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Abstract. We present some inequalities related to the Hilbert-Schmidt numerical radius of 2 × 2 operator
matrices. More precisely, we present a formula for the Hilbert-Schmidt numerical radius of an operator as
follows:

w2(T) = sup
α2+β2=1

‖αA + βB‖2,

where T = A + iB is the Cartesian decomposition of T ∈ HS(H).

1. Introduction

Let (H , 〈 . , . 〉) be a complex Hilbert space and B(H) denotes the C∗-algebra of all bounded linear
operators on H . In the case when dimH = n, we identify B(H) with the matrix algebra Mn of all n × n
matrices with entries in the complex field. The numerical radius of T ∈ B(H) is defined by

w(T) := sup{| 〈Tx, x〉 |: x ∈ H , ‖ x ‖= 1}.

It is well known that w( · ) defines a norm on B(H), which is equivalent to the usual operator norm ‖ . ‖. In
fact, for any T ∈ B(H), 1

2‖T‖ ≤ w(T) ≤ ‖T‖; see [8]. For more facts about the numerical radius, we refer the
reader to [4–6, 8]. A norm N(·) on B(H) is an algebra norm if N(AB) ≤ N(A)N(B) for every A,B ∈ B(H).
For T ∈ B(H), ‖T‖2 is the Hilbert-Schmidt norm of T and say that T belongs to the Hilbert-Schmidt class,
HS(H), if ‖T‖2 = (tr (T∗T))1/2 < ∞. Note that ‖ · ‖2 is unitarily invariant, that is for every T ∈ HS(H) and
unitaries U,V ∈ B(H), we have ‖UTV‖2 = ‖T‖2.
Recently Abu-Omar et.al [1] defined the Hilbert-Schmidt numerical radius as follows:

w2(T) = sup
θ∈R
‖Re(eiθT)‖2,

in which w2( · ) is a norm on B(H). This norm is equivalent to the Hilbert-Schmidt norm ‖ . ‖2. In fact, for
any T ∈ HS(H),

1
√

2
‖T‖2 ≤ w2(T) ≤ ‖T‖2. (1)
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If T is normal and the sequence of its nonzero eigenvalues have the same argument, then w2(T) = ‖T‖2 and
if tr (T)2 = 0, then w2(T) = 1

√
2
‖T‖2; see[1]. Hence, the inequalities in (1) are sharp. There is more properties

about the Hilbert-Schmidt numerical radius. For example w2( · ) is self-adjoint, that is for any T ∈ B(H),
we have w2(T) = w2(T∗). Also, w2( · ) is weakly unitarily invariant, that is for any unitary U ∈ B(H),
w2(UTU∗) = w2(T).

LetH1,H2, · · · ,Hn be Hilbert spaces, and considerH =
⊕n

j=1H j. With respect to this decomposition,
every operator T ∈ B(H) has an n × n operator matrix representation T = [Ti j] with entries Ti j ∈ B(H j,Hi),
the space of all bounded linear operators fromH j toHi. Operator matrices provide a usual tool for studying
Hilbert space operators, which have been extensively studied in the literatures.
The authors in [2] obtained several Hilbert-Schmidt numerical radius inequalities, including lower and

upper bounds for 2× 2 operator matrices. For example, on off-diagonal operator matrix
[

0 A
B 0

]
, we have

the following inequalities:

max(w2(A + B),w2(A − B))
√

2
≤ w2

([
0 A
B 0

])
≤

w2(A + B) + w2(A − B)
√

2
, (2)

where A,B ∈ HS(H).
In this paper we establish some Hilbert-Schmidt numerical radius inequalities, which are based on

off-diagonal parts of 2 × 2 operator matrices. We also, find some upper bounds for 2 × 2 operator matrices.

2. Main results

In this section, we state some the Hilbert-Schmidt numerical radius inequalities for 2 × 2 operator
matrices defined onH1 ⊕H2. To prove our results, we need the following lemma, which known in [1].

