quasi-semi metric spaces and investigate the rela-
tionship among them. Finally, we introduce the notion of irreducible objects in a topological category and
examine the relationship among each of irreducible, Ti, i = 1, 2, and connected extended pseudo-quasi-semi
metric spaces.

1. Introduction

The extended pseudo-quasi-semi metric spaces defined in 1988 by E. Lowen and R. Lowen [10] with
their corresponding non-expansive mappings. They are the most general category of metric spaces which
is cartesian closed and hereditary topological [10].

Baran, in [2, 3], introduced the notion of (strong) closedness in set-based topological categories and used
these notions to generalize topological concepts such as separation properties and connectedness. There
are various generalizations of the notion of connectedness in a topological category [4–6, 13, 14].

Note that if (X, d) is an extended pseudo-quasi-semi metric space, then d does not induce a topology on
X since d does not fulfil the triangle inequality. It will be useful to give topological concepts in the category
pqsMet of extended pseudo-quasi-semi metric spaces and non-expansive mappings.

In this paper, we give the characterization of closed and strongly closed subsets of an extended pseudo-
quasi-semi metric space and show that they form closure operators of pqsMet in the sense of Dikranjan
and Giuli [7]. We also show that if (X, d) is a pseudo-quasi-semi metric space ( with image in [0,∞)), then
the only strongly closed subsets of X are X and ∅, and so the strong closure becomes the trivial closure
[8]. Moreover, we characterize each of Ti, i = 0, 1, 2 extended pseudo-quasi-semi metric spaces and show
that the subcategories TipqsMet of Ti-extended pseudo-quasi-semi metric spaces, i = 0, 1, 2 are quotient-
reflective in pqsMet as well as investigate the relationship among these subcategories. Furthermore, we
characterize various connected extended pseudo-quasi-semi metric spaces and investigate the relationship
among these various forms. Finally, we introduce the notion of irreducible objects in a topological category
and investigate the relationship among each of irreducible, Ti, i = 1, 2, and connected extended pseudo-
quasi-semi metric spaces.
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2. Preliminaries

Recall, in [10], that an extended pseudo-quasi-semi metric space is a pair (X, d), where X is a set and
d : X × X→ [0,∞] is a function fulfills d(x, x) = 0 for all x ∈ X.

A mapping f : (X, d) → (Y, e) between extended pseudo-quasi-semi metric spaces is said to be a non-
expansive if it fulfills the property e( f (x), f (y)) ≤ d(x, y) for all x, y ∈ X.

Let pqsMet be the category of extended pseudo-quasi-semi metric spaces and non-expansive mappings
and Set be the category of sets and functions. Note that pqsMet is cartesian closed and hereditary [10].

Proposition 2.1. (1) Let I be an index set, (Xi, di), i ∈ I} be a class of extended pseudo-quasi-semi metric spaces, X
be a nonempty set, and { fi : X → Xi, i ∈ I} be a source in the category Set. A source { fi : (X, d) → (Xi, di), i ∈ I} in
pqsMet is an initial lift if and only if for all x, y ∈ X, d(x, y) = sup

i∈I
(di( fi(x), fi(y))) [10, 12].

(2) Let (Xi, di), i ∈ I} be a class of extended pseudo-quasi-semi metric spaces and X be a nonempty set. A sink
{ fi : (Xi, di)→ (X, d), i ∈ I} is final in pqsMet if and only if for all x, y ∈ X,
d(x, y) = inf{(di(xi, yi)) : there exist xi, yi ∈ Xi such that fi(xi) = x and fi(yi) = y, i ∈ I } [10, 12].

(3) The discrete extended pseudo-quasi-semi metric structure d on X is given by

ddis(a, b) =

{
0 if a = b
∞ if a , b

for all a, b ∈ X.

3. Closed and Strongly Closed Subsets of an Extended Pseudo-Quasi-Semi Metric Spaces

Let B be a set and p ∈ B. The infinite wedge product
∨
∞

p B is formed by taking countably many disjoint
copies of B and identifying them at the point p. Let B∞ = B × B × ... be the countable cartesian product of
B. Define A∞p :

∨
∞

p B → B∞ by A∞p (xi) = (p, p, ..., x, p, p, ...), where xi is in the i-th component of the infinite
wedge and x is in the i-th place in (p, p, ..., x, p, p, ...) and 5∞p :

∨
∞

p B→ B by 5∞p (xi) = x for all i [2, 3].
The skewed p-axis map Sp : B

∨
p B → B2 is given by Sp(x1) = (x, x) and Sp(x2) = (p, x). The fold map at

p, ∇p: B
∨

p B→ B is given by ∇p(xi) = x for i = 1, 2 [2].
Let U : E → Set be topological functor [1, 14] and X be an object in E with U(X) = B. Let M be a

nonempty subset of B. We denote by X/M the final lift of the epi U-sink q : U(X) = B→ B/M = (B\M)∪ {∗},
where q is the epi map that is the identity on B\M and identifying M with a point * [2, 3].

Let p be a point in B.

