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Abstract. In this paper, we consider the constraint set K := {x ∈ Rn : 1 j(x) ≤ 0, ∀ j = 1, 2, . . . ,m} of
inequalities with nonsmooth nonconvex constraint functions 1 j : Rn

−→ R ( j = 1, 2, · · · ,m). We show that
under Abadie’s constraint qualification the “perturbation property“ of the best approximation to any x in
Rn from a convex set K̃ := C ∩ K is characterized by the strong conical hull intersection property (strong
CHIP) of C and K, where C is an arbitrary non-empty closed convex subset of Rn. By using the idea of
tangential subdifferential and a non-smooth version of Abadie’s constraint qualification, we do this by first
proving a dual cone characterization of the constraint set K. Moreover, we present sufficient conditions for
which the strong CHIP property holds. In particular, when the set K̃ is closed and convex, we show that
the Lagrange multiplier characterizations of constrained best approximation holds under a non-smooth
version of Abadie’s constraint qualification. The obtained results extend many corresponding results in the
context of constrained best approximation. Several examples are provided to clarify the results.

1. Introduction

The problem of determining the best approximation to any x ∈ Rn from the set D̃ := C ∩ D, where C and
D are closed convex subsets of Rn, has been of substantial interest in constrained best approximation and
interpolation [5]. A central question to this problem is whether the best approximation to x from D̃ can be
characterized by the best approximation to a perturbation x− l of x from the set C for some l in a certain cone
in Rn. From the point of view of applications, finding suitable conditions for this “perturbation property“
is of great significance, as it is often easier to compute the best approximation from C than from D̃ (see [5]).
The merit and motivation for such characterization (perturbation property) is inspired from [5, Chapter 10].
“Characterizing constrained interpolation from a convex set“ is one of the applications of the “perturbation
property“ (for more details, see [5]).

For many years, a great deal of attention has been focusing on the case where the constraint set K :=
{x ∈ Rn : 1 j(x) ≤ 0, ∀ j = 1, 2, . . . ,m} is a closed convex set and has a convex representation in the sense
that 1 j : Rn

−→ R ( j = 1, 2, · · · ,m) is a convex function [5–7, 9, 12, 13]. Various characterizations of the
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perturbation property have been given by using local constraint qualifications such as the strong conical
hull intersection property (strong CHIP) of C and K at the best approximation [4, 7, 9, 12], where C is a
non-empty closed convex subset of Rn.

In this paper, we study the problem of whether the best approximation to any x ∈ Rn from the closed convex
set K̃ := C ∩ K can be characterized by the best approximation to a perturbation x − x∗ of x from a closed
convex set C ⊆ Rn for some x∗ in a certain cone in Rn, where K := {x ∈ Rn : 1 j(x) ≤ 0, ∀ j = 1, 2, . . . ,m} with
1 j : Rn

−→ R ( j = 1, 2, · · · ,m) is a tangentially convex function at the best approximation. We show that the
strong CHIP of C and K at the best approximation continues to completely characterize the perturbation
property of the best approximation from the closed convex set K̃ := C ∩ K under Abadie’s constraint
qualification.

Indeed, by using the idea of tangential subdifferential and a non-smooth version of Abadie’s constraint
qualification (which is the weakest qualification among the other well known constraint qualifications),
we prove this by first establishing a dual cone characterization of the constraint set K. In the special case
when K̃ is a closed convex set, we show that the Lagrange multipliers characterizations of constrained
best approximation holds under a non-smooth version of Abadie’s constraint qualification. Our results
recapture the corresponding known results of [4, 6, 7, 9–14, 16]. Several illustrative examples are presented
to clarify our results.

The paper has the following structure. In Section 2, we provide the basic results on tangentially convex
functions and a non-smooth version of the constraint qualifications. Dual cone characterizations of the
constraint set K and sufficient conditions for which the strong CHIP holds are presented in Section 3. In
Section 4, we first show that the strong CHIP completely characterizes the perturbation property of the best
approximation. Finally, we show that under a non-smooth version of Abadie’s constraint qualification the
Lagrange multipliers characterizations of constrained best approximation holds. Also, several examples
are presented to illustrate our results.

2. Preliminaries

We start this section by fixing notations and preliminaries that will be used later. Recall [3] that for a
function f : Rn

−→ R, the directional derivative of f at a point x̄ ∈ Rn in the direction ν ∈ Rn is defined by

f ′(x̄, ν) := lim
α−→0+

f (x̄ + αν) − f (x̄)
α

, (1)

if the limit exists. Recall [15] that a function f : Rn
−→ R is called tangentially convex at a point x̄ ∈ Rn, if

f ′(x̄, ·) is a real valued convex function.

It should be noted that if the function f is tangentially convex at a point x̄ ∈ Rn, then, since f ′(x̄, ·) is a
positively homogeneous function, we conclude that f ′(x̄, ·) is a sublinear function on Rn.

The tangential subdifferential of a function f : Rn
−→ R at a point x̄ ∈ Rn is defined by

∂T f (x̄) := {x∗ ∈ Rn : 〈x∗, ν〉 ≤ f ′(x̄, ν), ∀ ν ∈ Rn
}. (2)

If f is tangentially convex at x̄, then, ∂T f (x̄) , ∅, and moreover, f ′(x̄, ·) is the support functional of ∂T f (x̄),
i.e., for each ν ∈ Rn, we have

f ′(x̄, ν) = max
x∗∈∂T f (x̄)

〈x∗, ν〉. (3)

It should be noted that if f is a convex function, then, ∂T f (x) = ∂ f (x) for each x ∈ Rn, where ∂ f (x) is the
classical convex subdifferential of f at x.
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Remark 2.1. Note that if the function f : Rn
−→ R is tangentially convex at a point x̄ ∈ Rn, then, f ′(x̄, ·) is a real

valued convex function on Rn, and hence, f ′(x̄, ·) is a continuous function on Rn.

