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Abstract. Ćirić and Presić [Acta Math. Univ. Comenian. LXXVI (2) (2007), 143-147] extended the notion of
Presić contraction to kth-order Ćirić type contractive mappings on a metric space. In this paper, we extend
the concept of Ćirić-Presić to Jleli-Samet-Ćirić-Presić contractive mappings and obtain some related fixed
point theorems. Our results generalize some known ones in the literature. A real concrete example and an
illustrating application are given in support of our main result.

1. Introduction

One of the powerful results in fixed point theory is the Banach contraction principle (BCP) [7]. It has
variant applications in the resolution of linear, nonlinear, differential, integral, and fractional analysis.
One can see some applications and recent results in fixed point theory in the following works [1–6, 8, 12–
15, 18, 19].

Theorem 1.1. [7] Let (X, d) be a complete metric space and f : X→ X so that

d( f x, f y) ≤ γd(x, y) for all x, y ∈ X.

where γ ∈ [0, 1). Then, there is a unique σ in X such that σ = fσ. Also, for each x0 ∈ X, the iterative sequence
xn+1 = f xn converges to σ.

The BCP has been extended and generalized in many directions. Namely, Presić [16] gave the following
result.
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Theorem 1.2. [16] Let (X, d) be a complete metric space and f : Xk
→ X (k is a positive integer). Suppose that

d( f (x1, ..., xk), f (x2, ..., xk+1)) ≤
k∑

i=1

qid(xi, xi+1) (1)

for all x1, ..., xk+1 in X, where qi ≥ 0 and
k∑

i=1
qi ∈ [0, 1). Then f has a unique fixed point x∗ (that is, f (x∗, ..., x∗) = x∗).

Moreover, for all arbitrary points x1, ..., xk+1 in X, sequence {xn} defined by xn+k = f (xn, xn+1, ..., xn+k−1), converges to
x∗.

It is easy to show that for k = 1, Theorem 1.2 reduces to the Banach contraction principle.
Ćirić and Presić [10] generalized above theorem as follows.

Theorem 1.3. [10] Let (X, d) be a complete metric space and f : Xk
→ X (k is a positive integer). Suppose that

d( f (x1, ..., xk), f (x2, ..., xk+1)) ≤ λmax{d(xi, xi+1) : 1 ≤ i ≤ k}, (2)

for all x1, ..., xk+1 in X, where λ ∈ [0, 1). Then f has a fixed point x∗ ∈ X. Also, for all points x1, ..., xk+1 ∈ X, the
sequence {xn} defined by xn+k = f (xn, xn+1, ..., xn+k−1), converges to x∗. If

d( f (ρ, ..., ρ), f (%, ..., %)) < d(ρ, %),

for all ρ, % ∈ X with ρ , %, then x∗ is the unique fixed point of f .

Obviously, any Presić contraction is a Ćirić-Presić type contraction. For other related works on Presić type
contractions, see [9, 16, 17].

Consistent with [11] we denote by Θ0 the set of all functions θ : (0,∞)→ (1,∞) satisfying the following
conditions:

θ1. θ is increasing;
θ2. for each sequence {tn} ⊆ (0,∞), lim

n→∞
θ(tn) = 1 if and only if lim

n→∞
tn = 0;

θ3. there exist r ∈ (0, 1) and ` ∈ (0,∞] such that lim
t→0+

θ(t)−1
tr = `.

Recall the following result.

Theorem 1.4. [11, Corollary 2.1] Let (X, d) be a complete metric space and let T : X→ X be a given map. Suppose
that there exist θ ∈ Θ0 and k ∈ (0, 1) such that

x, y ∈ X, d(Tx,Ty) , 0 ⇒ θ(d(Tx,Ty)) ≤ θ(d(x, y))k.

Then T has a unique fixed point.

