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Abstract. An element a in a Banach algebraA has p-Drazin inverse provided that there exists b ∈ comm(a)
such that b = b2a, ak

− ak+1b ∈ J(A) for some k ∈ N. In this paper, we present new conditions for a block
operator matrix to have p-Drazin inverse. As applications, we prove the p-Drazin invertibility of the block
operator matrix under certain spectral conditions.

1. Introduction

Let A be a Banach algebra with an identity. The commutant of a ∈ A is defined by comm(a) = {x ∈
A | xa = ax}. An element a in a Banach algebraA has p-Drazin inverse provided that there exists b ∈ comm(a)
such that b = b2a, ak

− ak+1b ∈ J(A) for some k ∈ N. The preceding b is unique if exists, and we denote it
by a‡. We refer the reader to [11, 13, 17, 18] and [20] for more properties of p-Drazin inverse in a Banach
algebra.

Recall that a ∈ A has g-Drazin inverse provided that there exists b ∈ comm(a) such that b = b2a, a − a2b ∈
A

qnil (see [6]). More results on g-Drazin inverse can be found in [1–5, 10, 19, 21]. As is well known, every
p-Drazin inverse is just the g-Drazin inverse. The p-Drazin inverse should be expressed as that of the
g-Drazin inverse if exists. We will suffice to investigate the existence for p-Drazin inverse. This motivates
us to present new conditions for a block operator matrix to have p-Drazin inverse.

Let M =

(
a b
c d

)
∈M2(A). Let a, d ∈ A‡. If

bd‡ = 0 or d‡c = 0, and bdic = 0 for all i ≥ 0,

in Section 2, we prove that M has p-Drazin inverse.
In Section 3, we determine the p-Drazin invertibility of the block operator matrix M under certain

spectral conditions. If (bc)πabc = 0 or bca(bc)π = 0, and bd = 0, then M has p-Drazin inverse.
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Throughout the paper, all Banach algebras are complex with an identity. We use J(A) denotes the
Jacobson radical of A.

√
J(A) stands for the radical of J(A), i.e.,

√
J(A) = {x | xm

∈ J(A) for some m ∈ N}.
A
‡ denotes the set of all elements having p-Drazin inverses in A. For any a ∈ A‡, we use aπ to stand for

the spectral idempotent 1 − aa‡.

2. 2 × 2 Operator matrices

Let M =

(
a b
c d

)
∈ M2(A). The aim of this section is to determine when M has p-Drazin inverse

under certain conditions and generalize [9, Theorem 3.2] from g-Drazin inverse to p-Drazin inverse. The
following lemmas are crucial.

Lemma 2.1. Let a, b ∈ A and a, b ∈
√

J(A). If abka = 0 for any k ∈N, then a + b ∈
√

J(A).

Proof. Let am, bn
∈ J(A). Assume that t = m + n. Then at, bt

∈ J(A). Let s = 3t + 1. Then every term of (a + b)s

should be
ai1 b j1 ai2 b j2 · · · ais b js ,

where i1, j1, · · · , is, js ≥ 0, i1 + j1 + · · · + is + js = s. If the term contains abka(k ∈ N), then it is zero. So the
nonzero terms should be written in the form bkalbr(k + l + r = s). Then k or l or r is greater than t. Hence,
bkalbr

∈ J(A). Therefore (a + b)s
∈ J(A), as asserted.

Lemma 2.2. Suppose that a, d ∈
√

J(A). If bdic = 0 for all i ≥ 0, then M ∈
√

J
(
M2(A)

)
.

Proof. Let am, dn
∈ J(A) and M = P + Q, where P =

(
a b
c 0

)
, and Q =

(
0 0
0 d

)
.

Since bc = 0, we see that (
a 1
bc 0

)m+1

=

(
a 1
0 0

)m+1

∈ J
(
M2(A)

)
,

and so

Pm+2 =
[ ( a 1

c 0

) (
1 0
0 b

) ]m+2

=

(
a 1
c 0

) (
a 1
bc 0

)m+1 (
1 0
0 b

)
∈ J

(
M2(A)

)
.

Clearly, Qn
∈ J

(
M2(A)

)
. We easily check that

PQkP = 0

for any k ∈N. Hence, M = P + Q ∈
√

J(A) by Lemma 2.1.