Now, let K ⊆ Rn be defined by

K := {x ∈ Rn : 1 j(x) ≤ 0, ∀ j = 1, 2, . . . ,m}, (4)

where 1 j : Rn
−→ R ( j = 1, 2, · · · ,m) is a tangentially convex function at a given point x̄ ∈ K. Let C be a

non-empty closed convex subset of Rn such that C∩K , ∅, and let S := Rm
+ . Note that K is not necessarily a

closed or a convex set. Let

K̃ := C ∩ K, (5)

and

I := {1, 2, · · · ,m}. (6)

For a point x̄ ∈ K, we define

I(x̄) := { j ∈ I : 1 j(x̄) = 0}. (7)

For a set W ⊆ Rn, let

W◦ := {λ ∈ Rn : 〈λ, y〉 ≤ 0, ∀ y ∈W}, (8)

where we denote 〈·, ·〉 for the inner product ofRn. The normal cone to a convex set H ⊆ Rn at a point x ∈ Rn

is defined by

NH(x) := {u ∈ Rn : 〈u, t − x〉 ≤ 0, ∀ t ∈ H}. (9)

It is clear that

NH(x) = (H − x)◦, (x ∈ Rn).

Let U be a subset of Rn, and let x ∈ Rn. We recall [2, 3] that the contingent cone of U at x is defined by

TU(x)
:= {x∗ ∈ Rn : ∃ αk > 0,∃ x∗k ∈ R

n
3 αk −→ 0+, x∗k −→ x∗, x + αkx∗k ∈ U,∀k ≥ 1}.

(10)

We now introduce a non-smooth version of the linearized tangential cone:

D(x̄) := {x∗ ∈ Rn : 〈x∗, η j〉 ≤ 0, ∀ η j ∈ ∂T1 j(x̄), ∀ j ∈ I(x̄)}, (11)

where x̄ ∈ K.

Note that the non-smooth linearized tangential cone D(x̄) reduces to its counterpart in the case of differen-
tiability [2, 3]. Moreover, D(x̄) is a convex cone.

We now present the definition of the near convexity which has been given in [11]. Let V be a non-empty
subset of Rn and x ∈ V.

Definition 2.1. (Nearly Convex at x ∈ V). The set V is nearly convex at the point x ∈ V if for each y ∈ V there
exists a sequence {tk}k≥1 of positive real numbers with tk −→ 0+ such that x + tk(y − x) ∈ V for all sufficiently large
k ∈N.
The set V is called nearly convex whenever it is nearly convex at each of its points. It is easy to check that if V is
convex, then it is nearly convex at each x ∈ V.As shown in [8], the near convexity may hold at a point for a non-convex
set (for more details and illustrative examples related to the near convexity, see [8, 11]).
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Lemma 2.1. Let K be closed, given by (4), and let C be a non-empty closed convex subset of Rn such that C∩K , ∅.
Let K̃ := C∩K, and x̄ ∈ K̃. Assume that K is nearly convex at the point x̄. Then, TK̃(x̄) ⊆ D(x̄), where TK̃(x̄) and D(x̄)
defined by (10) and (11), respectively.

Proof: Let x∗ ∈ TK̃(x̄) be arbitrary. Then there exist sequences {αk}k≥1 ⊂ R++ and {x∗k}k≥1 ⊂ R
n such that

αk −→ 0+, x∗k −→ x∗ and x̄ + αkx∗k ∈ K̃ for all k ≥ 1. Since, by the hypothesis, K is nearly convex at the point
x̄ and x̄ + αkx∗k ∈ K for all k ≥ 1, it follows from Definition 2.1 that, for each k ≥ 1, there exists a sequence
{βk,p}p≥1 ⊂ R++ with βk,p −→ 0+ (as p −→ +∞) such that x̄ + βk,p(x̄ + αkx∗k − x̄) ∈ K for all sufficiently large
p ∈N. This implies that

1 j(x̄ + βk,pαkx∗k) ≤ 0, for all sufficiently large p ∈N, ∀ k ≥ 1, ∀ j ∈ I. (12)

Since 1 j ( j ∈ I) is tangentially convex at x̄, it follows, by the definition, that 1′j(x̄, ·) is a real valued positively
homogeneous and convex function on Rn. Therefore, for each j ∈ I(x̄), in view of (12) we have

1′j(x̄, αkx∗k) = lim
p−→+∞

1 j(x̄ + βk,pαkx∗k) − 1 j(x̄)

βk,p
= lim

p−→+∞

1 j(x̄ + βk,pαkx∗k)

βk,p
≤ 0, ∀ k ≥ 1,

and hence,

1′j(x̄, x
∗

k) ≤ 0, ∀ k ≥ 1. (13)

Since x∗k −→ x∗ and 1′j(x̄, ·) is continuous on Rn (see Remark 2.1), we conclude from (13) that

1′j(x̄, x
∗) ≤ 0, ∀ j ∈ I(x̄).

This together with (3) implies that

〈x∗, η j〉 ≤ 0, ∀ η j ∈ ∂T1 j(x̄), ∀ j ∈ I(x̄),

and so, x∗ ∈ D(x̄), which completes the proof.

Now, let us define the non-smooth versions of Robinson’s constraint qualification and Abadie’s constraint
qualification.

Definition 2.2. (Non-smooth Version of Robinson’s Constraint Qualification (NRCQ)). Let K = {x ∈ Rn :
1 j(x) ≤ 0, ∀ j = 1, 2, · · · ,m} be as in (4), and let C be a non-empty closed convex subset of Rn such that C ∩ K , ∅.
Let K̃ := C ∩ K, and x̄ ∈ K̃. We say that non-smooth Robinson’s constraint qualification holds at x̄ if there exists
0 , ν ∈ Rn such that for each j ∈ I(x̄) and each η j ∈ ∂T1 j(x̄), one has 〈η j, ν〉 < 0, where ∂T1 j(x̄) is the tangential
subdifferential of 1 j at x̄.