Lemma 2.1. Let A,B,C,D belongs to the Hilbert-Schmidt class HS(H). Then the following statements hold:

(a) w2

([
A 0
0 D

])
≤

√
w2

2(A) + w2
2(D). In particular, if A,D are self-adjoint, then w2

([
A 0
0 D

])
=

√
w2

2(A) + w2
2(D);

(b) w2

([
0 B
C 0

])
= w2

([
0 C
B 0

])
;

(c) w2

([
0 B

eiθC 0

])
= w2

([
0 B
C 0

])
, ∀θ ∈ R;

(d) w2

([
A B
B A

])
≤

√
w2

2(A + B) + w2
2(A − B). In the cases A,B are self-adjoint the inequality becomes equality.

In particular,

w2

([
0 B
B 0

])
=
√

2w2(B).

Lemma 2.2. Let Ai,Xi ∈ HS(H)(1 ≤ i ≤ n). Then

w2

 n∑
i=1

AiXiA∗i

 ≤
 n∑

i=1

‖Ai‖2‖A∗i ‖2)w2(Xi

 .
In particular for any A,X ∈ HS(H),

w2(AXA∗) ≤ ‖A‖22w2(X). (3)
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Proof. We have,∥∥∥∥∥∥∥Re(eiθ
n∑

i=1

AiXiA∗i )

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥(
n∑

i=1

AiRe(eiθXi)A∗i )

∥∥∥∥∥∥∥
2

≤

n∑
i=1

‖Ai‖2‖A∗i ‖2‖Re(eiθ)Xi‖2.

So by taking the supremum over θ, we obtain

w2

 n∑
i=1

AiXiA∗i

 ≤
 n∑

i=1

‖Ai‖2‖A∗i ‖2

 w2(Xi)

as required.

Now, we present our first result.

Theorem 2.3. Let A,B,X ∈ HS(H). Then

w2(BX∗A∗ + AXB∗) ≤ (2‖A‖2‖B‖2)
[w2(X + X∗) + w2(X − X∗)]

√
2

. (4)

Proof. Assume that C =

[
A B
0 0

]
and Z =

[
0 X

X∗ 0

]
, we have

w2(BX∗A∗ + AXB∗) = w2

([
BX∗A∗ + AXB∗ 0

0 0

])
(by Lemma 2.1(a))

= w2(CZC∗)

≤ ‖C‖22w2(Z) (by (3))

= (‖A‖22 + ‖B‖22)w2(Z)

≤ (‖A‖22 + ‖B‖22)
w2(X + X∗) + w2(X − X∗)

√
2

(by (2))

Note that, if we replace A by tA and B by 1
t B for any t > 0, then mint>0 t2

‖A‖22 + 1
t2 ‖B‖22 = mint>0

t4
‖A‖22+‖B‖22

t2 =
2‖A‖2‖B‖2. So

w2(BX∗A∗ + AXB∗) ≤ (2‖A‖2‖B‖2)
w2(X + X∗) + w2(X − X∗)

√
2

.

Remark 2.4. By putting X∗ = −X in (4) and for A ∈ HS(H), we have the following inequality:

w2(AX − XA∗) ≤ 2
√

2‖A‖2w2(X). (5)

Remark 2.5. For any self-adjoint operator X, we have the following inequality:

w2(BXA∗ + AXB∗) ≤ 2
√

2(‖A‖2‖B‖2)w2(X).

In the following we obtain an upper bound for an 2 × 2 off-diagonal operator matrix.
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Theorem 2.6. Let A,B ∈ HS(H). Then

w2

([
0 A
B 0

])
≤ w2(A) + w2(B).