Note that the Banach contraction principle is a special case of the above Theorem.
In this paper, we establish some fixed point results for self maps satisfying Jleli-Samet-Ćirić-Presić type

contractions defined on a metric space. An illustrated example is presented. At the end, applying one of
our main results, we ensure the existence of a solution for an integral type equation.

2. Main results

First, like in [11], we denote by Θ the set of all functions θ : [0,∞) → [1,∞) satisfying the following
conditions:

(θ1) θ is a strictly increasing function and continuous from right at 0;

(θ2) for each sequence {ln} ⊆ [0,∞), lim
n→∞

θ(ln) = 1 iff lim
n→∞

ln = 0;
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(θ3) θ−1[(θ(l))α] ≤
√

αlel for all l ≥ 0 and 0 ≤ α < 1.

Example 2.1. The functions θi : [0,∞)→ [1,∞) defined by θ1(t) = et, θ2(t) = etet and θ3(t) = e
√

tet , belong to Θ.

Theorem 2.2. Let (X, d) be a complete metric space and f : Xk
→ X (k is a positive integer). Assume that

θ(d( f (x1, ..., xk), f (x2, ..., xk+1))) ≤ [θ(max{d(xi, xi+1) : i = 1, · · · , k})]λ (3)

for all x1, ..., xk+1 in X, where 0 ≤ λ < 1. Then, for all arbitrary points x1, ..., xk in X, the sequence {xn} defined by
xn+k = f (xn, xn+1, ..., xn+k−1), converges to a fixed point of f . Moreover, if for all ρ, % ∈ X with ρ , %,

θ(d( f (ρ, ..., ρ), f (%, ..., %))) ≤ [θ(d(ρ, %)]λ, (4)

then the fixed point of f is unique.

Proof. Consider the arbitrary points x1, ..., xk in X and define a sequence {xn} by xn+k = f (xn, xn+1, ..., xn+k−1).
For any n ∈N, we have

θ(d(xn+k, xn+k+1)) = θ(d( f (xn, ..., xn+k−1), f (xn+1, ..., xn+k)))
≤ [θ(max{d(xn, xn+1), d(xn+1, xn+2), ..., d(xn+k−1, xn+k+1)})]λ. (5)

Therefore,

θ(d(xk+1, xk+2)) = θ(d( f (x1, ..., xk), f (x2, ..., xk+1)))
≤ [θ(max{d(x1, x2), d(x2, x3), ..., d(xk, xk+1)})]λ = [θ(M)]λ,

where M = max{d(x1, x2), d(x2, x3), ..., d(xk, xk+1)}. Now,

θ(d(xk+2, xk+3)) = θ(d( f (x2, ..., xk+1), f (x3, ..., xk+2)))

≤ [θ(max{d(x2, x3), d(x3, x4), ..., d(xk+1, xk+2)})]λ

≤ [max{θ(M), [θ(M)]λ}]λ = [θ(M)]λ,

...

θ(d(x2k, x2k+1)) = θ(d( f (xk, ..., x2k−1), f (xk+1, ..., x2k)))

≤ [θ(max{d(xk, xk+1), d(xk+1, xk+2), ..., d(x2k−1, x2k)})]λ

≤ [max{θ(M), [θ(M)]λ}]λ = [θ(M)]λ,

...

θ(d(x2k+1, x2k+2)) = θ(d( f (xk+1, ..., x2k), f (xk+2, ..., x2k+1)))

≤ [θ(max{d(xk+1, xk+2), d(xk+2, xk+3), ..., d(x2k, x2k+1)})]λ

≤ [[θ(M)]λ]λ = [θ(M)]λ
2
,

...

θ(d(x3k, x3k+1)) = θ(d( f (x2k, ..., x3k−1), f (x2k+1, ..., x3k)))

≤ [θ(max{d(x2k, x2k+1), d(x2k+1, x2k+2), ..., d(x3k−1, x3k)})]λ

≤ [max{[θ(M)]λ, [θ(M)]λ
2
}]λ = [θ(M)]λ

2
.