Definition 2.3. (Non-smooth Version of Abadie’s Constraint Qualification (NACQ)). Let K = {x ∈ Rn :
1 j(x) ≤ 0, ∀ j = 1, 2, · · · ,m} be as in (4), and let C be a non-empty closed convex subset of Rn such that C ∩ K , ∅.
Let K̃ := C ∩ K, and x̄ ∈ K̃. We say that non-smooth Abadie’s constraint qualification holds at x̄ if D(x̄) ⊆ TK̃(x̄).

Obviously, the above definitions of non-smooth version of constraint qualifications reduce to their counter-
parts in the case of differentiability [1, 3].

Clearly, in view of Lemma 2.1, Definition 2.2 and Definition 2.3, the following implication holds.

(NRCQ) =⇒ (NACQ). (14)

The following example shows that non-smooth Abadie’s constraint qualification is weaker than non-smooth
Robinson’s Constraint Qualification.



H. Mohebi / Filomat 34:14 (2020), 4669–4684 4673

Example 2.1. Let 11, 12, 13 : R2
−→ R be defined by

11(x1, x2) := |x2| − x1,

12(x1, x2) := 1 − x2
1 − (x2 − 1)2,

13(x1, x2) := 1 − x2
1 − (x2 + 1)2,

for all (x1, x2) ∈ R2. Then, we have

K = {(x1, x2) ∈ R2 : 0 ≤ x2 ≤ x1} ∪ {(x1, x2) ∈ R2 : 0 ≤ −x2 ≤ x1}.

Let

C := {(x1, x2) ∈ R2 : x1 ≥ 0},

and K̃ := C∩K = K. Let x̄ := (0, 0) ∈ K̃.Clearly, 11, 12, 13 are tangentially convex at x̄, and 11(x̄) = 12(x̄) = 13(x̄) = 0.
Moreover, it is easy to check that

1′1(x̄, (t1, t2)) = |t2| − t1,

1′2(x̄, (t1, t2)) = 2t2,

1′3(x̄, (t1, t2)) = −2t2,

for all (t1, t2) ∈ R2. This together with (2) implies that

∂T11(x̄) = co{(−1,−1), (−1, 1)},
∂T12(x̄) = {(0, 2)},
∂T13(x̄) = {(0,−2)}.

It is clear that non-smooth Robinson’s constraint qualification does not hold at x̄. But, we have

TK̃(x̄) = D(x̄) = {(t1, 0) ∈ R2 : t1 ≥ 0},

and hence, non-smooth Abadie’s constraint qualification holds at x̄.

Remark 2.2. It should be noted that in [16] the constraint functions are continuously Fréchet differentiable, while in
this paper the constraint functions are only tangentially convex at the point of best approximation. Moreover, in view
of (14) and Example 2.1, (NACQ) is weaker than (NRCQ). So, we obtain our results under non-smooth Abadie’s
constraint qualification, which extend the results in [16] and the corresponding results of [4, 6, 7, 9, 10, 12–14].

For a non-empty subset W of Rn and an arbitrary point x ∈ Rn, we define

d(x,W) := inf
w∈W
‖x − w‖.

We say that a point x0 ∈W is a best approximation (a projection) of x ∈ Rn if ‖x − x0‖ = d(x,W) [18]. The set
of all best approximations (projections) of x in W denoted by PW(x) and is given by:

PW(x) := {w ∈W : ‖x − w‖ = d(x,W)}.

The following characterization of best approximation in Rn is well known [5].

Lemma 2.2. Let D be a non-empty closed convex subset of Rn, x ∈ Rn and x0 ∈ D. Then, x0 = PD(x) if and only if
x − x0 ∈ (D − x0)◦.

In the following, we give the notion of strong CHIP. The definition of strong CHIP was first introduced in
[7] (see also, [4, 5]).
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Definition 2.4. (Strong CHIP). Let C1,C2, . . . ,Cm be non-empty closed convex sets in Rn, and let x ∈
⋂m

j=1 C j.
Then, the collection {C1,C2, . . . ,Cm} is said to have the strong CHIP (canonical hull intersection property) at x if( m⋂

j=1

C j − x
)◦

=

m∑
j=1

(
C j − x

)◦
.

The collection {C1,C2, . . . ,Cm} is said to have the strong CHIP if it has the strong CHIP at each x ∈
⋂m

j=1 C j.

We recall [2, 3] the following well known result from non-smooth analysis.

Theorem 2.1. Let C ⊂ Rn be a non-empty convex set, and let f : Rn
−→ R ∪ {+∞} be a proper convex function

such that C ∩ dom ( f ) , ∅. Assume that x̄ ∈ C and f is continuous at x̄. Then, x̄ is a global minimizer of the function
f over C if and only if

0 ∈ ∂ f (x̄) + NC(x̄),

where domain of the function f , dom ( f ), is defined by

dom ( f ) := {x ∈ Rn : f (x) < +∞}.

3. Dual Cone Characterizations of the Constraint Set K

In this section, we give dual cone characterizations of the constraint set K at a point x ∈ K, where K is given
by (4). Also, we present sufficient conditions for which the strong CHIP holds.

For each x ∈ K, put

M(x) :=
⋃
λ∈S

{ m∑
j=1

λ j∂T1 j(x) : λ j1 j(x) = 0, j = 1, 2, · · · ,m
}
, (15)

where λ := (λ1, λ2, · · · , λm) ∈ S and S := Rm
+ .

Remark 3.1. Throughout the paper, we assume that the constraint functions 1 j, j = 1, 2, . . . ,m, are tangentially
convex at a given point x̄ ∈ K̃ := C ∩ K and M(x̄) is closed.

We now give a dual cone characterization of the nearly convex constraint set K, which has a crucial role for
characterizing best approximations by the set K̃ := C ∩ K.

Theorem 3.1. Let K be closed, given by (4), and let C be a non-empty closed convex subset ofRn such that C∩K , ∅.
Let K̃ := C ∩ K, x̄ ∈ K̃ and M(x̄) be as in (15). Assume that K is nearly convex at the point x̄. If non-smooth Abadie’s
constraint qualification holds at x̄, then, M(x̄) = (K − x̄)◦ = (K̃ − x̄)◦.

