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Abstract. Let R be a ring and {Ri}i∈I a family of zero-dimensional rings. We define the Zariski topology
on Z(R,

∏
Ri) and study their basic properties. Moreover, we define a topology on Z(R,

∏
Ri) by using

ultrafilters; it is called the ultrafilter topology and we demonstrate that this topology is finer than the
Zariski topology. We show that the ultrafilter limit point of a collections of subrings of Z(R,

∏
Ri) is a

zero-dimensional ring. Its relationship with F − lim and the direct limit of a family of rings are studied.

1. Introduction

All rings considered in this paper are assumed to be commutative, and have identity element. Let S
be a ring, we will denote by Z(S),V(S),A(S), respectively, the sets of zero-dimensional, von Neumann
regular, artinian subrings of S. The study of zero-dimensionality in commutative rings has been widely
treated in the literature with a purely algebraic approach, (see [6, 7]). Our purpose here is to give a new
characterization of zero-dimensionality notion by using the ultrafilters topology and the F− limit, where
F is an ultrafilter.

Let R be a subring of a ring S, we denote byZ(R,S) the set of intermediate zero-dimensional subrings of
the pair (R,S). We define Zarisky topology onZ(R,S), more precisely onZ(R,

∏
Ri), where {Ri}i∈I is a family

of zero dimensional rings, whose open sets are of the formZ(R[x],
∏

Ri) such that x ∈
∏

Ri. Moreover, we
define a topology onZ(R,

∏
Ri) by using ultrafilters it’s called the ultrafilter topology and we demonstrate

that this topology is finer than the Zariski topology. Based on the notion of the F − lim one gives new
rings can be expressible as direct union of artinian rings or zero dimensional rings with finite spectrum.
In the second section, we define the Zariski topology on Z(R,

∏
Ri) and study their basic properties, The

ultrafilter topology is studied in the third section . In the fourth section we define the F -limit of a collection
of zero-dimensional rings and we give his relationship with the direct union of subrings of

∏
Ri.

2. Preliminaries

In this paper, we focus on intermediate zero-dimensional rings of a pair of rings. En particularly, we
characterize these families by using special topologies. Now, let I be a set and F be a collection of subsets
of I, we define a ultrafilters topology on I when F is a collection of clopen sets. We begin by giving some
notations. Let R be a subring of a ring S, we denote by V(S,R) and A(S,R), respectively, the set of von
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Neumann regular and artinian subrings of S that contain R. Thus, the following question arises naturally.
Under what condition is a specified one of two sets nonempty?

ClearlyZ(S,R) is nonempty ifV(S,R) orA(S,R) is nonempty. On the other hand, suppose R is a subring
of the ring S, the following conditions are equivalent:

1. Z(R,S) , ∅.
2. The power of the ideal xS is idempotent for each x in R.
3. For each finitely generated ideal I, the set {AnnR(I j)∞j=1} stabilizes for some m ∈ N.

For proof see [3, Proposition 1] and [6, Theorem 1.6]
Now, assume thatZ(R,S) , ∅, is thatZ(R,S) closed under arbitrary intersection?

Theorem 2.1. ([6, Theorem 2.1]) Suppose {Ra}a∈A is a nonempty family of zero-dimensional subrings of the ring S.
Then

⋂
a∈A Ra is zero-dimensional subring of S

Remark 2.2. Suppose R is subring of the ring S. If Z(R,S) , ∅, then Theorem 2.1 shows that Z(R,S) , ∅
has a unique minimal element. We denote this element by R0, and call it the minimal zero-dimensional
extension of R in S. Then for each x in R, assume that xm(x)S is idempotent, and let sx be the pointwise
inverse of xm(x) in S. By [6, Theorem 2.5] we have that R0 = R[{sx : x ∈ R}].

We will work in at least ZFC, that is, Zermelo-Frankel set theory with the axiom of choice. We will in
certain case use additional axioms. We recall that F is a filter on set I if it is a subset of the power set of I
that satisfies the following conditions:

1. ∅ < F and I ∈ F ;
2. If A,B ∈ F , then A ∩ B ∈ F ;
3. If A ∈ F and A ⊂ A′ ⊂ I, then A′ ∈ F .

A filter F on I is called an ultrafilter if F is maximal with respect to being a filter, or equivalently, if
whenever A ⊂ I, then either A ∈ F or I \A ∈ F . An ultrafilter F is called principal if there exists an element
i0 ∈ I such that F consist of all subsets of I that contain i0. Other ultrafilters are called non-principal. We
denote the collection of all ultrafilters on a set I by β(I).