Definition 3.1. ([2, 3]) (1) X is T1 at p iff the initial lift of the U-source {Sp : B
∨

p B → U(X2) = B2 and
∇p : B

∨
p B→ UD(B) = B} is discrete, where D is the discrete functor which is a left adjoint to U.

(2) {p} is closed iff the initial lift of the U-source {A∞p :
∨
∞

p B→ B∞ = U(X∞) and5∞p :
∨
∞

p B→ UD(B) = B}
is discrete.

(3) M ⊂ X is strongly closed iff X/M is T1 at * or M = ∅.
(4) M ⊂ X is closed iff {∗} , the image of M, is closed in X/M or M = ∅.
(5) If B = M = ∅, then we define M to be both closed and strongly closed.

In Top, the category of topological spaces, the notion of closedness coincides with the usual closedness
[2, 3] and M is strongly closed iff Mis closed and for each x <M there exists a neighbourhood of M missing
x. If a topological space is T1, then the notions of closedness and strong closedness coincide [2, 3].

Theorem 3.2. Let (X, d) be an extended pseudo-quasi-semi metric space and p ∈ X. {p} is closed in X if and only if
for all x ∈ X with x , p, d(x, p) = ∞ or d(p, x) = ∞.
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Proof. Suppose {p} is closed and for x ∈ X with x , p. We show that d(x, p) = ∞ or d(p, x) = ∞. Note that

d(π1A∞p (x, p, p, ...), π1A∞p (p, x, p, p, ...)) = d(x, p)

d(π2A∞p (x, p, p, ...), π1A∞p (p, x, p, p, ...)) = d(p, x)

d(πiA∞p (x, p, p, ...), πiA∞p (p, x, p, p, ...)) = d(p, p) = 0

for all i ≥ 3, where πi : X∞ → X are the projection maps, for all i ∈ I, and ddis(5∞p (x, p, p, ...),5∞p (p, x, p, p, ...)) =
ddis(x, x) = 0. Since {p} is closed, by Proposition 2.1 and Definition 3.1, we have∞ = sup{ddis(5∞p (x, p, p, ...),5∞p (p, x, p, p, ...)),
d(πiA∞p (x, p, p, ...), πiA∞p (p, x, p, p, ...)), i ∈ I} = sup{d(x, p), d(p, x)} and consequently, d(x, p) = ∞ or d(p, x) = ∞.

Conversely, suppose that for x ∈ X with x , p, d(x, p) = ∞ or d(p, x) = ∞. We show that {p} is closed.
Let d̄ be the extended pseudo-quasi-semi metric structure on

∨
∞

p X induced by A∞p :
∨
∞

p X → (X∞, d∞)
and 5∞p :

∨
∞

p X→ (X, ddis), where d∞ and ddis are the product extended pseudo-quasi-semi metric structure
on X∞ and the discrete extended pseudo-quasi-semi metric structure on X, respectively.

Let u and v be any points in
∨
∞

p X. If u = v, then d̄(u, v) = 0.
Suppose 5∞p (u) = x = 5∞p (v) for some x ∈ X. If x = p, then u = pk = pn = v for all k,n ∈ I, and

consequently, d̄(u, v) = 0.
If x , p, then it follows easily that u = xk and v = xn for some k and n. Note that

d(πiA∞p (u), πiA∞p (v)) =


d(x, p) if i = k
d(p, x) if i = n
d(p, p) = 0 if i < {k,n}

and ddis(5∞p (u),5∞p (v)) = d(x, x) = 0. Since x , p and d(x, p) = ∞ or d(p, x) = ∞, by Definition 3.1, d̄(u, v) =
sup{ddis(5∞p (u),5∞p (v)), d(πiA∞p (u), πiA∞p (v)), i ∈ I} = sup{d(x, p), d(p, x)} = ∞.

Suppose that 5∞p (u) , 5∞p (v), then, by Proposition 2.1(3), ddis(5∞p (u),5∞p (v)) = ∞, and consequently, by
Proposition 2.1(1), d̄(u, v) = sup{ddis(5∞p (u),5∞p (v)), d(πiA∞p (u), πiA∞p (v)), i ∈ I} = sup{∞, d(πiA∞p (u), πiA∞p (v)), i ∈
I} = ∞. Hence, by Definition 3.1, {p} is closed.

Theorem 3.3. Let (X, d) be an extended pseudo-quasi-semi metric space and p ∈ X. (X, d) is T1 at p ∈ X if and only
if for all x ∈ X with x , p, d(x, p) = ∞ = d(p, x).

Proof. It is proved in [9].

Theorem 3.4. Let (X, d) be an extended pseudo-quasi-semi metric space and ∅ ,M ⊂ X.
(1) M is strongly closed if and only if d(M, x) = ∞ = d(x,M) for all x ∈ X with x <M.
(2) M is closed if and only if d(M, x) = ∞ or d(x,M) = ∞ for all x ∈ X with x <M.