Proof: It is easy to see that (K − x̄)◦ ⊆ (K̃ − x̄)◦. Now, let u ∈ (K̃ − x̄)◦ be arbitrary. Then, 〈u, y − x̄〉 ≤ 0 for all
y ∈ K̃, and so,

〈−u, y − x̄〉 ≥ 0, ∀ y ∈ K̃. (16)

Let h : Rn
−→ R be defined by

h(y) := 〈−u, y〉, ∀ y ∈ Rn. (17)

It is clear that h is a continuous convex function on Rn.Now, we show that h(y) ≥ 0 for all y ∈ TK̃(x̄). To this
end, let y ∈ TK̃(x̄) be arbitrary. Then by (10) there exist {tm}m≥1 ⊂ R++ and {ym}m≥1 ⊂ Rn such that tm −→ 0+,
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ym −→ y and x̄ + tmym ∈ K̃ for all m ≥ 1. Thus, in view of (16), we conclude that 〈−u, ym〉 ≥ 0 for all m ≥ 1.
This together with the fact that ym −→ y implies that 〈−u, y〉 ≥ 0, and so,

h(y) ≥ 0, ∀ y ∈ TK̃(x̄). (18)

Consider the following optimization problem:

min h(y) subject to y ∈ TK̃(x̄). (19)

It follows from (18) that y = 0 ∈ TK̃(x̄) is a global minimizer of the problem (19) over TK̃(x̄). On the other
hand, since K is nearly convex at the point x̄, in view of Lemma 2.1 and the validity of non-smooth Abadie’s
constraint qualification at x̄, we have, D(x̄) = TK̃(x̄). Therefore, the problem (19) can be represented as the
following convex optimization problem:

min h(y) subject to y ∈ D(x̄). (20)

Note that D(x̄) is a closed convex subset of Rn, and y = 0 ∈ D(x̄) is a global minimizer of the problem (20)
over D(x̄). In view of (3) and (11), the problem (20) can be represented as the following convex optimization
problem:

min h(y) subject to y ∈ Rn, and 1′j(x̄, y) ≤ 0, ∀ j ∈ I(x̄). (21)

Note that y = 0 (because 1′j(x̄, 0) = 0, j ∈ I(x̄)) is a global minimizer of the problem (21). Let

C j := {y ∈ Rn : 1′j(x̄, y) ≤ 0}, ( j ∈ I(x̄)),

and let H := ∩ j∈I(x̄)C j. Since 1′j(x̄, ·) is convex on Rn ( j ∈ I), it is easy to see that C j is convex for each j ∈ I(x̄),
and hence, H is a convex set. Since, by (20), y = 0 ∈ H (note that 1′j(x̄, 0) = 0 ≤ 0, j ∈ I(x̄)) is a global
minimizer of the problem (21) over H, it follows from Theorem 2.1 that

0 ∈ ∂h(0) + NH(0). (22)

This together with [3, Section 3.3, p. 56] implies that

0 ∈ ∂h(0) +
∑
j∈I(x̄)

NC j (0). (23)

Let

M j(x̄) := {λ jη j : λ j ≥ 0, η j ∈ ∂1
′

j(x̄, ·)(0)}, ( j ∈ I(x̄)). (24)

It is easy to check that M j(x̄) is a closed convex cone in Rn for each j ∈ I(x̄). Now, we claim that

NC j (0) ⊆M j(x̄), ( j ∈ I(x̄)). (25)

Assume if possible that there exists x∗ ∈ NC j (0) such that x∗ <M j(x̄). Since M j(x̄) is a closed convex cone, by
using the separation theorem there exists 0 , ν ∈ Rn such that

〈ν,u j〉 ≤ 0 < 〈ν, x∗〉, ∀ u j ∈M j(x̄), ( j ∈ I(x̄)). (26)

For simplicity, put h j(·) := 1′j(x̄, ·) ( j ∈ I(x̄)). Since 1 j is tangentially convex at x̄, it follows that, for each
j ∈ I(x̄), h j is a real valued positively homogeneous and convex function, and so,

h′j(0, ν) = max
η j∈∂h j(0)

〈η j, ν〉, ( j ∈ I(x̄)).
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This together with (26) implies that h′j(0, ν) ≤ 0 ( j ∈ I(x̄)). On the other hand, since h j ( j ∈ I(x̄)) is positively
homogeneous, we conclude that h′j(0, ν) = 1′j(x̄, ν) ( j ∈ I(x̄)). So, 1′j(x̄, ν) ≤ 0 ( j ∈ I(x̄)), and hence, ν ∈ C j

( j ∈ I(x̄)). But, we have x∗ ∈ NC j (0) ( j ∈ I(x̄)). Therefore, 〈ν, x∗〉 ≤ 0,which contradicts (26). Then, the inclusion
(25) holds. This together with (23) implies that

0 ∈ ∂h(0) +
∑
j∈I(x̄)

M j(x̄).

So, for each j ∈ I(x̄), there exists λ j ≥ 0 such that

0 ∈ ∂h(0) +
∑
j∈I(x̄)

λ j∂1
′

j(x̄, ·)(0). (27)

It is not difficult to see that ∂1′j(x̄, ·)(0) = ∂T1 j(x̄) ( j ∈ I(x̄)). Thus, it follows from (27) that

0 ∈ ∂h(0) +
∑
j∈I(x̄)

λ j∂T1 j(x̄). (28)

But, in view of (17), we have ∂h(0) = {−u}. Now, for each j < I(x̄), put λ j = 0. Therefore, we obtain from (28)
that

u ∈
∑
j∈I(x̄)

λ j∂T1 j(x̄) =

m∑
j=1

λ j∂T1 j(x̄), and λ j1 j(x̄) = 0, j = 1, 2, · · · ,m,

and so, by (15), u ∈M(x̄). Hence, (K̃ − x̄)◦ ⊆M(x̄).

Now, we show that M(x̄) ⊆ (K − x̄)◦. To this end, let u ∈M(x̄) be arbitrary. Then, in view of (15), there exists
(λ1, λ2, · · · , λm) ∈ S with λ j1 j(x̄) = 0 ( j = 1, 2, · · · ,m) such that

u ∈
m∑

j=1

λ j∂T1 j(x̄).