Proof. Note that
[

0 A
0 0

]2

=

[
0 0
0 0

]
,
[

0 0
B 0

]2

=

[
0 0
0 0

]
. Since

[
0 A
B 0

]
=

[
0 A
0 0

]
+

[
0 0
B 0

]
, so by

applying the properties of w2, we have

w2

([
0 A
B 0

])
≤ w2

([
0 A
0 0

])
+ w2

([
0 0
B 0

])
=

1
√

2

∥∥∥∥∥∥
[

0 A
0 0

]∥∥∥∥∥∥
2

+
1
√

2

∥∥∥∥∥∥
[

0 0
B 0

]∥∥∥∥∥∥
2

=
1
√

2
‖A‖2 +

1
√

2
‖B‖2

≤ w2(A) + w2(B).

Aldalabih and Kittaneh in [2] obtained some upper bounds for the Hilbert-Schmidt numerical radius of

operator matrix
[

A B
A B

]
. Now, we find an upper bound for the Hilbert-Schmidt numerical radius of the

operator matrix
[

A B
−A −B

]
.

Theorem 2.7. Let A,B ∈ HS(H). Then

1
√

2
max(w2(A − B),w2(A + B)) ≤ w2

([
A B
−A −B

])
≤

1
√

2

√
w2

2(A) + w2
2(B) max(w2(A − B),w2(A + B)). (6)

Proof. Notice

w2

([
A B
−A −B

])
≥ w2

([
0 B
−A 0

])
≥

max(w2(A − B),w2(A + B)
√

2
. (by (2))

For the second inequality in (6), we have

w2

([
A B
−A −B

])
≤ w2

([
A 0
0 −B

])
+ w2

([
0 B
−A 0

])
≤

√
w2

2(A) + w2
2(B)

max(w2(A − B),w2(A + B))
√

2
(by Lemma 2.1(a) and (2)).
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Remark 2.8. If A,B ∈ HS(H) are self-adjoint, then√
w2

2(A) + w2
2(B) ≤ w2

([
A B
−A −B

])
≤

1
√

2

√
w2

2(A) + w2
2(B) max(w2(A − B),w2(A + B)).

Remark 2.9. Note that in the proof of [2, Theorem 4] was seen if U = 1
√

2

[
I −I
I I

]
, then 1

2

[
A + B A − B
−(A − B) −(A + B)

]
=

U∗
[

0 A
B 0

]
U.

So 1
2 w2

([
A + B A − B
−(A − B) −(A + B)

])
= w2

(
U∗

[
0 A
B 0

]
U
)

= w2

([
0 A
B 0

])
. Thus Theorem 2.7 and [2, Theorem

4] are equivalent.

Remark 2.10. For A = B, we have
√

2w2(A) ≤ w2

([
A A
−A −A

])
≤ 2w2(A). Since

[
A A
−A −A

]2

= 0 so

w2

([
A A
−A −A

])
= 1
√

2

∥∥∥∥∥∥
[

A A
−A −A

]∥∥∥∥∥∥
2

. Thus w2(A) ≤ 1
√

2

∥∥∥∥∥∥
[

A A
−A −A

]∥∥∥∥∥∥
2

≤ 2w2(A). Also, its known that∥∥∥∥∥∥
[

A A
−A −A

]∥∥∥∥∥∥
2

= 2‖A‖2, so

‖A‖2 ≤
√

2w2(A). We reach to first inequality in (1).

In the next theorem we obtain some new upper and lower bounds for w2

([
A B
C D

])
.

Theorem 2.11. Let A,B,C,D ∈ HS(H).
(i) If A,D are self-adjoint, then

w2

([
A B
C D

])
≥ max

(√
w2

2(A) + w2
2(D),

w2(B + C)
√

2
,

w2(B − C)
√

2

)
.

(ii)

w2

([
A B
C D

])
≤

√
w2

2(A) + w2
2(D) +

w2(B + C) + w2(B − C)
√

2
.