Proof. (1) Suppose M is strongly closed and x ∈ X with x < M. Since q(x) = x , ∗ = q(M) and M is strongly
closed, by Definition 3.1, (X/M, d1) is T1 at ∗, where d1 is the quotient structure on X/M induced from the
epi map q : X → X/M. By Theorem 3.3, d1(x, ∗) = ∞ = d1(∗, x). By Proposition 2.1(2) d1(∗, x) = inf{d(y, x) :
there exists y ∈ X such that q(y) = ∗ }= d(M, x) and d1(x, ∗) = inf{d(x, y) : there exists y ∈ X such that q(y) = ∗
}= d(x,M). Consequently, d(M, x) = ∞ = d(x,M) for all x ∈ X with x <M.

Conversely, suppose that d(M, x) = ∞ = d(x,M) for all x ∈ X with x < M. We show that (X/M, d1) is T1
at ∗. Let a ∈ X/M with a , ∗ and d1 be the quotient structure on X/M. Note that, by Proposition 2.1(2) and
assumption, d1(a, ∗) = inf{d(a, y) : there exists y ∈ X such that q(y) = ∗ }= d(a,M) = ∞ and d1(∗, a) = inf{d(y, a)
: there exists y ∈ X such that q(y) = ∗ }= d(M, a) = ∞. Hence, d1(∗, a) = ∞ = d1(a, ∗) and by Theorem 3.3,
(X/M, d1) is T1 at ∗, and by Definition 3.1, M is strongly closed.

The proof of (2) is similar to the proof of (1).

Theorem 3.5. Let (X, d), (Y, e) be extended pseudo-quasi-semi metric spaces and f : (X, d)→ (Y, e) be a non expansive
mapping.

(1) If D ⊂ Y is (strongly) closed, then f−1(D) is (strongly) closed subset of X.
(2) If N ⊂ X is (strongly) closed and M ⊂ N is (strongly) closed, then M ⊂ X is (strongly) closed.
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Proof. (1) Suppose D ⊂ Y is closed. If f−1(D) = ∅, then by Definition 3.1, f−1(D) is closed. Suppose
f−1(D) , ∅ and x ∈ X with x < f−1(D). Note that f (x) ∈ Y, f (x) < D and f ( f−1(D)) ⊂ D implies e( f (x),D) ≤
e( f (x), f ( f−1(D))) and e(D, f (x)) ≤ e( f ( f−1(D)), f (x)). Since D ⊂ Y is closed, by Theorem 3.4, e(D, f (x)) = ∞ or
e( f (x),D) = ∞ and consequently, e( f (x), f ( f−1(D))) = ∞ or e( f ( f−1(D)), f (x)) = ∞. Since f is a non expansive
mapping, it follows that d(x, f−1(D)) = ∞ or d( f−1(D), x) = ∞ and by Theorem 3.4, f−1(D) is a closed subset
of X. The proof for strong closedness is similar.

(2) Suppose N ⊂ X and M ⊂ N are strongly closed. Let dN be the initial extended pseudo-quasi-semi
metric structure on N induced by the inclusion map i : N → (X, d) and dM be the initial extended pseudo-
quasi-semi metric structure on M induced by the inclusion map i : M→ (N, dN). Let x ∈ X, x <M and x < N.
By Proposition 2.1(1), dM(x,M) = dN(x,M) = d(x,M) and dM(M, x) = dN(M, x) = d(M, x) and by Theorem 3.4,
d(M, x) = ∞ = d(x,M) since N ⊂ X is strongly closed.

Suppose x ∈ N. Since x <M and M ⊂ N is strongly closed by Theorem 3.4, dN(x,M) = ∞ = dN(M, x) and
by Proposition 2.1(1), d(x,M) = ∞ = d(M, x). Hence, by Theorem 3.4, M ⊂ X is strongly closed. The proof
for closedness is similar.

Example 3.6. (1) Let (X, d) be an extended pseudo-quasi-semi metric space and M ⊂ X. If M ⊂ X is strongly
closed, then by Theorem 3.4, M is closed but the reverse implication is not true. For example, let X = {x, y, z}
and define a map d : X2

→ [0,∞] as follows: d(x, x) = d(y, y) = d(z, z) = 0, d(x, y) = d(x, z) = d(z, y) = ∞,
d(y, x) = 1, d(y, z) = d(z, x) = 0. Note that (X, d) is an extended pseudo-quasi-semi metric space and by
Theorems 3.2 and 3.4, {x} is closed but it is not strongly closed.

(2) Let X = [0, 10], A = {(x, y) ∈ X2 : x > y} \ {(10, 0)} and define a map d : X2
→ [0,∞] by

d(x, y) =


0 if x = y or x = 10, y = 0
∞ if x < y
1 if (x, y) ∈ A

for all x, y ∈ X. Note that (X, d) is an extended pseudo-quasi-semi metric space. By Theorem 3.4, one can
easily show that a subset M ⊂ X is closed if and only if M = ∅, {x}, [x, y], [x, y), (x, y], (x, y) for 0 ≤ x < y ≤ 10
and the only strongly closed subsets of X are ∅ and X.

Theorem 3.7. Let (X, d) be an extended pseudo-quasi-semi metric space.
(1) If Mi ⊂ X, i ∈ I is (strongly) closed for all i ∈ I, then

⋂
i∈I Mi is (strongly) closed.