Continuing this process, we get

θ(d(xpk+i, xpk+i+1)) ≤ [θ(M)]λ
p
, f or all p ∈N and i ∈ {1, 2, ..., k}.
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We conclude that lim
p→∞

θ(d(xpk+i, xpk+i+1)) = 1. From (θ2), we obtain

lim
p→∞

d(xpk+i, xpk+i+1) = 0, f or all i ∈ {1, 2, ..., k}.

Thus,

lim
n→∞

d(xn, xn+1) = 0. (6)

We claim that {xn} is Cauchy. Consider two elements m,n ∈ N so that n < m. Then, there are p, q ∈ N and
i, j ∈ {1, 2, ..., k} such that p ≤ q, n = pk + i and m = qk + j. Now, we have

d(xn, xm) = d(xpk+i, xqk+ j) ≤ Σ
q
r=pΣ

k
l=1d(xrk+l, xrk+l+1)

≤ Σ
q
r=pΣ

k
l=1θ

−1[(θ(M))λ
r
] ≤ Σ

q
r=pk
√

λrMeM

= k
√

MeMΣ
q
r=p[
√

λ]r = k[
√

λ]p 1 − [
√
λ]q−p+1

1 −
√
λ

≤ k[
√
λ]p 1

1−
√
λ
.

(7)

As n,m → ∞, we have p, q → ∞. Thus, the last term in (7) converges to 0, and so {xn} is a Cauchy
sequence. Completeness of (X, d) yields that there is v ∈ X so that

lim
n→∞

d(xn, v) = 0. (8)

Now, we shall prove that v is a fixed point of f . To see this, we have

d(xn+k, f (v, ..., v)) = d( f (xn, xn+1..., xn+k−1), f (v, ..., v))
≤ d( f (xn, xn+1, ..., xn+k−1), f (xn+1, xn+2, ..., xn+k−1, v))
+ d( f (xn+1, xn+2, ..., xn+k−1, v), f (xn+2, xn+3, ..., xn+k−1, v, v))
+ ... + d( f (xn+k−1, v, ..., v), f (v, v, ..., v))

≤ θ−1[
(
θ(max{d(xn, xn+1), ..., d(xn+k−2, xn+k−1), d(xn+k−1, v)})

)λ
]

+ θ−1[
(
θ(max{d(xn + 1, xn+2), ..., d(xn+k−2, xn+k−1), d(xn+k−1, v)})

)λ
]

+ ... + θ−1[
(
θ(d(xn+k−1, v))

)λ
].

(9)

Using (θ1) and (θ2) and letting n→∞, we get taking in account (6) and (8), the right-hand side of (9) goes
to 0. Hence, lim

n→∞
d(xn+k, f (v, ..., v)) = 0. The continuity of the metric d yields that

d(v, f (v, ..., v)) = lim
n→∞

d(xn+k, f (v, ..., v)) = 0.

Therefore, v = f (v, ..., v). Suppose u, v are two distinct fixed points of f . By hypothesis,

θ(d(u, v)) = θ(d( f (u, ...,u), f (v, ..., v))) ≤ [θ(d(u, v)]λ < θ(d(u, v),

which is a contradiction. Thus, the fixed point of f is unique.

Note that by taking θ(t) = et, the above theorem reduces to Theorem 1.3. The following is a straightforward
result of Theorem 2.2.

Theorem 2.3. Let (X, d) be a complete metric space and f : Xk
→ X (k is a positive integer). Suppose that

θ(d( f (x1, ..., xk), f (x2, ..., xk+1))) ≤
k∏

i=1

[θ(d(xi, xi+1))]qi (10)
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for all x1, ..., xk+1 in X, where 0 ≤
∑k

i=1 qi < 1. Then for all points x1, ..., xk in X, the sequence {xn} defined by
xn+k = f (xn, xn+1..., xn+k−1), converges to a fixed point of f . Also, if for all ρ, % ∈ X with d( f (ρ, ..., ρ), f (%, ..., %)) > 0,

θ(d( f (ρ, ..., ρ), f (%, ..., %))) ≤ [θ(d(ρ, %)]
∑k

i=1 qi , (11)

then the fixed point of f is unique.