Lemma 2.3. Let A be a Banach algebra. If a ∈ A‡, d ∈
√

J(A) and bdic = 0 for all i ≥ 0, then M has p-Drazin
inverse.

Proof. Let N =

(
a‡ γ
δ δaγ

)
, where

γ =

∞∑
i=0

(a‡)i+2bdi, δ =

∞∑
i=0

dic(a‡)i+2.
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By hypothesis, we have
γdic = 0, bdiδ = 0, γdiδ = 0

for any i ≥ 0. We shall prove that N = M‡.
Step 1. MN = NM. We compute that

MN =

(
aa‡ aγ

ca‡ + dδ cγ + dδaγ

)
,

NM =

(
a‡a a‡b + γd
δa δb + δaγd

)
.

As in the proof of [9, Lemma 3.1], we easily check that MN = NM.
Step 2. N = MN2. We have

I −MN =

(
aπ −aγ

−ca‡ − dδ 1 − cγ − dδaγ

)
.

As γc = γδ = 0, we have

N(I −MN) =

(
0 γ − a‡aγ
δaπ 0

)
= 0.

Hence, N = MN2.
Step 3. M −M2N ∈

√
J(A). Since bdic = 0 for all i ≥ 0, we easily verify that

M(I −MN) =

(
aaπ b − a2γ

caπ − dca‡ − d2δ d − σ

)
,

where σ = caγ + dcγ + d2δaγ.
Clearly, aaπ ∈

√
J(A). By hypothesis, we see that σdiσ = 0 for all i ≥ 0. Hence, σ2 = 0, and so

d,−σ ∈
√

J(A). In view of Lemma 2.1, we see that d − σ ∈
√

J(A). Moreover, we have

(b − a2γ)(d − σ)m(caπ − dca‡ − d2δ) = 0

for all m ≥ 0. Therefore M −M2N ∈
√

J(A) by Lemma 2.2.
Therefore N = M‡, as asserted.

We have accumulated all information necessary to prove the following.

Theorem 2.4. Let a, d ∈ A‡. If
bd‡ = 0, bdic = 0 for all i ≥ 0,

then M has p-Drazin inverse.

Proof. Clearly, M = P + Q, where

P =

(
a b
c ddπ

)
, Q =

(
0 0
0 d2d‡

)
.

Obviously, Q has p-Drazin inverse. Clearly, bc = 0. For any k ≥ 0, we have b
(
ddπ

)k
c = bdkdπc = bdkc = 0,

and so b
(
ddπ

)k
c = 0 for all k ≥ 0. Clearly, ddπ = d − d2d‡ ∈

√
J(A). In light of Lemma 2.3, P has p-Drazin

inverse. On the other hand,

PQ =

(
a b
c ddπ

) (
0 0
0 d2d‡

)
= 0.

Therefore M has p-Drazin inverse, by [13, Theorem 5.4].
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Corollary 2.5. Let a, d ∈ A‡. If
ca‡ = 0, caib = 0 for all i ≥ 0,

M has p-Drazin inverse.

Proof. In view of Theorem 2.4, the matrix
(

d c
b a

)
has p-Drazin inverse. It is easy to check that

(
a b
c d

)
=

(
0 1
1 0

) (
d c
b a

) (
0 1
1 0

)
.

Since
(

0 1
1 0

)2

= I2, we easily obtain the result.

Theorem 2.6. Let a, d ∈ A‡. If
d‡c = 0, bdic = 0 for all i ≥ 0,

M has p-Drazin inverse.

Proof. Clearly, M = P + Q, where

P =

(
0 0
0 d2d‡

)
, Q =

(
a b
c ddπ

)
.

Obviously, P has p-Drazin inverse. As in the proof of Theorem 2.4 we easily check that b
(
ddπ

)k
c = bdkdπc =

bdkc = 0 for any k ≥ 0. In view of Lemma 2.3, Q has p-Drazin inverse. By hypothesis, we see that

PQ =

(
0 0
0 d2d‡

) (
a b
c ddπ

)
= 0.

According to [13, Theorem 5.4], M has p-Drazin inverse, as asserted.

Corollary 2.7. Let a, d ∈ A‡. If
a‡b = 0, caib = 0 for all i ≥ 0,

M has p-Drazin inverse.

Proof. In view of Theorem 2.6, the matrix
(

d c
b a

)
has p-Drazin inverse. As in the proof Corollary 2.5, we

easily obtain the result.