This implies that, for each j = 1, 2, · · · ,m, there exists η j ∈ ∂T1 j(x̄) such that

u =

m∑
j=1

λ jη j. (29)

Now, let y ∈ K be arbitrary. Since x̄ ∈ K and K is nearly convex at x̄, it follows from Definition 2.1 that there
exists a sequence {αk}k≥1 ⊂ R++ with αk −→ 0+ such that x̄ + αk(y − x̄) ∈ K for all sufficiently large k ∈N. So,
by (4),

1 j(x̄ + αk(y − x̄)) ≤ 0, for all sufficiently large k ∈N and all j = 1, 2, · · · ,m. (30)

Since 1 j ( j = 1, 2, · · · ,m) is tangentially convex at x̄, it follows from (3), (29), (30) and the fact that λ j = 0 for
each j < I(x̄) (because λ j1 j(x̄) = 0, j = 1, 2, . . . ,m) that

〈u, y − x̄〉 = 〈

m∑
j=1

λ jη j, y − x̄〉 =

m∑
j=1

λ j〈η j, y − x̄〉 ≤
m∑

j=1

λ j1
′

j(x̄, y − x̄)

=
∑
j∈I(x̄)

λ j1
′

j(x̄, y − x̄) =
∑
j∈I(x̄)

λ j

{
lim

k−→+∞

1 j(x̄ + αk(y − x̄)) − 1 j(x̄)
αk

}
=

∑
j∈I(x̄)

λ j

{
lim

k−→+∞

1 j(x̄ + αk(y − x̄))
αk

}
≤ 0, ∀ y ∈ K.

Hence, u ∈ (K − x̄)◦, which completes the proof.
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Remark 3.2. It should be noted that in Theorem 3.1, for proving the inclusion M(x̄) ⊆ (K− x̄)◦, we only require that
the set K is nearly convex at the point x̄ without the validity of non-smooth Abadie’s constraint qualification at x̄.

Remark 3.3. We now give some conditions on the constraint functions 1 j that guarantee the set K, given by (4), is
nearly convex at a given point x̄ ∈ K. For example, we give the following two cases.
(i): If each function 1 j ( j = 1, 2, . . . ,m) is quasi-convex, then the set K is convex and so it is nearly convex at each
point x̄ ∈ K.
(ii): Fix x̄ ∈ K. If for each y ∈ K \ {x̄} and each j ∈ I(x̄), 1′j(x̄, y − x̄) < 0, and 1 j is continuous at x̄ for each j < I(x̄),
then the set K is nearly convex at x̄. To this end, let y ∈ K \ {x̄} be arbitrary. Since, for each j ∈ I(x̄), we have
1′j(x̄, y − x̄) < 0, it follows from the definition of the directional derivative of 1 j that there exists t j > 0 such that
1 j(x̄ + t(y − x̄)) < 0 for all t ∈ (0, t j) with j ∈ I(x̄). On the other hand, one has 1 j(x̄) < 0 for all j < I(x̄). Therefore,
since 1 j is continuous at x̄ for each j < I(x̄), there exists s j > 0 such that 1 j(x̄ + t(y − x̄)) < 0 for all t ∈ (0, s j). Put
t̄ := min{min{t j : j ∈ I(x̄)},min{s j : j < I(x̄)}}. Thus, we conclude that 1 j(x̄ + t(y − x̄)) < 0 for all t ∈ (0, t̄) and
all j = 1, 2, . . . ,m. This together with (4) implies that there exists a sequence {tk}k≥1 of positive real numbers with
tk −→ 0+ such that x̄ + tk(y − x̄) ∈ K for all sufficiently large k ∈ N. Hence, in view of Definition 2.1, K is nearly
convex at x̄.

Corollary 3.1. Let K be closed, given by (4), and let C be a non-empty closed convex subset ofRn such that C∩K , ∅.
Let K̃ := C ∩ K, and x̄ ∈ K̃. Assume that K is nearly convex at the point x̄ and non-smooth Abadie’s constraint
qualification holds at x̄. Then, {C,K} has the strong CHIP at x̄.

Proof: We first note that one always has

(C − x̄)◦ + (K − x̄)◦ ⊆ (K̃ − x̄)◦.

For the converse inclusion, in view of Theorem 3.1, we conclude that (K̃ − x̄)◦ = (K − x̄)◦. Therefore, since
0 ∈ (C − x̄)◦, we have

(K̃ − x̄)◦ ⊆ (C − x̄)◦ + (K − x̄)◦,

which completes the proof.

The following example shows that the converse statement to Corollary 3.1 is not valid.

Example 3.1. Let 1(x) := |x| − x for all x ∈ R. Thus, K = {x ∈ R : 1(x) ≤ 0} = [0,+∞), which is closed. Let
C := (−∞, 0], and x̄ = 0. It is clear that 1 is tangentially convex at x̄, 1′(x̄, ν) = |ν| − ν for all ν ∈ R, and C∩K = {0}.
Also, we have 1(x̄) = 0 and ∂T1(x̄) = [−2, 0]. Note that K is nearly convex at the point x̄. It is easy to check that
(K − x̄)◦ = (−∞, 0] and (C − x̄)◦ = [0,+∞). Let K̃ := C ∩ K = {0}. Then,

(K̃ − x̄)◦ = {0}◦ = R = (−∞, 0] + [0,+∞) = (K − x̄)◦ + (C − x̄)◦.

Thus, {C,K} has the strong CHIP at x̄. But, on the other hand, we have

D(x̄) = [0,+∞) and TK̃(x̄) = {0}.

This implies that

D(x̄) * TK̃(x̄),

and hence, non-smooth Abadie’s constraint qualification does not hold at x̄.

By the following example we show that in Theorem 3.1 the validity of the near convexity of K at the point
x̄ ∈ K cannot be omitted.
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Example 3.2. Let 11, 12 : R −→ R be defined by

11(x) := 8 − x3, and 12(x) := −x2 + 6x − 8, ∀ x ∈ R.