Definition 2.3. Let R be a subring of the ring S and S(R,S) be the set of all the rings between R and S. Let Y
be a subset of S(R,S) and F be an ultrafilter on Y. Set YF := {a ∈ S : Ua ∩ Y ∈ F }. We call YF an ultrafilter
limit point of Y with Ua := {C ∈ S(R,S) : a ∈ C}.

Lemma 2.4. The set YF is a subring of S contains R.

Proof. Let x, y ∈ YF then each of the sets Uxy and Ux−y contain Ux ∩Uy ∈ F , from definition of an ultrafilter,
we have Uxy,Ux−y ∈ F , then x − y, xy ∈ YF . Moreover, for each a ∈ R, Ua = S(R,S) ∈ F , then YU contains
R. Hence YF is a subring of S.

A nonempty subset Y of S(R,S) is an ultrafilter closed if, for any ultrafilter U on Y, we have YU ∈ Y.
Then the ultrafilter closed sets of S(R,S) are closed sets for a topology, called the ultrafilter topology (see
[2]).

Definition 2.5. Let X be a set and F be a nonempty collection of subsets of X. For each Y ⊆ X and each
ultrafilterU on Y, we define

Y(X,F )(U) := {x ∈ X : [∀F ∈ F , x ∈ F⇔ F ∩ Y ∈ U]}.

We will denote the set Y(X,F )(U) simply by Y(U), when no confusion can arise.
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Lemma 2.6. ([1, Lemma 2.5]) Let X be a set, F be a given nonempty collection of subsets of X and Y ⊆ Z ⊆ X. Let
U be an ultrafilter on Y , T ∈ U and letUT andUZ,respectively, the ultrafilter defined by

UT := {U ∩ T : U ∈ U} UZ := {Z′ ⊆ Z : Z′ ∩ Y ∈ U}.

Then we have
Y(U) = T(UT) = Z(UZ).

Remark 2.7. Let X be a set andF be a nonempty collection of subsets of X that is closed under complements.
Then, for any subset Y of X and any ultrafilterU on Y, we have

Y(X,F )(U) =
⋂
{F ∈ F : F ∩ Y ∈ U}.

Definition 2.8. Let X be a set and F be a nonempty collection of subsets of X. Then, we say that a subset Y
of X is F−stable under ultrafilter if Y(U) ⊆ Y, for each ultrafilterU on Y.

Let X be a set and F be a nonempty collection of subsets of X. Then the family of all the subsets of X
that are F−stable under ultrafilter is the collection of the closed sets form a topology on X. We will call it
the F−ultarfilter topology on X, and denote by XF−ultra the set X endowed with the F−ultrafilter topology.

Proposition 2.9. ([1, Proposition 2.13]) Let X be a set, F be a nonempty collection of subsets of X. Then, for each
subspace Y of XF−ultra , we have

Ad(Y) =
⋃
{Y(U) : U ∈ β(Y)}.

Remark 2.10. If F ⊆ C are collections of subsets of X, then the C−ultrafilter topology is finer than or
equal to the F−ultrafilter topology. In fact, for each subset Y of X and each ultrafilter U on Y, we have
YF (U) ⊆ YC(U).

In the following example we give some relation between the F−ultrafilter topology and ultrafilter
topology for particular cases.

Example 2.11. 1. Let A be a ring and P be the collection of all the principal open subsets of X := Spec(A).
Then, the P−ultrafilter topology of X is equal to the ultrafilter topology.

2. Let K be a field, A be a subring of K and C be the natural basis of open sets for the Zariski topology
on the spectral space Zar(K|A) of all the valuation domains of a field K containing a fixed subring A of K.
Then, the C−ultrafilter topology is equal to to the ultrafilter topology on Zar(K|A).

Now, we are interested in the topological structure on Z(R,
∏

Ri). Let R be a ring and {Ri}i∈I be a
family of zero-dimensional rings such that R is imbeddable into

∏
Ri. The setZ(R,

∏
Ri) endowed with a

topological structure defined by taking, as a basis for the open sets, the subsets

BS := {T ∈ Z(R,
∏

Ri)\S ⊆ T}.

For S varying in B f in(
∏

Ri). This topology is called the Zariski topology onZ(R,
∏

Ri).

Remark 2.12. If S := {x1, x2, ...., xn}with x j ∈
∏

Ri for each j ∈ {1, ...,n}, then

BS := Z(R[x1, x2, ...., xn],
∏

Ri).

Therefore the collection of subsets B := {Z(R[x],
∏

Ri) : x ∈
∏

Ri} is a base for the Zariski topology on
Z(R,

∏
Ri).