Taking θ(t) = etet
in Theorem 2.2, we obtain the following.

Corollary 2.4. Let (X, d) be a complete metric space and f : Xk
→ X (k is a positive integer). Suppose that

d( f (x1, ..., xk), f (x2, ..., xk+1))ed( f (x1,...,xk), f (x2,...,xk+1))−max{d(xi,xi+1):i=1,··· ,k}

max{d(xi, xi+1) : i = 1, · · · , k}
≤ λ (12)

for all x1, ..., xk+1 in X with d( f (x1, ..., xk), f (x2, ..., xk+1)) > 0, where 0 ≤ λ < 1. Then, for all points x1, ..., xk in X,
the sequence {xn} defined by xn+k = f (xn, xn+1, ..., xn+k−1), converges to a fixed point of f . Also, if for all ρ, % ∈ X with
d( f (ρ, ..., ρ), f (%, ..., %))) > 0,

d( f (ρ, ..., ρ), f (%, ..., %))) < d(ρ, %),

then the fixed point of f is unique.

We present an example in support of our main result.

Example 2.5. Let X = {τn =
n(n+1)

2 : n = 1, 2, · · · }, d(ρ, %) = |ρ − %| and define f : X→ X by

f (τn, τm) =

min{τn−1, τm−1}, n,m > 1,
τ1, n = 1 or m = 1.

Firstly, note that for all m,n ∈N with m,n > 1, one writes

d(τn−1, τm−1)ed(τn−1,τm−1)−d(τn,τm)

d(τn, τm)

=
( m(m−1)

2 −
n(n−1)

2 )e
m(m−1)

2 −
n(n−1)

2 −( m(m+1)
2 −

n(n+1)
2 )

m(m+1)
2 −

n(n+1)
2

=
(m + n − 1)e−(m−n)

m + n + 1
≤ e−1 = λ.

Also, for m = 1 and n > 1, we have

d(τ1, τn−1)ed(τ1,τn−1)−d(τ1,τn)

d(τ1, τn)

=
( n(n−1)

2 − 1)e
n(n−1)

2 −1−( n(n+1)
2 −1)

n(n+1)
2 − 1

≤ e−n
≤ e−1 = λ.

Now, Let ρ = τn, % = τm and ς = τp. If m ≤ min{n, p}, then d( f (ρ, %), f (%, ς)) = 0. So, we may assume that either
n < m or p < m. We treat the following:

(Case 1): n < m ≤ p. Here, if n = 1, then

d( f (ρ, %), f (%, ς))ed( f (ρ,%), f (%,ς))−max{d(ρ,%),d(%,ς)}

max{d(ρ, %), d(%, ς)}

≤
d(τ1, τm−1)ed(τ1,τm−1)−d(τ1,τm)

d(τ1, τm)
≤ e−m

≤ e−1 = λ,
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and if n > 1, then

d( f (ρ, %), f (%, ς))ed( f (ρ,%), f (%,ς))−max{d(ρ,%),d(%,ς)}

max{d(ρ, %), d(%, ς)}

≤
d(τn−1, τm−1)ed(τn−1,τm−1)−d(τn,τm)

d(τn, τm)
≤ e−1 = λ.

