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Abstract. In this paper, we obtain the Fekete-Szegö problem for the k-th (k ≥ 1) root transform of the
analytic and normalized functions f satisfying the condition

1 +
α − π
2 sinα

< Re
{

z f ′(z)
f (z)

}
< 1 +

α
2 sinα

(|z| < 1),

where α ∈ [π/2, π). Afterwards, by the above two-sided inequality we introduce a certain subclass of
analytic and bi-univalent functions in the disk |z| < 1 and obtain upper bounds for the first few coefficients
and Fekete-Szegö problem for functions f belonging to this class.

1. Introduction

LetA be the class of functions f of the form

f (z) = z +

∞∑
n=2

anzn, (1)

which are analytic in the open unit disk ∆ = {z ∈ C : |z| < 1} and normalized by the condition f (0) =
f ′(0) − 1 = 0. Also let P be the class of functions p analytic in ∆ which are of the form

p(z) = 1 + p1z + p2z2 + · · · + pnzn + · · · ,

such that Re{p(z)} > 0 for all z ∈ ∆. The subclass of all functions f inA which are univalent (one-to-one) in
∆ is denoted by S. An example for the class S is the well-known Koebe function which has the following
form

k(z) :=
z

(1 − z)2 = z + 2z2 + 3z3 + · · · + nzn + · · · (z ∈ ∆).

It is known that the Koebe function maps the open unit disk ∆ onto the entire plane minus the interval
(−∞,−1/4]. Also, the well-known Koebe One-Quarter Theorem states that the image of the open unit disk ∆
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under every function f ∈ S contains the disk {w : |w| < 1
4 }, see [11, Theorem 2.3]. Therefore, according to

the above, every function f in the class S has an inverse f−1 which satisfies the following conditions:

f−1( f (z)) = z (z ∈ ∆)

and

f ( f−1(w)) = w (|w| < r0( f ); r0( f ) ≥ 1/4),

where

f−1(w) = w − a2w2 + (2a2
2 − a3)w3

− (5a3
2 − 5a2a3 + a4)w4 + · · · =: 1(w). (2)

We say that a function f ∈ A is bi-univalent in ∆ if, and only if, both f and f−1 are univalent in ∆. We denote
by Σ the class of all bi-univalent functions in ∆. The following functions

z
1 − z

, − log(1 − z) and
1
2

log
(1 + z

1 − z

)
,

with the corresponding inverse functions, respectively,

w
1 + w

,
exp(w) − 1

exp(w)
and

exp(2w) − 1
exp(2w) + 1

,

belong to the class Σ. It is clear that the Koebe function is not a member of the class Σ, also the following
functions

z −
1
2

z2 and
z

1 − z2 ,

do not belong to the class Σ, see [35].
It should be mentioned here that the pioneering work on the subject by Srivastava et al. [35] actually

revived the study of analytic and bi-univalent functions in recent years. In fact, subsequent to this important
investigation by Srivastava et al. [35], many authors have introduced and studied various subclasses of
analytic and bi-univalent functions (see, for example, [9, 23, 25, 28, 29, 31, 32, 36, 37, 40, 43, 44])

A function f ∈ A is called starlike (with respect to 0) if tw ∈ f (∆) whenever w ∈ f (∆) and t ∈ [0, 1]. We
denote by S∗ the class of all starlike functions in ∆. Also, we say that a function f ∈ A is starlike of order γ
(0 ≤ γ < 1) if, and only if,

Re
{

z f ′(z)
f (z)

}
> γ (z ∈ ∆).

The class of the starlike functions of order γ in ∆ is denoted by S∗(γ). As usual we put S∗(0) ≡ S∗.
We recall that a function f ∈ A belongs to the classM(α) if f satisfies the following two-sided inequality

1 +
α − π
2 sinα

< Re
{

z f ′(z)
f (z)

}
< 1 +

α
2 sinα

(z ∈ ∆),

where α ∈ [π/2, π). The classM(α) was introduced by Kargar et al. in [13]. We define the function φ as
follows

φ(α) := 1 +
α − π
2 sinα

(π/2 ≤ α < π).

Since

2φ′(α) = [(π − α) cotα + 1] cscα (π/2 ≤ α < π),
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therefore for each α ∈ [π/2, π) we see that φ′(α) , 0. On the other hand, since φ(π/2) = 1 − π/4 ≈ 0.2146
and

lim
α→π−

φ(α) =
1
2
,

thus the classM(α) is a subclass of the starlike functions of order γwhere 0.2146 ≤ γ < 0.5. By this fact that
S
∗(γ) ⊂ S for each γ ∈ [0, 1), thus we conclude that the members of the classM(α) are univalent in ∆.