(2) If Mi ⊂ X, i ∈ I is strongly closed for all i ∈ I, then
⋃

i∈I Mi is strongly closed.
(3) If M1 and M2 are closed, then M1 ∪M2 may not be closed.
(4) If Mi ⊂ (Xi, di)i ∈ I is (strongly) closed for all i ∈ I, then

∏
i∈I Mi is (strongly) closed in

∏
i∈I Xi.

Proof. (1) Suppose Mi ⊂ X, i ∈ I is (strongly) closed for all i ∈ I and x ∈ X with x < M =
⋂

i∈I Mi. It follows
that there exists k ∈ I such that x < Mk. Since Mk is (strongly) closed, by Theorem 3.4, d(Mk, x) = ∞ or
d(x,Mk) = ∞ (resp. d(Mk, x) = ∞ = d(x,Mk)) and M =

⋂
i∈I Mi ⊂ Mk implies d(x,M) = ∞ or d(M, x) = ∞

(resp. d(x,M) = ∞ = d(M, x)) . Hence, by Theorem 3.4, M is (strongly) closed.
The proof for (2) can be done similarly.
(3) Take (X, d) in Example 3.6(1), M1 = {x}, and M2 = {y}. By Theorem 3.4, M1 and M2 are closed but

M1 ∪M2 = {x, y} is not closed since d(z,M1 ∪M2) = inf{d(z, x), d(z, y)} = inf{0,∞} = 0 and d(M1 ∪M2, z) =
inf{d(x, z), d(y, z)} = inf{∞, 0} = 0.

(4) Suppose Mi ⊂ (Xi, di)i ∈ I is (strongly) closed for all i ∈ I and x ∈ X =
∏

i∈I Xi with x < M =∏
i∈I Mi. It follows that there exists k ∈ I such that xk < Mk. Since Mk is (strongly) closed, by Theorem 3.4,

d(Mk, xk) = ∞ = d(xk,Mk). Since the projection map πk is non-expansive, we have dk(xk,Mk) ≤ d∗(x,M) and
dk(Mk, xk) ≤ d∗(M, x) which imply d∗(x,M) = ∞ or d∗(M, x) = ∞ (resp. d∗(x,M) = ∞ = d∗(M, x)), where d∗ is
the product structure on X. Hence, by Theorem 3.4, M is (strongly) closed.

Let E be a topological category and let C be a closure operator of E in the sense of [7].
Set E0C = { X ∈ E : x ∈ C({y}) and y ∈ C({x}) implies x = y}.
E1C = { X ∈ E : C({x}) = {x}, for each x ∈ X}.



T.M. Baran / Filomat 34:14 (2020), 4757–4766 4761

E2C = {X ∈ E : C(∆) = ∆, the diagonal}.
Let E = Top and C be the ordinary closure. Then we obtain the class of T0-spaces, T1-spaces and

T2-spaces, respectively.

Definition 3.8. Let (X, d) be an extended pseudo-quasi-semi metric space and M ⊂ X. The (strong) closure
of M is the intersection of all (strongly) closed subsets of X containing M and it is denoted by cl(M) (resp.
scl(M)).

Theorem 3.9. Both scl and cl are idempotent, weakly hereditary, productive, and hereditary closure operators of
pqsMet.

Proof. It follows from Theorem 3.5 and Exercise 2.D, Theorems 2.3 and 2.4, Propositions 2.5 and 3.6 of
[8].

Let E = pqsMet and pqsMetiC, i = 0, 1, 2 be the full subcategory of pqsMet consisting of all Ti, i = 0, 1, 2
extended pseudo-quasi-semi metric spaces, where C = cl or scl.

Theorem 3.10.

Let (X, d) be an extended pseudo-quasi-semi metric space.
(1) (X, d) ∈ pqsMet0cl if and only if for every distinct pair x and y in X, there exists a closed subset M of

X such that y ∈M and x <M or there exists a closed subset N of X such that x ∈ N and y < N.
(2) (X, d) ∈ pqsMet0scl if and only if for every distinct pair x and y in X, there exists a strongly closed

subset M of X such that y ∈M and x <M or there exists a strongly closed subset N of X such that x ∈ N and
y < N.

(3) (X, d) ∈ pqsMeticl, i = 1, 2 if and only if for every distinct pair x and y in X, d(x, y) = ∞ or d(y, x) = ∞.
(4) (X, d) ∈ pqsMetiscl, i = 1, 2 if and only if for every distinct pair x and y in X, d(x, y) = ∞ and d(y, x) = ∞.

Proof. (1) Suppose (X, d) ∈ pqsMet0cl and x, y ∈ X with x , y. It follows that x < cl({y}) or y < cl({x}). If
x < cl({y}), then by Definition 3.8, there exists a closed subset M of X such that y ∈M and x <M. If y < cl({x}),
then there exists a closed subset N of X such that x ∈ N and y < N.
Suppose the condition holds and x, y ∈ X with x , y. If the first part of assumption holds, then x < cl({y})
and if the second part of assumption holds, then y < cl({x}). Hence, (X, d) ∈ pqsMet0cl.