3. Spectral conditions

In this section we apply the preceding results and demonstrate the p-Drazin invertibility of the block
matrix M under certain spectral conditions. We now derive

Lemma 3.1. Let a, d ∈ A‡. If abc = 0, bd = 0 and bc ∈
√

J(A), then M =

(
a b
c d

)
∈M2(A)‡.

Proof. Clearly, we have

M2 =

(
a2 + bc ab
ca + dc cb + d2

)
.
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Clearly, a2 has p-Drazin inverse. By hypothesis, bc has p-Drazin inverse. Since a2(bc) = 0, it follows from [13,
Theorem 5.4] that a2 + bc has p-Drazin inverse. In light of [13, Theorem 3.6], cb has p-Drazin inverse. Then
we easily see that cb + d2 has p-Drazin inverse as (cb)d2 = 0. It is easy to verify that

ab(cb + d2)‡ = ab(cb + d2)
(
(cb + d2)‡

)2
= 0;

ab(cb + d2)i(ca + dc) = 0.

In view of Theorem 2.4, M2 has p-Drazin inverse. Therefore M has p-Drazin inverse by [20, Lemma 2.8].

We come now to generalize [16, Theorem 3.1 and Corollary 3.3] from the generalized Drazin inverse to
the p-Drazin inverse.

Theorem 3.2. Let a, d, bc, (bc)πa ∈ A‡. If (bc)πabc = 0 and bd = 0, then M =

(
a b
c d

)
∈M2(A)‡.

Proof. Step 1. Let h = bc,N =

(
a 1
h 0

)
and e =

(
hπ 0
0 0

)
. Then N =

(
a′ b′

c′ d′

)
e
, where

a′ = eNe, b′ = eN(I − e), c′ = (I − e)Ne, d′ = (I − e)N(I − e).

Since (bc)πabc = 0, we have hπah = 0, we easily check that

a′ =

(
hπa 0
0 0

)
, b′ =

(
0 hπ

0 0

)
,

c′ =

(
hh‡ahπ 0

hhπ 0

)
, d′ =

(
ahh‡ hh‡

h2h‡ 0

)
.

Since hπahh‡ = (bc)πabc(bc)‡ = 0, it follows by [16, Lemma 2.2] that (hπa)d = hπad. This shows that

(hπa)(hπad) = (hπad)(hπa),
hπad = (hπad)(hπa)(hπad).

Since a ∈ A‡, we have ak
− ak+1ad

∈ J(A) for some k ∈N. Then we verify that[
hπa − (hπa)2(hπad)

]k

= (hπa)k
[
1 − (hπa)(hπad)

]
= (hπa)k

− (hπa)k+1ad

= hπak
− hπak+1ad

= hπ(ak
− ak+1ad)

∈ J(A),

and so (hπa)‡ = hπa‡. Hence, we easily verify that

(a′)‡ =

(
hπa‡ 0

0 0

)
, (d′)‡ =

(
0 h‡

hh‡ −ahh‡

)
.

Hence, a′, d′ ∈ A‡. Moreover, we have

a′b′c′ =

(
hπahhπ 0

0 0

)
;

b′d′ =

(
hπh2h‡ 0

0 0

)
;

b′c′ =

(
hhπ 0

0 0

)
.



H. Chen et al. / Filomat 34:14 (2020), 4597–4605 4602

Therefore a′b′c′ = 0, b′d′ = 0 and b′c′ ∈
√

J(A). In light of Lemma 3.1, N has p-Drazin inverse.
Step 2. It is easy to check that

N =

(
1 0
0 b

) (
a 1
c 0

)
,

it follows by [13, Theorem 3.6] that
(

a 1
c 0

) (
1 0
0 b

)
has p-Drazin inverse. Therefore

(
a b
c 0

)
has p-Drazin

inverse.
Step 3. Write M = P + Q, where

P =

(
0 0
0 d

)
,Q =

(
a b
c 0

)
.

Then QP = 0. Clearly, P has p-Drazin inverse. By the preceding discussion, we have Q has p-Drazin
inverse. In light of [13, Theorem 5.4], M has p-Drazin inverse, as asserted.

Corollary 3.3. Let a, d, cb, (cb)πd ∈ A‡. If (cb)πdcb = 0 and ca = 0, then M =

(
a b
c d

)
∈M2(A)‡.