Now, we recall the following result for the classM(α), see [13, Lemma 1.1].

Lemma 1.1. Let f (z) ∈ A and α ∈ [π/2, π). Then f ∈ M(α) if, and only if,(
z f ′(z)

f (z)
− 1

)
≺ Bα(z) (z ∈ ∆),

where

Bα(z) :=
1

2i sinα
log

(
1 + zeiα

1 + ze−iα

)
(z ∈ ∆). (3)

Here ” ≺ ” denotes the well known subordination relation.

The function Bα(z) is convex univalent and has the form

Bα(z) =

∞∑
n=1

Anzn (z ∈ ∆), (4)

where

An :=
(−1)(n−1) sin nα

n sinα
(n = 1, 2, . . .).

Also we have Bα(∆) = Ωα (see [10]) where

Ωα :=
{
ζ ∈ C :

α − π
2 sinα

< Re {ζ} <
α

2 sinα
,
π
2
≤ α < π

}
.

Very recently Sun et al. (see [41]) and Kwon and Sim (see [17]) have studied the class M(α). Sun et
al. showed if the function f is of the form (1) belongs to the class M(α), then |an| ≤ 1 while the estimate
is not sharp. Subsequently, Kwon and Sim obtained sharp estimates on the initial coefficients a2, a3, a4
and a5 of the functions f belonging to the class M(α). The coefficient estimate problem for each of the
Taylor-Maclaurin coefficients |an| (n = 6, 7, . . .) is still an open question. Also, the logarithmic coefficients of
the function f ∈ M(α) were estimated by Kargar, see [12].

It is interesting to mention this subject that Brannan and Taha [7] introduced certain subclass of the
bi-univalent function class Σ, denoted by S∗Σ(γ) similar to the class of the starlike functions of order γ
(0 ≤ γ < 1). For each function f ∈ S∗Σ(γ) they found non-sharp estimates for the initial Taylor-Maclaurin
coefficients. Recently, motivated by the Brannan and Taha’s work, many authors investigated the coefficient
bounds for various subclasses of the bi-univalent function class Σ, see for instance [8, 21, 22, 26, 27, 35, 38, 39].

In this paper, motivated by the aforementioned works, we introduce and investigate a certain subclass
of Σ similar to the classM(α) as follows.

Definition 1.2. Let α ∈ [π/2, π). A function f ∈ Σ is in the classMΣ(α), if the following inequalities hold:

1 +
α − π
2 sinα

< Re
{

z f ′(z)
f (z)

}
< 1 +

α
2 sinα

(z ∈ ∆)

and

1 +
α − π
2 sinα

< Re
{

w1′(w)
1(w)

}
< 1 +

α
2 sinα

(w ∈ ∆),

where 1 is defined by (2).
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Remark 1.3. Upon letting α → π− it is readily seen that a function f ∈ Σ is in the classMΣ(1/2) if the following
inequalities are satisfied:

Re
{

z f ′(z)
f (z)

}
>

1
2

(z ∈ ∆)

and

Re
{

w1′(w)
1(w)

}
>

1
2

(w ∈ ∆),

where 1 is defined by (2).

The following lemma will be useful.

Lemma 1.4. (see [19]) Let the function p be of the form belongs to the class P. Then for any complex number µ we
have ∣∣∣p2 − µp2

1

∣∣∣ ≤

−4µ + 2, if µ ≤ 0;
2, if 0 ≤ µ ≤ 1;
4µ − 2, if µ ≥ 1.

The result is sharp for the cases µ < 0 or µ > 1 if and only if p(z) = 1+z
1−z or one of its rotations. If 0 < µ < 1, then the

equality holds if and only if p(z) = 1+z2

1−z2 or one of its rotations. For the case µ = 0, the equality holds if and only if

p(z) =
1
2

(1 + ν)
1 + z
1 − z

+
1
2

(1 − ν)
1 − z
1 + z

(0 ≤ ν ≤ 1),

or one of its rotations. If µ = 1, the equality holds if and only if

1
p(z)

=
1
2

(1 + ν)
1 + z
1 − z

+
1
2

(1 − ν)
1 − z
1 + z

(0 ≤ ν ≤ 1),

or one of its rotations.