The proof for (2) is similar.
(3) Suppose (X, d) ∈ pqsMet1cl and x, y ∈ X with x , y. It follows that cl({x}) = {x} for all x ∈ X, i.e., {x} is

closed and by Theorem 3.2, for all y ∈ X with x , y, d(x, y) = ∞ or d(y, x) = ∞.
Suppose d(x, y) = ∞ or d(y, x) = ∞ for all x, y ∈ X with x , y. By Theorem 3.2, {x} is closed for all x ∈ X,

i.e., cl({x}) = {x}. Hence, (X, d) ∈ pqsMet1cl.
Suppose (X, d) ∈ pqsMet2cl and x, y ∈ X with x , y. Note that (x, y) < ∆ and ∆ is cl-closed, i.e., ∆

is closed. By Theorem 3.4, d2((x, y),∆) = ∞ or d2(∆, (x, y)) = ∞, where d2 is the product structure on
X2. If d2((x, y),∆) = ∞, then it follows that d2((x, y), (y, y)) = ∞ and by Proposition 2.1(1), d(x, y) = ∞. If
d2(∆, (x, y)) = ∞, then d2((y, y), (x, y)) = ∞ and by Proposition 2.1(1), d(y, x) = ∞.

Suppose the condition holds and (x, y) ∈ X2 with (x, y) < ∆. It follows that x , y and by assumption,
d(x, y) = ∞ or d(y, x) = ∞. Note that, sup{d(a, x), d(a, y)} = ∞ or sup{d(x, a), d(y, a)} = ∞ and by Proposition
2.1(1), d2((a, a), (x, y)) = ∞ or d2((x, y), (a, a)) = ∞ for all a ∈ X. Hence, d2((x, y),∆) = ∞ or d2(∆, (x, y)) = ∞
and by Theorem 3.4, ∆ is closed, i.e., (X, d) ∈ pqsMet2cl.

(4) Suppose (X, d) ∈ pqsMet1scl and x, y ∈ X with x , y. It follows that scl({x}) = {x} for all x ∈ X and by
Theorem 3.4, for all y ∈ X with x , y, d(x, y) = ∞ and d(y, x) = ∞.

Suppose d(x, y) = ∞ and d(y, x) = ∞ for all x, y ∈ X with x , y. By Theorem 3.4, {x} is strongly closed,
i.e., scl({x}) = {x}. Hence, (X, d) ∈ pqsMet1scl.

Suppose (X, d) ∈ pqsMet2scl and x, y ∈ X with x , y. Note that (x, y) < ∆ and ∆ is scl-closed, by Theorem
3.4, d2((x, y),∆) = ∞ and d2(∆, (x, y)) = ∞. It follows that d2((x, y), (y, y)) = ∞ = d2((y, y), (x, y)) and by
Proposition 2.1(1), d(x, y) = ∞ = d(y, x).
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Suppose the condition holds and (x, y) ∈ X2 with (x, y) < ∆. By assumption, d(x, y) = ∞ = d(y, x) since
x , y. It follows that sup{d(a, x), d(a, y)} = ∞ = sup{d(x, a), d(y, a)} and by Proposition 2.1(1), d2((a, a), (x, y)) =
∞ = d2((x, y), (a, a)) for all a ∈ X with x , y. Hence, d2((x, y),∆) = ∞ = d2(∆, (x, y)) and by Theorem 3.4, ∆ is
strongly closed, i.e., (X, d) ∈ pqsMet2scl.

Example 3.11. Let X = {x, y} and define a map d : X2
→ [0,∞] by d(x, x) = d(y, y) = 0, d(x, y) = ∞, d(y, x) = 1.

By Theorem 3.10, (X, d) ∈ pqsMeticl, i = 0, 1, 2 but (X, d) < pqsMetiscl, i = 0, 1, 2 and by Theorems 3.2 and 3.4,
both {x} and {y} are closed but they are not strongly closed.

Remark 3.12. (1) It follows easily from Theorem 3.10 that each of the subcategories pqsMeticl, i = 0, 1, 2 and
pqsMetiscl, i = 0, 1, 2 are quotient-reflective [14] in pqsMet, i.e., they are full, isomorphism-closed, closed
under formation of subspaces, products, and finer structures (i.e., if (X, d) ∈ S, (X, e) ∈ pqsMet and the map
f : (X, e)→ (X, d) is a non-expansive map morphism, where f : X → X is the identity map, then (X, e) ∈ S,
where S=pqsMeticl, i = 0, 1, 2 or pqsMetiscl, i = 0, 1, 2 ).

(2) If (X, d) ∈ pqsMetiscl, i = 0, 1, 2, then, by Theorems 3.4 and 3.10, (X, d) ∈ pqsMeticl, i = 0, 1, 2. By
Example 3.11, Theorems 3.4 and 3.10, (X, d) ∈ pqsMeticl, i = 0, 1, 2, but (X, d) < pqsMetiscl, i = 0, 1, 2 and by
Example 3.6(2) and Theorem 3.10, (X, d) ∈ pqsMet0cl but (X, d) < pqsMet0scl.