Proof. In view of [13, Theorem 3.6], cb ∈ A‡. By virtue of Theorem 3.2, we prove that
(

d c
b a

)
∈ M2(A)‡.

We easily check that

M =

(
0 1
1 0

) (
d c
b a

) (
0 1
1 0

)
.

This completes the proof.

Corollary 3.4. Let a, d, bc, (bc)πa ∈ A‡. If (bc)πabc = 0, dπdc = 0 and bd‡ = 0, then M =

(
a b
c d

)
∈M2(A)‡.

Proof. Obviously, we have M = P + Q, where

P =

(
0 0
0 dπd

)
,Q =

(
a b
c d2d‡

)
.

In light of Theorem 3.2, Q has p-Drazin inverse. Since dπdc = 0, we have PQ = 0, and therefore we complete
the proof by [13, Theorem 5.4].

The following is the symmetric version of Theorem 3.2.

Theorem 3.5. Let a, d, bc, (bc)πa ∈ A‡. If bca(bc)π = 0 and bd = 0, then M =

(
a b
c d

)
∈M2(A)‡.

Proof. Step 1. Let h = bc and let N =

(
a 1
h 0

)
. Let e =

(
hh‡ 0
0 1

)
. Then N =

(
a′ b′

c′ d′

)
e
, where

a′ = eNe, b′ = eN(1 − e), c′ = (1 − e)Ne, d′ = (1 − e)N(1 − e).

By hypothesis, we have

a′ =

(
hh‡a hh‡

h2h‡ 0

)
, b′ =

(
0 0

hhπ 0

)
,

c′ =

(
hπahh‡ hπ

0 0

)
, d′ =

(
ahπ 0
0 0

)
.
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By hypothesis, we have
a′b′c′ = 0;

b′d′ =

(
0 0

hπhahπ 0

)
= 0;

b′c′ =

(
0 0

hhπahh‡ hhπ

)
∈

√
J
(
M2(A)

)
.

As in the proof of Theorem 3.2, a′, d′ ∈ A‡. In light of Lemma 3.1, N has p-Drazin inverse.
Step 2. Since (

a bc
1 0

)
=

(
0 1
1 −a

)−1 (
a 1
bc 0

) (
0 1
1 −a

)
,

we prove that
(

a bc
1 0

)
has p-Drazin inverse.

Step 3. Obviously, we have (
a bc
1 0

)
=

(
a b
1 0

) (
1 0
0 c

)
.

In light of [13, Theorem 3.6],
(

1 0
0 c

) (
a b
1 0

)
has p-Drazin inverse. Therefore

(
a b
c 0

)
has p-Drazin

inverse.
Step 4. Write M = P + Q, where

P =

(
0 0
0 d

)
,Q =

(
a b
c 0

)
.

Then QP = 0, and therefore we complete the proof by the discussion above.

As in the proof of Corollary 3.3, we now derive

Corollary 3.6. Let a, d, cb, (cb)πd ∈ A‡. If cbd(cb)π = 0 and ca = 0, then M =

(
a b
c d

)
∈M2(A)‡.

Corollary 3.7. Let a, d, bc, (bc)πa ∈ A‡. If bca(bc)π = 0, dπdc = 0 and bd‡ = 0, then M =

(
a b
c d

)
∈M2(A)‡.

Example 3.8. Let C be the field of complex number, and let

A =

{(
a b
0 c

) ∣∣∣∣a, b, c ∈ C} .
Let M =

(
E I4
F 0

)
, where

E =


1 1 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 ,F =


−1 2 0 1
0 0 0 0
0 0 1 0
0 0 0 −1

 ∈M2(A).

Then M has p-Drazin inverse.
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Proof. We see that

J(A) =

{(
0 b
0 0

) ∣∣∣∣b ∈ C} .
Clearly, E and F have p-Drazin inverses. In fact, we have

E‡ = E =


1 1 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 ,F‡ = F =


−1 2 0 1
0 0 0 0
0 0 1 0
0 0 0 −1

 ,
(F‡E)‡ =


0 −2 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 .
Moreover, we have

FπEF =


0 2 0 2
0 1 0 0
0 0 0 0
0 0 0 0



−1 2 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 = 0,

and we are done by Theorem 3.2.

Acknowledgement

The authors would like to thank the referee for his/her careful reading.

References
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