This paper is organized as follows. In Section 2 we derive the Fekete-Szegö coefficient functional associated
with the k-th root transform for functions in the classM(α). In Section 3 we propose to find the estimates on
the Taylor-Maclaurin coefficients |a2|, |a3| and Fekete-Szegö problem for functions in the classMΣ(α) which
we introduced in Definition 1.2.

2. Fekete-Szegö problem for the classM(α)

Recently, many authors have obtained the Fekete-Szegö coefficient functional associated with the k-th
root transform for certain subclasses of analytic functions, see for instance [5, 14, 15]. In this section, we
investigate this problem for the classM(α). At first, we recall that for a univalent function f is of the form
(1), the k-th root transform is defined by

Fk(z) := ( f (zk))1/k = z +

∞∑
n=1

bkn+1zkn+1 (z ∈ ∆, k ≥ 1). (5)

For f given by (1), we have

( f (zk))1/k = z +
1
k

a2zk+1 +

(
1
k

a3 −
1
2

k − 1
k2 a2

2

)
z2k+1 + · · · . (6)

Equating the coefficients of (5) and (6) yields

bk+1 =
1
k

a2 and b2k+1 =
1
k

a3 −
1
2

k − 1
k2 a2

2. (7)

Now we have the following.
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Theorem 2.1. Let α ∈ [π/2, π) and f ∈ M(α). If F is the k-th (k ≥ 1) root transform of the function f defined by
(5), then for any complex number µ we have

∣∣∣b2k+1 − µb2
k+1

∣∣∣ ≤


1
2k

(
1 − cosα − 2µ+k−1

k

)
, if µ ≤ δ1;

1
2k , if δ1 ≤ µ ≤ δ2;

1
2k

(
cosα +

2µ+k−1
k − 1

)
, i f µ ≥ δ2,

(8)

where δ1 := (1− k(1 + cosα))/2, δ2 := (1 + k(1− cosα))/2 and b2k+1 and bk+1 are defined by (7). The result is sharp.

Proof. Let α ∈ [π/2, π). If f ∈ M(α), then by Lemma 1.1 and by definition of subordination, there exists a
Schwarz function w : ∆→ ∆ := {z : |z| ≤ 1}with the following properties

w(0) = 0 and |w(z)| < 1 (z ∈ ∆),

such that

z f ′(z)
f (z)

= 1 +Bα(w(z)) (z ∈ ∆), (9)

where Bα is defined by (3). We define

p(z) :=
1 + w(z)
1 − w(z)

= 1 + p1z + p2z2 + · · · (z ∈ ∆). (10)

It is clear that p(0) = 1 and p ∈ P. Relationships (4) and (10) give us

1 +Bα(w(z)) = 1 +
1
2

A1p1z +
(1

4
A2p2

1 +
1
2

A1

(
p2 −

1
2

p2
1

))
z2 + · · · ,

where A1 = 1 and A2 = − cosα. If we equate the coefficients of z and z2 on both sides of (9), then we get

a2 =
1
2

p1 (11)

and

a3 =
1
4

(
p2 −

1
2

cosαp2
1

)
. (12)

From (7), (11) and (12), we get

bk+1 =
p1

2k
,

and

b2k+1 =
1
4k

[
p2 −

1
2

(
cosα +

k − 1
k

)
p2

1

]
,

where k ≥ 1. Therefore

b2k+1 − µb2
k+1 =

1
4k

[
p2 −

1
2

(
cosα +

2µ + k − 1
k

)
p2

1

]
(µ ∈ C).

If we apply the Lemma 1.4 and letting

µ′ :=
1
2

(
cosα +

2µ + k − 1
k

)
,
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then we get the desired inequality (8).
From now, we shall show that the result is sharp. For the sharpness of the first and third cases of (8), i.e.

µ ≤ δ1 and µ ≥ δ2, respectively, consider the function

f1(z) := z exp
{∫ z

0

Bα(ξ) − 1
ξ

dξ
}

(z ∈ ∆)

= z + z2 +
1
2

(1 − cosα)z3 +
1

18
(1 − 9 cosα + 8 cos2 α)z4 + · · · ,

or one of its rotations. It is easy to see that f1 belongs to the classM(α) and

( f1(zk))1/k = z +
1
k

zk+1 +

(
1
2k

(1 − cosα) −
1
2

k − 1
k2

)
z2k+1 + · · · .

The last equation shows that these inequalities are sharp. For the sharpness of the second inequality, we
consider the function

f2(z) := z2 exp
{∫ z

0

Bα(ξ2) − 1
ξ

dξ
}

= z +
1
2

z3 + · · · (z ∈ ∆).