(Case 2): p < m ≤ n. Here, if p = 1, then

d( f (ρ, %), f (%, ς))ed( f (ρ,%), f (%,ς))−max{d(ρ,%),d(%,ς)}

max{d(ρ, %), d(%, ς)}

≤
d(τ1, τm−1)ed(τ1,τm−1)−d(τ1,τm)

d(τ1, τm)
≤ e−m

≤ e−1 = λ,

and if p > 1, then

d( f (ρ, %), f (%, ς))ed( f (ρ,%), f (%,ς))−max{d(ρ,%),d(%,ς)}

max{d(ρ, %), d(%, ς)}

≤
d(τm−1, τp−1)ed(τm−1,τp−1)−d(τm,τp)

d(τm, τp)
≤ e−1 = λ.

(Case 3): n < p < m. In this case, if n = 1, then

d( f (ρ, %), f (%, ς))ed( f (ρ,%), f (%,ς))−max{d(ρ,%),d(%,ς)}

max{d(ρ, %), d(%, ς)}

≤
d(τ1, τp−1)ed(τ1,τp−1)−d(τ1,τp)

d(τ1, τp)
≤ e−p

≤ e−1 = λ,

and if n > 1, then

d( f (ρ, %), f (%, ς))ed( f (ρ,%), f (%,ς))−max{d(ρ,%),d(%,ς)}

max{d(ρ, %), d(%, ς)}

≤
d(τn−1, τp−1)ed(τn−1,τp−1)−d(τn,τp)

d(τn, τp)
≤ e−1 = λ.

(Case 4): p < n < m. Here, if p = 1, then

d( f (ρ, %), f (%, ς))ed( f (ρ,%), f (%,ς))−max{d(ρ,%),d(%,ς)}

max{d(ρ, %), d(%, ς)}

≤
d(τ1, τn−1)ed(τ1,τn−1)−d(τ1,τn)

d(τ1, τn)
≤ e−n

≤ e−1 = λ,

and if p > 1, then

d( f (ρ, %), f (%, ς))ed( f (ρ,%), f (%,ς))−max{d(ρ,%),d(%,ς)}

max{d(ρ, %), d(%, ς)}

≤
d(τn−1, τp−1)ed(τn−1,τp−1)−d(τn,τp)

d(τn, τp)
≤ e−1 = λ.

Also, for u, v ∈ X with d( f (u,u), f (v, v)) > 0, let u = τn, v = τm and n < m. If n = 1, then

d( f (u,u), f (v, v)) = d( f (τ1, τ1), f (τm, τm))
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and

d(τ1, τm−1) =
m(m − 1)

2
− 1 <

m(m + 1)
2

− 1 = d(τ1, τm) = d(u, v),

and if n > 1, then
d( f (u,u), f (v, v)) = d( f (τn, τn), f (τm, τm))

= d(τn−1, τm−1) =
m(m − 1)

2
−

n(n − 1)
2

=
(m − n)(m + n − 1)

2
<

(m − n)(m + n + 1)
2

=

m(m + 1)
2

−
n(n + 1)

2
= d(τn, τm) = d(u, v).

We see that all of conditions of Corollary 2.4 are satisfied. Thus, f has a unique fixed point. Here, f (τ1, τ1) = τ1 and
τ1 is the unique fixed point. Note that Theorem 1.3 is not applicable. In fact,

sup
n>1

d( f (τ1, τn), f (τn, τn))
max{d(τ1, τn), d(τn, τn)}

= sup
n>1

d(τn−1, τ1)
d(τ1, τn)

= sup
n>1

n(n−1)
2 − 1

n(n+1)
2 − 1

= 1.

Thus, Theorem 2.2 is a real generalization of Cirić-Presić’s result (Theorem 1.3).

3. Application

In this section, we study the existence of solutions for the following integral equation:

x(t) = f

t,
∫ %(t)

0 1(t, y, x(ρ(y)), · · · , x(ρ(y))︸                  ︷︷                  ︸
n times

)dy

 . (13)

where t ∈ [0,∞).
We will ensure such an existence by applying Theorem 2.2.
Let BC[0,∞) be the space of all real, bounded and continuous functions on the interval [0,∞). We endow

it with the standard norm
‖x‖ = sup{|x(t)| : t ∈ [0,∞)}.