Proof. (i) Let A,D ∈ HS(H) be self-adjoint. Since w2

([
A B
C D

])
≥ w2

([
A 0
0 D

])
and w2

([
A B
C D

])
≥

w2

([
0 B
C 0

])
. So

w2

([
A B
C D

])
≥ max

(
w2

([
A 0
0 D

])
,w2

([
0 B
C 0

]))
≥ max

(√
w2

2(A) + w2
2(D),

max(w2(B + C),w2(B − C))
√

2

)
(by Lemma 2.1(a) and (2))

= max
(√

w2
2(A) + w2

2(D),
w2(B + C)
√

2
,

w2(B − C)
√

2

)
.
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(ii) We have

w2

([
A B
C D

])
= w2

([
A 0
0 D

]
+

[
0 B
C 0

])
≤ w2

([
A 0
0 D

])
+ w2

([
0 B
C 0

])
≤

√
w2

2(A) + w2
2(D) +

w2(B + C) + w2(B − C)
√

2
(by Lemma 2.1(a) and (2)).

Remark 2.12. By letting A,B ∈ HS(H) with A be self-adjoint, we have

√

2 max(w2(A),w2(B)) ≤ w2

([
A −B
B A

])
≤

√

2(w2(A) + w2(B)). (7)

Lemma 2.13. Let A,B ∈ HS(H). Then

w2

([
0 A
B 0

])
=

1
√

2
sup
θ∈R
‖eiθA + e−iθB∗‖2.

Proof. For any T ∈ B(H), we have w2(T) = supθ∈R ‖Re(eiθT)‖2 = 1
2 supθ∈R ‖e

iθT + e−iθT∗‖2. By letting

T =

[
0 A
B 0

]
, we have

w2

([
0 A
B 0

])
= sup

θ∈R

∥∥∥∥∥∥Re
([

0 eiθA
eiθB 0

])∥∥∥∥∥∥
2

=
1
2

sup
θ∈R

∥∥∥∥∥∥
[

0 eiθ(A + e−2iθB∗)
e−iθ(A + e−2iθB)∗ 0

]∥∥∥∥∥∥
2

=

√
2

2
sup
θ∈R
‖eiθA + e−iθB∗‖2 (since

∥∥∥∥∥∥
[

0 A
A∗ 0

]∥∥∥∥∥∥
2

=
√

2‖A‖2).

3. Applications

In this section, we present some applications of some given results. At first we start by an application
of [1, Theorem 5].

Lemma 3.1. [1] Let A,B,X ∈ B(H). If N(·) is an algebra norm, then

wN(AXB + B∗XA∗) ≤ (N(A)N(B) + N(B∗)N(A∗))wN(X). (8)

There is an special case of (8), when X = I(identity operator matrix) and N(·) the Hilbert Schmidt norm ‖ · ‖2
as following:

w2(AX + XA∗) ≤ 2‖A‖2w2(X). (9)

Now, as an application of (9) we obtain a lower bound for w2

([
A B
C D

])
.
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Theorem 3.2. Let A,B,C,D ∈ HS(H) such that B,C be self-adjoint. Then

w2

([
A B
C D

])
≥

1
2

max(w2(A + D),w2(B + C)).

Proof. Put X =

[
A B
C D

]
and A =

[
0 I
I 0

]
in (9). So

w2(X) ≥
1

2
√

2
w2

([
B + C A + D
A + D B + C

])
≥

1

2
√

2
max

(
w2

([
B + C 0

0 B + C

])
,w2

([
0 A + D

A + D 0

]))
≥

1

2
√

2
max(

√

2w2(B + C),
2
√

2
w2(A + D))

=
1
2

max(w2(B + C),w2(A + D)).

Applying (7) in the next theorem, we state an application of (5).

Theorem 3.3. Let A,B ∈ HS(H) such that B be self-adjoint. Then

w2

([
A B
0 0

])
≥

1
4

max(w2(A),w2(B)).

Proof. Let X =

[
A B
0 0

]
and Y =

[
0 −I
I 0

]
. We have

w2

([
A B
0 0

])
= w2(X) ≥

1
4

w2(YX − XY∗)

=
1
4

w2

([
B −A
A B

])
≥

√
2

4
max(w2(A),w2(B)).