A simple calculation gives that

( f2(zk))1/k = z +
1
2k

z2k+1 + · · · .

Therefore the equality in the second inequality (8) holds for the k-th root transform of the above function
f2. This completes the proof of Theorem 2.1.

The problem of finding sharp upper bounds for the coefficient functional |a3−µa2
2| for different subclasses of

the normalized analytic function classA is known as the Fekete-Szegö problem. In the recent years, many
scholars have investigated the Fekete-Szegö problem for some certain subclasses of analytic functions, see
for example [16, 24, 30, 33, 34, 42].

Letting k = 1 in the Theorem 2.1 we get the Fekete-Szegö inequality for the classM(α) which we give in
the following corollary.

Corollary 2.2. Let α ∈ [π/2, π) and f ∈ M(α). Then for any complex number µ we have

∣∣∣a3 − µa2
2

∣∣∣ ≤


1
2 (1 − cosα) − µ, if µ ≤ − 1

2 cosα;

1
2 , if − 1

2 cosα ≤ µ ≤ 1 − 1
2 cosα;

1
2 (cosα − 1) + µ, if µ ≥ 1 − 1

2 cosα.

The result is sharp.

Putting α = π/2 in the Corollary 2.2 we get the following.

Corollary 2.3. Let the function f be given by (1) satisfies the inequality∣∣∣∣∣∣Re
{

z f ′(z)
f (z)

}
− 1

∣∣∣∣∣∣ < π
4

(z ∈ ∆).

Then for any complex number µ ∈ C we have the following sharp inequalities

∣∣∣a3 − µa2
2

∣∣∣ ≤


1
2 − µ, if µ ≤ 0;

1
2 , if 0 ≤ µ ≤ 1;

µ − 1
2 , if µ ≥ 1.
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If we let α→ π− in the Corollary 2.2, then we have:

Corollary 2.4. If the function f is of the form (1) is starlike of order 1/2, then for any complex number µ ∈ C the
following sharp inequalities hold true.

∣∣∣a3 − µa2
2

∣∣∣ ≤


1 − µ, if µ ≤ 1
2 ;

1
2 ,

1
2 ≤ µ ≤

3
2 ;

µ − 1, if µ ≥ 3
2 .

From (11) and (12) and the first case of the Lemma 1.4 we get.

Corollary 2.5. If a function f ∈ A is of the form (1) belongs to the classM(α) (π/2 ≤ α < π), then the following
sharp inequalities hold.

|a2| ≤ 1 and |a3| ≤
1
2

(1 − cosα).

3. Coefficient estimate and Fekete-Szegö problem for the classMΣ(α)

In this section, motivated by the Zaprawa’s work (see [45]) we shall obtain the Fekete-Szegö problem
for the classMΣ(α). Also, we obtain upper bounds for the first coefficients |a2| and |a3| of the function f is of
the form (1) belonging to the classMΣ(α). The coefficient estimate problem for each of the coefficients |an|

(n ≥ 4) is an open question. Here we recall that the initial coefficients estimate of the class of bi-univalent
functions Σ was studied by Lewin in 1967 and he obtained the bound 1.51 for the modulus of the second
coefficient |a2|, see [18]. Afterward, Brannan and Clunie conjectured that |a2| ≤

√
2, see [6]. Finally, in 1969,

Netanyahu [20] showed that max f∈Σ |a2| = 4/3. For the another coefficients an (n ≥ 3) the sharp estimate is
presumably still an open problem.

Moreover, we apply the same technique as in [4].

Theorem 3.1. Let the function f given by (1) be in the classMΣ(α) and α ∈ [π/2, π). Then

|a2| ≤

√
2

2 + cosα
(13)

and for any real number µ we have

|a3 − µa2
2| ≤


1
2 , if |1 − µ| ≤ 1

2

(
1 + 1

2 cosα
)
;

|1−µ|
1+ 1

2 cosα
, if |1 − µ| ≥ 1

2

(
1 + 1

2 cosα
)
.