(3) By Theorem 3.10, the subcategories pqsMet1cl and pqsMet2cl (resp. pqsMet1scl and pqsMet2scl) are
isomorphic.

(4) By Theorems 3.2 and 3.10, (X, d) ∈ pqsMet1cl if and only if for every x ∈ X, {x} is closed.
(5) By Theorem 3.4 and Example 3.11, if (X, d) ∈ pqsMet1cl, then one-point sets in X may not be strongly

closed.
(6) By Theorem 3.4 and Theorem 3.10, if (X, d) ∈ pqsMet1scl, then all subsets of X are closed. But by

Example 3.11 all subsets of X are closed and by Theorem 3.10 (X, d) < pqsMet1scl.
(7) If (X, d) is a pseudo-quasi-semi metric space ( with image in [0,∞)), then by Theorem 3.4, it is clear

the only strongly closed subsets of X are X and ∅, and the strong closure becomes the trivial closure [8].

4. Connected Extended Pseudo-Quasi-Semi Metric Spaces

There are various generalizations of the notion of connectedness in a topological category [4–6, 13, 14].
In this section, we characterize each of these various connected extended pseudo-quasi-semi metric spaces
and investigate the relationship among them.

Definition 4.1. ([4]) Let U : E → Set be a topological functor, X be an object in E and M be a nonempty
subset of X.

(1) If MC, the complement of M is strongly closed, then M ⊂ X is said to be strongly open.
(2) If MC, the complement of M is closed, then M ⊂ X is said to be open.
(3) If the only subsets of X both strongly open and strongly closed are X and ∅, then X is said to be

connected.
(4) If the only subsets of X both open and closed are X and ∅, then X is said to be strongly connected.

In Top, the notion of openness (resp. strong connectedness) coincides with the usual openness (resp.
connectedness) [4] and if a topological space is T1, then the notions of connectedness and strong connect-
edness coincide [4].

Theorem 4.2. Let (X, d) be an extended pseudo-quasi-semi metric space and ∅ ,M ⊂ X.
(1) M is strongly open if and only if d(MC, x) = ∞ = d(x,MC) for all x ∈ X with x ∈M.
(2) M is open if and only if d(MC, x) = ∞ or d(x,MC) = ∞ for all x ∈ X with x ∈M.

Proof. It follows from Theorem 3.4 and Definition 4.1.

Theorem 4.3. An extended pseudo-quasi-semi metric space (X, d) is (strongly) connected if and only if for any
nonempty proper subset M of X, either the conditions (I) or (II) holds.

(I) There exists x ∈ X with x <M, d(M, x) < ∞ or (resp. and) d(x,M) < ∞.
(II) There exists x ∈ X with x ∈M, d(MC, x) < ∞ or (resp. and) d(x,MC) < ∞.
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Proof. Combine Theorems 3.4, 4.2, and Definition 4.1.

Definition 4.4. ([4, 5, 13, 14]) Let U : E → Set be a topological functor and X be an object in E. If any
morphism from X to discrete object is constant, then X is said to be D-connected.

Theorem 4.5. An extended pseudo-quasi-semi metric space (X, d) is D-connected if and only if for any nonempty
proper subset M of X, d(y, x) < ∞ or d(x, y) < ∞ for some x ∈M and y ∈MC.

Proof. Suppose (X, d) is D-connected and there is a nonempty proper subset M of X, d(y, x) = ∞ and
d(x, y) = ∞ for all x ∈M and y ∈MC. Let (Y, e) be a discrete extended pseudo-quasi-semi metric space with
card Y > 1. Define f : (X, d)→ (Y, e) by

f (x) =

{
a if x ∈M
b if x <M

for x ∈ X. Let x, y ∈ X. If x, y ∈ M or x, y ∈ MC, then e( f (x), f (y)) = 0 = e( f (y), f (x)) ≤ d(x, y) ∧ d(y, x). If
x ∈ M and y ∈ MC (resp. y ∈ M and x ∈ MC), then by Proposition 2.1(3) , e( f (x), f (y)) = ∞ = e( f (y), f (x)) ≤
d(x, y) ∧ d(y, x) = ∞. Hence, f is a non-expansive mapping but it is not constant, a contradiction.

Suppose for any nonempty proper subset M of X, d(y, x) < ∞ or d(x, y) < ∞ for some x ∈M and y ∈MC.
Let (Y, e) be a discrete extended pseudo-quasi-semi metric space and f : (X, d) → (Y, e) be a non-expansive
mapping. If card Y = 1, then f is constant. Suppose that card Y > 1 and f is not constant. There exists
a, b ∈ X with a , b such that f (a) , f (b). Let M = f−1

{ f (a)}. Note that M is a proper subset of X, a ∈ M and
b < M. By assumption, there exist x ∈ M and y ∈ MC such that d(y, x) < ∞ or d(x, y) < ∞. By Proposition
2.1(3), e( f (x), f (y)) = ∞ = e( f (y), f (x)) which implies f is not a non-expansive mapping, a contradiction.
Hence, f must be constant and by Definition 4.4, (X, d) is D-connected.