Then, we have

K := {x ∈ R : 1 j(x) ≤ 0, j = 1, 2} = {2} ∪ [4,+∞),

which is closed. Let C := [2, 3], K̃ := C ∩ K = {2} and x̄ := 2. It is easy to see that 11 and 12 are tangentially convex
at x̄, 11(x̄) = 12(x̄) = 0, ∂T11(x̄) = {−12} and ∂T12(x̄) = {2}. Clearly,

D(x̄) = {0}, and TK̃(x̄) = {0}.

Thus, D(x̄) = TK̃(x̄), and so, non-smooth Abadie’s constraint qualification holds at x̄, while it is clear that K is not
nearly convex at the point x̄.

On the other hand, it is not difficult to check that M(x̄) = R, (K̃ − x̄)◦ = R and (K − x̄)◦ = (−∞, 0]. Hence, Theorem
3.1 does not hold.

The following example shows that non-smooth Abadie’s constraint qualification in Theorem 3.1 cannot be
omitted.

Example 3.3. Let 11, 12 : R −→ R be defined by

11(x) :=
{

x
3
2 , x > 0,

0, x ≤ 0,

and

12(x) :=
{
−x

3
2 , x > 0,

0, x ≤ 0.

Thus, we have

K := {x ∈ R : 1 j(x) ≤ 0, j = 1, 2} = (−∞, 0],

which is closed. Let C := [0, 1], K̃ := C∩K = {0} and x̄ := 0. It is easy to check that 11 and 12 are tangentially convex
at x̄, 11(x̄) = 12(x̄) = 0, ∂T11(x̄) = {0} and ∂T12(x̄) = {0}. Also, one can see that

D(x̄) = R, and TK̃(x̄) = {0}.

Therefore, D(x̄) * TK̃(x̄), and hence, non-smooth Abadie’s constraint qualification does not hold at x̄,while K is nearly
convex at the point x̄.

Furthermore, it is easy to see that M(x̄) = {0}, (K̃ − x̄)◦ = R and (K − x̄)◦ = [0,+∞), and so, Theorem 3.1 does not
hold.

4. Characterizations of Constrained Best Approximation

In this section, we give characterizations of constrained best approximations under non-smooth Abadie’s
constraint qualification. Let K be as in (4), given by,

K := {x ∈ Rn : 1 j(x) ≤ 0, j = 1, 2, · · · ,m},

where 1 j : Rn
−→ R ( j = 1, 2, · · · ,m) is a tangentially convex function at a given point x̄ ∈ K. Let S := Rm

+ ,
and let C be a non-empty closed convex subset of Rn such that C ∩ K , ∅. Note that K is not necessarily a
closed or a convex set.

The following theorem shows that under non-smooth Abadie’s constraint qualification the “perturbation
property“ (for details, see [5]) is characterized by the strong conical hull intersection property (Strong
CHIP).
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Theorem 4.1. Let K be closed, given by (4), and let C be a non-empty closed convex subset ofRn such that C∩K , ∅.
Let x̄ ∈ K̃ := C∩K. Assume that K̃ is closed and convex. If K is nearly convex at the point x̄ and non-smooth Abadie’s
constraint qualification holds at x̄, then the following assertions are equivalent.
(i) {C,K} has the strong CHIP at x̄,
(ii) For any x ∈ Rn, x̄ = PK̃(x) if and only if there exist (λ1, λ2, · · · , λm) ∈ S with λ j1 j(x̄) = 0 and η j ∈ ∂T1 j(x̄) such
that

x̄ = PC(x −
m∑

j=1

λ jη j), j = 1, 2, · · · ,m. (31)

Proof: [(i) =⇒ (ii)]. Suppose that (i) holds. Then, by Definition 2.4,

(K̃ − x̄)◦ = (C − x̄)◦ + (K − x̄)◦. (32)

Also, in view of the hypotheses and Theorem 3.1, we have M(x̄) = (K − x̄)◦. So, it follows from (32) that

(K̃ − x̄)◦ = (C − x̄)◦ + M(x̄). (33)

Now, for any x ∈ Rn, assume that x̄ = PK̃(x). Thus, by Lemma 2.2, one has x − x̄ ∈ (K̃ − x̄)◦. Therefore, in
view of (15) and (33), there exist ` ∈ (C − x̄)◦ and (λ1, λ2, · · · , λm) ∈ S with λ j1 j(x̄) = 0 such that

x − x̄ − ` ∈
m∑

j=1

λ j∂T1 j(x̄), j = 1, 2, · · · ,m.

So, for each j = 1, 2, · · · ,m, there exists η j ∈ ∂T1 j(x̄) such that

x − x̄ − ` =

m∑
j=1

λ jη j.

Then, we conclude that

[x −
m∑

j=1

λ jη j] − x̄ = ` ∈ (C − x̄)◦ with λ j1 j(x̄) = 0 and η j ∈ ∂T1 j(x̄).

So, by using Lemma 2.2, it follows that x̄ = PC(x −
∑m

j=1 λ jη j). Hence, the following implication holds.

x̄ = PK̃(x) =⇒ x̄ = PC(x −
m∑

j=1

λ jη j) with λ j1 j(x̄) = 0 and η j ∈ ∂T1 j(x̄).

Conversely, assume that there exist (λ1, λ2, · · · , λm) ∈ S with λ j1 j(x̄) = 0 and η j ∈ ∂T1 j(x̄) such that

x̄ = PC(x −
m∑

j=1

λ jη j), j = 1, 2, · · · ,m.

By using Lemma 2.2,

[x −
m∑

j=1

λ jη j] − x̄ ∈ (C − x̄)◦.

Then,

x − x̄ ∈ (C − x̄)◦ +

m∑
j=1

λ jη j with λ j1 j(x̄) = 0 and η j ∈ ∂T1 j(x̄). (34)
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Therefore, it follows from (15), (33) and (34) that

x − x̄ ∈ (C − x̄)◦ +

m∑
j=1

λ jη j ⊆ (C − x̄)◦ +

m∑
j=1

λ j∂T1 j(x̄) ⊆ (C − x̄)◦ + M(x̄)

= (K̃ − x̄)◦.