Proof. Let f ∈ MΣ(α) be of the form (1) and 1 = f−1 be given by (2). Then by Definition 1.2, Lemma 1.1 and
definition of subordination there exist two Schwarz functions u : ∆→ ∆ and v : ∆→ ∆ with the properties
u(0) = 0 = v(0), |u(z)| < 1 and |v(z)| < 1 such that

z f ′(z)
f (z)

= 1 +Bα(u(z)) (z ∈ ∆) (14)

and

w1′(w)
1(w)

= 1 +Bα(v(z)) (z ∈ ∆), (15)
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where Bα is defined by (3). Now we define the functions k and l, respectively as follows

k(z) =
1 + u(z)
1 − u(z)

= 1 + k1z + k2z2 + · · · (z ∈ ∆)

and

l(z) =
1 + v(z)
1 − v(z)

= 1 + l1z + l2z2 + · · · (z ∈ ∆)

or equivalently

u(z) =
k(z) − 1
k(z) + 1

=
1
2

(
k1z +

(
k2 −

1
2

k2
1

)
z2 + · · ·

)
(16)

and

v(z) =
l(z) − 1
l(z) + 1

=
1
2

(
l1z +

(
l2 −

1
2

l21
)

z2 + · · ·
)
. (17)

It is clear that the functions k and l belong to class P and |ki| ≤ 2 and |li| ≤ 2 (i = 1, 2, . . .). From (4), (14)-(17),
we have

z f ′(z)
f (z)

= 1 +Bα

(
k(z) − 1
k(z) + 1

)
(18)

= 1 +
1
2

A1k1z +
(1

2
A1

(
k2 −

1
2

k2
1

)
+

1
4

A2k2
1

)
z2 + · · · ,

and

w1′(w)
1(w)

= 1 +Bα

(
l(z) − 1
l(z) + 1

)
(19)

= 1 +
1
2

A1l1z +
(1

2
A1

(
l2 −

1
2

l21
)

+
1
4

A2l21
)

z2 + · · · .

where A1 = 1 and A2 = − cosα. Thus, upon comparing the corresponding coefficients in (18) and (19), we
obtain

a2 =
1
2

A1k1 =
1
2

k1, (20)

2a3 − a2
2 =

1
2

A1

(
k2 −

1
2

k2
1

)
+

1
4

A2k2
1 =

1
2

(
k2 −

1
2

k2
1

)
−

k2
1

4
cosα, (21)

−a2 =
1
2

A1l1 =
1
2

l1, (22)

and

3a2
2 − 2a3 =

1
2

A1

(
l2 −

1
2

l21
)

+
1
4

A2l21 =
1
2

(
l2 −

1
2

l21
)
−

l21
4

cosα. (23)

From equations (20) and (22), we can easily see that

k1 = −l1 (24)

and

8a2
2 = (k2

1 + l21).



H. Mahzoon / Filomat 34:14 (2020), 4637–4647 4645

If we add (21) to (23), we get

2a2
2 =

1
2

[(
k2 −

1
2

k2
1

)
+

(
l2 −

1
2

l21
)]
−

1
4

cosα
(
k2

1 + l21
)
. (25)

Substituting (20), (22) and (24) into (25), we obtain

k2
1 =

k2 + l2
2(1 + (cosα)/2)

. (26)

Now, (20) and (26) imply that

a2
2 =

k2 + l2
2(2 + cosα)

. (27)

Since |k2| ≤ 2 and |l2| ≤ 2, (27) implies that

|a2| ≤

√
2

2 + cosα
,

which proves the first assertion (13) of Theorem 3.1. Now, if we subtract (23) from (21) and use of (24), we
get

a3 = a2
2 +

1
8

(k2 − l2). (28)

From (27) and (28) it follows that

a3 − µa2
2 =

(1
8

+ ~(µ)
)

k2 +
(
~(µ) −

1
8

)
l2 (µ ∈ R),

where

~(µ) :=
1 − µ

2(2 + cosα)
(µ ∈ R).

Since |k2| ≤ 2 and |l2| ≤ 2, we conclude that

|a3 − µa2
2| ≤


1
2 , if 0 ≤ |~(µ)| ≤ 1

8 ;

4|~(µ)|, if |~(µ)| ≥ 1
8 .

This completes the proof.

Taking µ = 0 in the above Theorem 3.1 we get.

Corollary 3.2. Let f of the form (1) be in the classMΣ(α). Then

|a3| ≤
1

1 + 1
2 cosα

(π/2 ≤ α < π).

If we let α→ π− in the Theorem 3.1, we get the following.

Corollary 3.3. If the function f is of the form (1) belongs to the classMΣ(1/2), then |a2| ≤ 1 and

|a3 − µa2
2| ≤


1
2 , if |1 − µ| ≤ 1

4 ;

2|1 − µ|, if |1 − µ| ≥ 1
4 ,

where µ is real.
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Variables, Theory and Application 44 (2001) 145–163.



H. Mahzoon / Filomat 34:14 (2020), 4637–4647 4647

[35] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Applied Mathematics
Letters 23 (2010) 1188–1192.
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