Definition 4.6. ([6]) Let E be a complete category [1, 14] and C be a closure operator of E in the sense of [7].
An object X of E is called C-connected if the diagonal morphism δX = 〈1X, 1X〉 : X→ X × X is C-dense [6].

In Top, if C = q, the quasi-component closure operator, then a topological space X is q-connected if
and only if X is connected. If C = K, the usual Kuratowski closure operator, then a topological space X is
K-connected if and only if X is irreducible, i.e., if M,N are closed subsets of X and X = M ∪N, then M = X
or N = X [6].

Theorem 4.7. An extended pseudo-quasi-semi metric space (X, d) is scl-connected if and only if for any x, y ∈ X
with x , y, there exist a, b ∈ X with a , x and b , y such that either d(x, a) < ∞ and d(y, b) < ∞ or d(a, x) < ∞ and
d(b, y) < ∞ holds.

Proof. Suppose (X, d) is scl-connected and there exist x, y ∈ X with x , y, (d(x, a) = ∞ or d(y, b) = ∞)
and (d(a, x) = ∞ or d(b, y) = ∞) for all a, b ∈ X with a , x or b , y. Let M = {(a, b) : a, b ∈ X, a , x or
b , y}. Note that ∆ ⊂ M, (x, y) < M and by Proposition 2.1(1), d2((x, y), (a, b)) = sup{d(x, a), d(y, b)} = ∞
and d2((a, b), (x, y)) = sup{d(a, x), d(b, y)} = ∞ for all a, b ∈ X with a , x and b , y, where d2 is the product
structure on X2.

Hence, d2(M, (x, y)) = ∞ = d2((x, y),M). By Theorem 3.4, M is strongly closed and by Definition 3.8,
(x, y) < scl(∆) = X2, a contradiction.

Suppose the condition holds and (X, d) is not scl-connected, then there exists (x, y) ∈ X2 such that
(x, y) < scl(∆). By Definition 3.8, there is a strongly closed subset M of X such that ∆ ⊂ M and (x, y) < M.
By Theorem 3.4, d2((x, y),M) = ∞ = d2(M, (x, y)) and by Proposition 2.1(2), (d(x, a) = ∞ or d(y, b) = ∞)
and (d(a, x) = ∞ or d(b, y) = ∞) for all a, b ∈ X with a , x or b , y, a contradiction. Hence, (X, d) is
scl-connected.

Theorem 4.8. (X, d) is cl-connected if and only if for any x, y ∈ X with x , y, there exist a, b ∈ X with a , x and
b , y such that both (d(x, a) < ∞ and d(y, b) < ∞) and (d(a, x) < ∞ and d(b, y) < ∞) hold.
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Proof. The proof is similar to the proof of Theorem 4.7.

Theorem 4.9. (1) (X, d) is connected if and only if (X, d) is D-connected.
(2) If (X, d) is strongly connected, then (X, d) is connected.
(3) If (X, d) is cl-connected, then (X, d) is scl-connected.

Proof. (1) Suppose (X, d) is connected, M is any non-empty proper subset of X and x ∈ X. If x < M, then
by Theorem 4.3, d(M, x) < ∞ or d(x,M) < ∞ and consequently, there exist y, z ∈ M such that d(y, x) < ∞ or
d(x, z) < ∞.

If x ∈ M, then by Theorem 4.3, d(MC, x) < ∞ or d(x,MC) < ∞ and consequently, there exist y, z ∈ MC

such that d(y, x) < ∞ or d(x, z) < ∞. Hence, by Theorem 4.5, (X, d) is D-connected.
Suppose (X, d) is D-connected and M is any non-empty proper subset of X. Then by Theorem 4.5, there

exist x ∈ M and y ∈ MC such that d(y, x) < ∞ or d(x, y) < ∞. It follows that d(y,M) < d(y, x) < ∞ or
d(x,MC) < d(x, y) < ∞ and by Theorem 4.3, (X, d) is connected.

(2) follows from Theorem 4.3. But the converse is not true. For example, let (X, d) be in Example 3.11
and take M = {x} in Theorem 4.3, (X, d) is connected but it is not strongly connected.

(3) follows from Theorems 4.7 and 4.8.

Theorem 4.10. If X , ∅ and (X, d) ∈ pqsMetiscl, i = 1, 2, then the following are equivalent:
(1) (X, d) is connected.
(2) (X, d) is scl-connected.
(3) (X, d) is cl-connected.
(4) (X, d) is strongly connected.
(5) (X, d) is D-connected.
(6) (X, d) is a one-point space.

Proof. Combine Theorems 3.10, 4.3, 4.5, 4.7, and 4.8.

Remark 4.11. (1) Let (X, d) be in Example 3.6(1) and by Theorems 4.3, 4.5, 4.7, and 4.8, (X, d) is neither
strongly connected nor cl-connected but it is connected, scl-connected, and D-connected.

(2) Let (X, d) be an extended pseudo-quasi-semi metric space and M ⊂ X. By Theorems 3.4 and 4.2, M is
strongly closed if and only if strongly open. This implies there is a partition of (X, d) consisting of strongly
open (strongly closed) subsets. It follows that (X, d) is connected if and only if X and ∅ are the only strongly
open (strongly closed) subsets.