Recall that the associated metric on BC[0,∞) is defined by

d(x, y) = sup{|x(t) − y(t)| : t ∈ [0,∞)}.

Theorem 3.1. Suppose that the following assumptions are satisfied:

(i) ρ, % : [0,∞) −→ [0,∞) are continuous functions so that

Λ = sup{|%(t)| : t ∈ [0,∞)} < 1,

(ii) The function f : [0,∞) ×R −→ R is continuous so that∣∣∣ f (t, x) − f
(
t, ν

)∣∣∣ ≤ ∣∣∣x − ν∣∣∣, (14)

for all t ∈ [0,∞) and x, ν ∈ R,
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(iii)

θ
(∣∣∣∣1(t, y, x1(ρ(y)), · · · , xk(ρ(y))︸                    ︷︷                    ︸) − 1(t, y, x2(ρ(y)), · · · , xk+1(ρ(y))︸                       ︷︷                       ︸)

∣∣∣∣) ≤ [θ( max
i=1,··· ,k

{d(xi, xi+1)})]λ (15)

where 1 : [0,∞)2
×Rk

−→ R is continuous and θ(λt) ≤ [θ(t)]λ for all λ ∈ [0, 1),

(iv) M = max{ f (t, 0, 0, 0) : t ∈ [0,∞)} < ∞ and
G = sup

{∣∣∣∣1(t, y, 0, · · · , 0)
∣∣∣∣ : t ∈ [0,∞)

}
< ∞.

Then the integral equation (13) has at least one solution in the space BC[0,∞).

Proof. Let us consider the operator Υ : BC[0,∞)k
−→ BC[0,∞) defined by

Υ(x1, x2, · · · , xk)(t) (16)

= f
(
t,
∫ %(t)

0
1(t, y, x1(ρ(y)), x2(ρ(y)), · · · , xk(ρ(y)))dy). (17)

In view of given assumptions, we infer that the function Υ(x1, x2, · · · , xn) is continuous for arbitrarily
x1, x2, · · · , xk ∈ BC[0,∞). Now, we show that Υ(x1, x2, · · · , xk) is bounded in BC[0,∞). As

|Υ(x1, x2 · · · , xk)(t)|

=
∣∣∣∣ f (t,∫ %(t)

0
1(t, y, x1(ρ(y)), x2(ρ(y)) · · · , xk(ρ(t)))dy)

∣∣∣∣
≤

∣∣∣∣ f (t,∫ %(t)

0
1(t, y, x1(ρ(y)), x2(ρ(y)) · · · , xk(ρ(t)))dy) − f (t, 0)

∣∣∣∣ +
∣∣∣∣ f (t, 0)

∣∣∣∣,
we have∣∣∣∣ f (t,∫ %(t)

0
1(t, y, x1(ρ(y)), x2(ρ(y)) · · · , xk(ρ(t)))dy) − f (t, 0)

∣∣∣∣
≤

∫ %(t)

0
1(t, y, x1(ρ(y)), x2(ρ(y)), · · · xn(ρ(y)))dy

∣∣∣∣
≤ Λ max{‖x1‖, ‖x2‖, · · · , ‖xk‖} + ΛG.

Thus,

∣∣∣∣ f (t,∫ %(t)

0
1(t, y, x1(ρ(y)), x2(ρ(y)), · · · xn(ρ(y)))dy) − f (t, 0)

∣∣∣∣
≤Λ max{‖x1‖, ‖x2‖, · · · , ‖xn‖} + ΛG.