Again, by using Lemma 2.2, x̄ = PK̃(x).
[(ii) =⇒ (i)]. Let y ∈ (K̃ − x̄)◦ be arbitrary, and let x := x̄ + y. Thus, by Lemma 2.2, x̄ = PK̃(x). Then, in view of
the hypothesis (ii), there exist (λ1, λ2, · · · , λm) ∈ S with λ j1 j(x̄) = 0 and η j ∈ ∂T1 j(x̄) such that

x̄ = PC(x −
m∑

j=1

λ jη j), j = 1, 2, · · · ,m.

Again, by Lemma 2.2,

y −
m∑

j=1

λ jη j ∈ (C − x̄)◦ with λ j1 j(x̄) = 0 and η j ∈ ∂T1 j(x̄). (35)

Therefore, it follows from (15), (35) and Theorem 3.1 that

y ∈ (C − x̄)◦ +

m∑
j=1

λ jη j ⊆ (C − x̄)◦ +

m∑
j=1

λ j∂T1 j(x̄) ⊆ (C − x̄)◦ + M(x̄)

= (C − x̄)◦ + (K − x̄)◦.

Hence,

(K̃ − x̄)◦ ⊆ (C − x̄)◦ + (K − x̄)◦.

On the other hand, one always has,

(C − x̄)◦ + (K − x̄)◦ ⊆ (K̃ − x̄)◦,

which implies that (i) holds.

The following examples illustrate Theorem 4.1. Moreover, these examples justify how one can use best
approximations to check the strong CHIP without explicitly proving the strong CHIP.

Example 4.1. Let 11, 12 : R2
−→ R be defined by

11(x1, x2) := |x2| − x1 − x2
1 − x3

1,

12(x1, x2) := |x1 − x2| − x1 − x1x2 − x3
2,

for all (x1, x2) ∈ R2. Let S := R2
+ and C := R2. It is easy to see that

K := {(x1, x2) ∈ R2 : x1 ≥ x2 ≥ 0},

which is closed and convex. Let K̃ := C∩K = K and x̄ := (0, 0) ∈ K̃. Note that K̃ is closed and convex. It is clear that
11 and 12 are tangentially convex at x̄, but not convex. Moreover, 11(x̄) = 12(x̄) = (0, 0), and

1′1(x̄, (t1, t2)) = |t2| − t1, 1
′

2(x̄, (t1, t2)) = |t1 − t2| − t1,

for all (t1, t2) ∈ R2. Therefore, we have

∂T11(x̄) = co{(−1, 1), (−1,−1)}, and ∂T12(x̄) = co{(−2, 1), (0,−1)}.
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So, it is easy to check that

D(x̄) = {(t1, t2) ∈ R2 : t1 ≥ t2 ≥ 0} = TK̃(x̄),

and hence, Abadie’s constraint qualification holds at x̄. Also, it is clear that K is nearly convex at the point x̄.

Now, for any x := (0, x2) ∈ R2 with x2 ≤ 0, it is easy to see that

PK̃(x) = x̄ = (0, 0) = PC((0, 0)) = PC(x − (λ1η1 + λ2η2)),

where (λ1 := 0, λ2 := −x2) ∈ S, λ j1 j(x̄) = 0 ( j = 1, 2), and η1 := (−1, 1) ∈ ∂T11(x̄), η2 := (0,−1) ∈ ∂T12(x̄). Then,
in view of Theorem 4.1 (the implication [(ii) =⇒ (i)]), we conclude that {C,K} has the strong CHIP at x̄. Indeed, one
can see that

(K̃ − x̄)◦ = {(t1, t2) ∈ R2 : t1 ≤ −t2, t1 ≤ 0} ∪ (R− ×R−)
= {(0, 0)} + {(t1, t2) ∈ R2 : t1 ≤ −t2, t1 ≤ 0} ∪ (R− ×R−)
= (C − x̄)◦ + (K − x̄)◦.

Example 4.2. Let 11, 12 : R −→ R be defined by

11(x) := 1 − x3, 12(x) := x3
− 3x2 + x − 3,

for all x ∈ R. Let S := R2
+ and C := [1,+∞). Clearly, we have

K = {x ∈ R : 1 j(x) ≤ 0, j = 1, 2} = [1, 3],

which is closed and convex. Let K̃ := C ∩ K = [1, 3] and x̄ := 1 ∈ K̃. Thus, K̃ is closed and convex, 11, 12 are
tangentially convex at x̄ (but not convex), 11(x̄) = 0, 12(x̄) = −4 , 0, and

1′1(x̄, t) = −3t, 1′2(x̄, t) = −2t,

for all t ∈ R. This implies that

∂T11(x̄) = {−3}, and ∂T12(x̄) = {−2}.

Moreover, it is not difficult to show that

D(x̄) = [0,+∞) = TK̃(x̄),

and so, non-smooth Abadie’s constraint qualification holds at x̄. Note that K is nearly convex at the point x̄. It is easy
to see that, for any x ∈ R with x ≤ 1, we have

PK̃(x) = x̄ = 1 = PC(1) = PC(x − (λ1η1 + λ2η2)),

where (λ1 := 1−x
3 , λ2 := 0) ∈ S, λ j1 j(x̄) = 0 ( j = 1, 2), and η1 := −3 ∈ ∂T11(x̄), η2 := −2 ∈ ∂T12(x̄). Hence, by using

Theorem 4.1 (the implication [(ii) =⇒ (i)]), we conclude that {C,K} has the strong CHIP at x̄. Indeed, one can see that

(K̃ − x̄)◦ = (−∞, 0] = (−∞, 0] + (−∞, 0] = (C − x̄)◦ + (K − x̄)◦.

Now, let x ∈ Rn be fixed, and define the function h : Rn
−→ [0,+∞) by

h(y) := ‖y − x‖, ∀ y ∈ Rn.