5. Irreducible Extended Pseudo-Quasi-Semi Metric Spaces

In this section, we introduce the notion of irreducible objects in a topological category and investigate
the relationship among each of irreducible, Ti, i = 1, 2, and connected extended pseudo-quasi-semi metric
spaces.

Definition 5.1. Let U : E → Set be a topological functor and X be an object in E.
(1) X is said to be strongly irreducible if M,N are strongly closed subobjects of X and X = M ∪ N, then

M = X or N = X.
(2) X is said to be irreducible if M,N are closed subobjects of X and X = M ∪N, then M = X or N = X.

In Top, the notion of irreducibility coincides with the usual irreducibility [6]. Irreducible spaces play an
important role in model algebraic geometry. The Zariski topologies are irreducible.

We state some well known properties of irreducible topological spaces and examine the validity of them
for extended pseudo-quasi-semi metric spaces.

Theorem 5.2. Let (X, τ) be a topological space.
(1) If (X, τ) is irreducible, then (X, τ) is connected.
(2) If (X, τ) is T1, then the notions of irreducible spaces and strongly irreducible spaces coincide.
(3) If (X, τ) is nonempty irreducible and T2, then (X, τ) must be a one-point space.
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Proof. (1) follows from Definitions 4.1 and 5.1 and 3-1 of [11].
If a topological space is T1, then the notions of closedness and strong closedness coincide [2, 3]. Hence,

(2) follows from Definition 5.1.
The proof of (3) follows easily.

Example 5.3. (1) Let (X, d) be in Example 3.11 and take M = {x}, N = {y} which are closed but not strongly
closed. Since X = M ∪N, by 5.1, (X, d) is strongly irreducible but it is not irreducible.

(2) Let (X, d) be in Example 3.6(2) and take M = [0, 2], N = (2, 10] which are closed. Since X = M∪N, by
4.3 and 5.1, (X, d) is neither irreducible nor strongly connected but it is connected and strongly irreducible.

(3) If (X, d) ∈ pqsMet and d is finite, i.e., d(x, y) < ∞ and d(y, x) < ∞ for all x, y ∈ X, then by Theorem 3.4
and Definition 5.1, (X, d) is irreducible and strongly irreducible.

Theorem 5.4. Let (X, d) be an extended pseudo-quasi-semi metric space.
(1) If (X, d) is irreducible, then (X, d) is strongly irreducible.
(2) If (X, d) is irreducible, then (X, d) is strongly connected.
(3) If (X, d) is strongly irreducible, then (X, d) is connected.
(4) If (X, d) is strongly irreducible, then (X, d) is D-connected.

Proof. (1) Suppose M,N are strongly closed subsets of X and X = M ∪ N. Then by Theorem 3.4, M and N
are closed and by 5.1, then M = X or N = X since (X, d) is irreducible.

(2) Suppose (X, d) is irreducible but it is not strongly connected. By Theorem 4.3, there is a nonempty
proper subset M of X satisfying for each x ∈ X if x < M, then d(M, x) = ∞ or d(x,M) = ∞ and if x ∈ M, then
d(MC, x) = ∞ or d(x,MC) = ∞. By Theorem 3.4, M and MC are closed and X = M ∪MC, a contradiction.

The proof of (3) is similar.
(4) follows from Theorem 4.9(1) and Part (3).

Theorem 5.5. Let (X, d) be an extended pseudo-quasi-semi metric space.
(1) If (X, d) is a nonempty (strongly) irreducible and (X, d) ∈ pqsMet2scl, then (X, d) must be a one-point space.
(2) If (X, d) is strongly irreducible and (X, d) ∈ pqsMet2cl, then (X, d) may not be a one-point space.

Proof. (1) Suppose that (X, d) is nonempty (strongly) irreducible, (X, d) ∈ pqsMet2scl and X has at least two
points, x and y. Let M = {x}. By Theorem 3.10 and Remark 3.12(6), M and MC are proper (strongly) closed
and X = M ∪MC, a contradiction. Hence, (X, d) must be a one-point space.

(2) Let (X, d) be in Example 3.6(2). By Example 5.3(2), (X, d) is strongly irreducible and by Remark 3.12(2),
(X, d) ∈ pqsMet2cl but (X, d) is not a one-point space.

Theorem 5.6. (A) If X , ∅ and (X, d) ∈ pqsMet1scl, then the following are equivalent:
(1) (X, d) is connected.
(2) (X, d) is irreducible.
(3) (X, d) is strongly irreducible.
(4) (X, d) is strongly connected.
(5) (X, d) is D-connected.
(6) (X, d) is a one-point space.

(B) If (X, d) ∈ pqsMet1cl and (X, d) is strongly irreducible, then (X, d) may not be irreducible.

Proof. (A) Combine Theorems 4.10, 5.3, and 5.4.
(B) Let (X, d) be in Example 3.6(2). By Example 5.3(2), (X, d) is strongly irreducible and by Remark

3.12(2), (X, d) ∈ pqsMet1cl but by Example 5.3(2), (X, d) is not irreducible.
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