From the above calculations, we have

‖Υ(x1, x2, · · · , xk)(t)‖ ≤ Λ max{‖x1‖, ‖x2‖, · · · , ‖xk‖} + ΛG + M. (18)

Due to the above inequality, the function Υ is bounded.
Now, we show that Υ satisfies all the conditions of Theorem 2.2. Let x1, x2, · · · xk, xk+1 be some elements
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of BC[0,∞). Then we have

θ
(∣∣∣Υ(x1, x2, · · · xk)(t) − Υ(x2, x3, · · · xk+1)(t)

∣∣∣)
≤ θ

(∣∣∣∣ f (t,∫ %(t)

0
1(t, y, x1(ρ(y)), x2(ρ(y)), · · · xk(ρ(y))dy)

− f
(
t,
∫ %(t)

0
1(t, y, x2(ρ(t)), x3(ρ(t)), · · · xk+1(ρ(t)))dy)

∣∣∣∣)
≤ θ

(∣∣∣ ∫ %(t)

0
1(t, y, x1(ρ(y)), x2(ρ(y)), · · · xk(ρ(y))dy

−

∫ %(t)

0
1(t, y, x2(ρ(t)), x3(ρ(t)), · · · xk+1(ρ(t)))dy

∣∣∣)
≤ θ

(
%(t)(max{d(xi, xi+1) : i = 1, · · · , k})

)
≤ θ

(
Λ(max{d(xi, xi+1) : i = 1, · · · , k})

)

(19)

Thus, we obtain that

θ(d(Υ(x1, ..., xk),Υ(x2, ..., xk+1))) ≤ [θ(max{d(xi, xi+1) : i = 1, · · · , k})]Λ. (20)

Using Theorem 2.2, we obtain that the operator Υ has a fixed point. Thus, the functional integral
equation (13) has at least one solution in BC[0,∞). �

4. Example

Example 4.1. Consider the following integral equation

x(t) = 1
2 e−t2

+ 1
8 arctan(

∫ tanh t

0
s(| sinh x(s)|+arctan x(s))

2et ds) (21)

We observe that the integral equation (21) is a special case of (13) with ρ(t) = t and %(t) = tanh t, where t ∈ [0,∞).
Also,

f (t, x) =
1
2

e−t2
+

arctan(x)
8

,

and

1(t, s, x1, x2) =
s(| sinh x1| + arctan x2)

2et .

To show the existence of a solution for this equation, we need to verify the conditions (i)-(iv) of Theorem 2.2.
Condition (i) is clearly evident. Take θ(t) = cosh t. Now,∣∣∣∣ f (t, x) − f (t,u)

∣∣∣∣ ≤ | arctan x − arctan u|
8

(22)

≤
arctan |x − u|

8
≤ |x − u|.

So, we find that f satisfies condition (ii) of Theorem 3.1. Also,

M = sup{| f
(
t, 0

)
| : t ∈ [0,∞)} = sup{

1
2

e−t2
: t ∈ [0,∞)} = 0.5
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Obviously, condition (iii) of Theorem 3.1 is valid, that is, 1 is continuous on [0,∞) × [0,∞) ×R2, and

G = sup
{∣∣∣∣ ∫ tanh t

0

s
2et ds

∣∣∣∣ : t ∈ [0,∞)
}

(23)

= sup
t∈[0,∞)

(
tanh t

2et ) ' 0.1501.

On the other hand,

θ(
∣∣∣∣1(t, s, x1(ρ(s)), x2(ρ(s))︸              ︷︷              ︸) − 1(t, s, x2(ρ(s)), x3(ρ(s))︸              ︷︷              ︸)

∣∣∣∣) (24)

= cosh(
s(| sinh x1(s)| + arctan x2(s))

2et −
s(| sinh x2(s)| + arctan x3(s))

2et ) (25)

≤ cosh(
s(| sinh x1(s) − sinh x2(s)| + arctan x2(s) − arctan x3(s))

2et ) (26)

≤

√
θ( max

i=1,··· ,2
{d(xi, xi+1)}) (27)

Consequently, all the conditions of Theorem 2.2 are satisfied. Hence, the integral equation (21) has at least one
solution, which belongs to the space BC[0,∞).
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