For x̄ ∈ Rn, we recall that ∂h(x̄) := ∂‖ · −x‖(x̄) is given by

∂‖ · −x‖(x̄) = {x∗ ∈ Rn : ‖x∗‖ = 1, 〈x∗, x̄ − x〉 = ‖x̄ − x‖}. (36)

In the following, we give the Lagrange multipliers characterizations of constrained best approximation
under non-smooth Abadie’s constraint qualification.
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Theorem 4.2. Let K be closed, given by (4), and let C be a non-empty closed convex subset ofRn such that C∩K , ∅.
Let x̄ ∈ K̃ := C ∩ K and x ∈ Rn. Assume that K̃ is closed and convex. If K is nearly convex at the point x̄ and
non-smooth Abadie’s constraint qualification holds at x̄, then the following assertions are equivalent.
(i) x̄ = PK̃(x).
(ii) There exist (λ1, λ2, . . . , λm) ∈ S with λ j1 j(x̄) = 0 and η j ∈ ∂T1 j(x̄) such that

x̄ = PC(x −
m∑

j=1

λ jη j), j = 1, 2, . . . ,m.

(iii) There exist (λ1, λ2, . . . , λm) ∈ S with λ j1 j(x̄) = 0 and η j ∈ ∂T1 j(x̄) such that

0 ∈ ∂‖ · −x‖(x̄) + (C − x̄)◦ +

m∑
j=1

λ jη j, j = 1, 2, . . . ,m,

where we denote ∂ f (x0) for the convex subdifferential of a convex function f : Rn
−→ R at the point x0 ∈ Rn.

Proof: [(i)⇐⇒ (ii)]. Since, by the hypothesis, non-smooth Abadie’s constraint qualification holds at x̄ and K
is nearly convex at the point x̄, it follows from Corollary 3.1 that {C,K} has the strong CHIP at x̄. Therefore,
the implication [(i)⇐⇒ (ii)] follows from Theorem 4.1.
[(i) =⇒ (iii)]. We may assume without loss of generality that x , x̄. Suppose that (i) holds. Then, we have
x̄ = PK̃(x). This together with Lemma 2.2 implies that x − x̄ ∈ (K̃ − x̄)◦. But, in view of Theorem 3.1, one has

(K̃ − x̄)◦ = M(x̄).

Hence, x − x̄ ∈M(x̄). Since M(x̄) is a cone, we conclude that

x − x̄
‖x̄ − x‖

∈M(x̄).

Therefore, it follows from (15) that there exist (λ1, λ2, . . . , λm) ∈ S with λ j1 j(x̄) = 0 and η j ∈ ∂T1 j(x̄) such that

−u :=
x − x̄
‖x̄ − x‖

=

m∑
j=1

λ jη j, j = 1, 2, . . . ,m, (37)

where

u :=
x̄ − x
‖x̄ − x‖

.

Then, u ∈ Rn, ‖u‖ = 1 and

〈u, x̄ − x〉 = ‖x̄ − x‖.

This together with (36) implies that

u ∈ ∂‖ · −x‖(x̄). (38)

Thus, it follows from (37) and (38) that

0 ∈ ∂‖ · −x‖(x̄) +

m∑
j=1

λ jη j with λ j1 j(x̄) = 0 and η j ∈ ∂T1 j(x̄). (39)

On the other hand, since 0 ∈ (C − x̄)◦, we have

∂‖ · −x‖(x̄) +

m∑
j=1

λ jη j ⊆ ∂‖ · −x‖(x̄) + (C − x̄)◦ +

m∑
j=1

λ jη j.
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Hence, in view of (39), one has

0 ∈ ∂‖ · −x‖(x̄) + (C − x̄)◦ +

m∑
j=1

λ jη j with λ j1 j(x̄) = 0 and η j ∈ ∂T1 j(x̄),

which implies that (iii) holds.
[(iii) =⇒ (i)]. Suppose that (iii) holds. Then there exist (λ1, λ2, . . . , λm) ∈ S with λ j1 j(x̄) = 0 and η j ∈ ∂T1 j(x̄)
such that

0 ∈ ∂‖ · −x‖(x̄) + (C − x̄)◦ +

m∑
j=1

λ jη j, j = 1, 2, . . . ,m. (40)

Now, let y ∈ K̃ be arbitrary. So, y ∈ K. Since K is nearly convex at the point x̄, it follows from Definition 2.1
that there exists a sequence {αk}k≥1 ⊂ R++ with αk −→ 0+ such that x̄ + αk(y − x̄) ∈ K for all sufficiently large
k ∈N. So, by (4),

1 j(x̄ + αk(y − x̄)) ≤ 0, for all sufficiently large k ∈N and all j = 1, 2, · · · ,m. (41)

Since 1 j ( j = 1, 2, · · · ,m) is tangentially convex at x̄, it follows from (3), (40) and (41) with some ν ∈ (C − x̄)◦

that

‖x̄ − x‖ − ‖y − x‖ ≤ 〈

m∑
j=1

λ jη j + ν, y − x̄〉 = 〈

m∑
j=1

λ jη j, y − x̄〉 + 〈ν, y − x̄〉

≤ 〈

m∑
j=1

λ jη j, y − x̄〉 ≤
m∑

j=1

λ j1
′

j(x̄, y − x̄) =
∑
j∈I(x̄)

λ j1
′

j(x̄, y − x̄)

=
∑
j∈I(x̄)

λ j

{
lim

k−→+∞

1 j(x̄ + αk(y − x̄)) − 1 j(x̄)
αk

}
=

∑
j∈I(x̄)

λ j

{
lim

k−→+∞

1 j(x̄ + αk(y − x̄))
αk

}
≤ 0, ∀ y ∈ K̃. (42)

Note that in the above we used the fact that λ j = 0 for each j < I(x̄), because λ j1 j(x̄) = 0 for all j = 1, 2, . . . ,m.
Therefore, we conclude from (42) that ‖x̄ − x‖ = infy∈K̃ ‖y − x‖ = d(x, K̃), and so, x̄ = PK̃(x), i.e., (i) holds.
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