The following result gives a form of the Hilbert-Schmidt numerical radius by using Cartesian decomposi-
tion. A related result has been given in [7].

Theorem 3.4. Let T = A + iB be the Cartesian decomposition of T ∈ HS(H). Then for any α, β ∈ R

w2(T) = sup
α2+β2=1

‖αA + βB‖2.

In particular,

w2(T) ≥
1
2
‖T + T∗‖2 and w2(T) ≥

1
2
‖T − T∗‖2. (10)
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Proof. It is known w2(T) = supθ∈R ‖Re(eiθT)‖2. We have

Re(eiθT) =
eiθT + e−iθT∗

2

=
(cosθ + i sinθ)T + (cosθ − i sinθ)T∗

2

= cosθ(
T + T∗

2
) + sinθ(

T − T∗

2i
) = A cosθ + B sinθ.

By putting α = cosθ and β = sinθ, we get the desired result. In particular for α = 1, β = 0 and for α = 0, β = 1
we get the result.

Lemma 3.5. [10] Let X ≥ mI > 0 for some positive real number m and Y be in the associated ideal corresponding to
a unitarily invariant norm ||| · |||. Then

m|||Y||| ≤
1
2
|||XY + YX|||. (11)

Proposition 3.6. Let A,B,X ∈M2 be Hermitian and 0 < mI2 ≤ X for some positive real number m. Then

m
√

2
‖A − B‖2 ≤ w2(AX − XB) ≤ ‖AX − XB‖2. (12)

Proof. The proof is similar to the technique used in reference [7].

Theorem 3.7. Let A,B,X ∈ HS(H) and 0 < mI2 ≤ X for some positive real number m. Then

m‖A − B‖2 ≤ w2

([
0 AX − XB

A∗X − XB∗ 0

])
≤
‖AX − XB‖2 + ‖A∗X − XB∗‖2

√
2

. (13)

Proof. By applying inequality (12) for self-adjoint operator matrices A1 =

[
0 A

A∗ 0

]
, B1 =

[
0 B
B∗ 0

]
, and

positive operator matrix X1 =

[
X 0
0 X

]
, we get

m
√

2
‖A1 − B1‖2 ≤ w2(A1X1 − X1B1).

So

m‖A − B‖2 ≤ w2

([
0 AX − XB

A∗X − XB∗ 0

])
≤ w2

([
0 AX − XB
0 0

])
+ w2

([
0 0

A∗X − XB∗ 0

])
=

1
√

2
‖AX − XB‖2 +

1
√

2
‖A∗X − XB∗‖2

(since
[

0 AX − XB
0 0

]2

= 0 and
[

0 0
A∗X − XB∗ 0

]2

= 0).

Remark 3.8. Note that inequalities (12) are special cases of inequalities (13).

We have another version of Theorem 3.7 as follows.
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Theorem 3.9. Let A,B ∈ HS(H) and 0 < mI ≤ X for some positive real number m. Then

m
√

2
‖Re(A) − Re(B)‖2 ≤ w2(Re(A)X − XRe(B))

≤
1
2
‖AX − XB‖2 + ‖XA − BX‖2.

For its proof we use from w2(A + B) = 1
√

2
w2

([
0 A + B

A + B 0

])
≤

1
√

2

[
w2

([
0 A
B 0

])
+ w2

([
0 B
A 0

])]
=

√
2w2

([
0 B
A 0

])
.

Proof. From Proposition 3.6, we have

m
√

2
‖Re(A) − Re(B)‖2 ≤ w2(Re(A)X − XRe(B))

=
w2((AX − XB) + (A∗X − XB∗))

2

≤

√
2

2
w2

([
0 AX − XB

A∗X − XB∗ 0

])
=

√
2

2

√
2

2
sup
θ∈R
‖eiθAX − XB + e−iθ(A∗X − XB∗)∗‖2

(by Lemma 2.13)

≤
1
2
‖AX − XB‖2 + ‖XA − BX‖2.
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