As a simple consequence of the previous remark, if Z(R,
∏

Ri) , ∅, then for each x ∈ R, there exists
m(x) ∈ N such that xm(x)∏Ri is idempotent, let sx be the pointwise inverse of xm(x) in

∏
Ri, then R0 = R[{sx :

x ∈ R}]. with R0 is a unique minimal zero-dimensional inZ(R,
∏

Ri).
Moreover, the collection of subsets B := {Z(R[x],

∏
Ri) : x ∈

∏
Ri} is a base for the Zariski topology, as

R[{sx : x ∈ R}] ∈ Z(R,
∏

Ri), then there is an element t ∈
∏

Ri such that R[{sx : x ∈ R}] ∈ Z(R[t],
∏

Ri),then
R[t] ⊆ R[{sx : x ∈ R}], and as R[{sx : x ∈ R}] is an unique minimal element, then R[t] = R[{sx : x ∈ R}] or
dimR[t] , 0.
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3. The Ultrafilter Topology onZ(R,
∏

Ri)

It is worth reminding that not all rings admit a zero-dimensional subring. Particularly, infinite product
of rings. Now, let R be a ring and {Ri}i∈I a family of zero-dimensional rings such that R is imbeddable into∏

Ri. The main goal is to study the behavior ofZ(R,
∏

Ri) with respect to the ultrafilter topology and will
compare it with the Zariski topology.

We start with following properties.

Theorem 3.1. Let R be a ring and {Ri}i∈I a family of zero-dimensional rings such that R is imbeddable into
∏

Ri
withZ(R,

∏
Ri) , ∅, if Y is a nonempty subset ofZ(R,

∏
Ri) andU is an ultrafilter on Y, then:

1. RU := {x ∈
∏

Ri / B{x}
⋂

Y ∈ U} ∈ Z(R,
∏

Ri).
2. The collection of all subsets Y ofZ(R,

∏
Ri) stable for ultrafilters (i.e for eachU ∈ β(Y), RU ∈ Y) is the family

of closed sets for a topology onZ(R,
∏

Ri) called the ultrafilter topology of Z(R,
∏

Ri).

Proof. 1. LetC := {BS : S ∈ B f in(
∏

Ri)} be the natural basis of open sets of the Zariski topology ofZ(R,
∏

Ri).
If Y is a subset ofZ(R,

∏
Ri) andU is an ultrafilter on Y, we have:

x ∈ YC(U)⇔ [∀BS ∈ C, x ∈ BS ⇔ BS ∩ Y ∈ U]

⇔ B{x} ∩ Y ∈ U

⇔ x ∈ RU .

Then YC(U) = {RU}, as C is closed under complements. According to Remark 2.7, we have that RU =
⋂
{F ∈

C : F ∩ Y ∈ U}, then RU is a zero-dimensional ring by Theorem 2.1. On the other hand, R ⊆ RU because
B{x} = Z(R,

∏
Ri) for each x ∈ R.

2. Suppose that A,B are ultrafilter closed of Z(R,
∏

Ri) (i.e closed set for an ultrafilter topology of
Z(R,

∏
Ri)), and U be an ultrafilter on Y = A ∪ B. Take into account the properties of ultrafilters, we can

assume that A ∈ U. According to proof of (1) and Definition 2.8 , A is C−stable with C := {BS : S ∈
B f in(
∏

Ri)}, by Lemma 2.6, we have {RU} = YC(U) = AC(UA) ⊆ A ⊆ Y, then Y is ultrafilter closed.
Now, let C be a collection of ultrafilter closed on Z(R,

∏
Ri). Let U be an ultrafilter on X =

⋂
C :=

{C / C ∈ C}. By Lemma 2.6, for each C ∈ C, we have C(UC) = X(U), and thus X(U) ⊆ X. Then X is
ultrafilter closed.

Theorem 3.2. Let R be a ring and {Ri}i∈I a family of zero-dimensional rings such that R is imbeddable into
∏

Ri
withZ(R,

∏
Ri) , ∅.

1. The ultrafilter topology is finer than the Zariski topology onZ(R,
∏

Ri).
2. The basic open sets of the Zariski topology onZ(R,

∏
Ri) are both open and closed by the ultrafilter topology.

Proof. 1. SinceC := {BS : S ∈ B f in(
∏

Ri)} is a natural basis of open sets on the Zariski topology ofZ(R,
∏

Ri),
it is enough to prove that O := Z(R,

∏
Ri)\BS is stable for ultrafilter. Assume, by contradiction, that there

exists an ultrafilterU on O such that RU < O. It follows that S ⊆ RU , and then Bx ∩O ∈ U, for every x ∈ S.
Then BS ∩O ∈ U, because S is finite. This is a contradiction by the definition of O.

2. Direct consequence of the Theorem 3.1 and the Remark 2.12.

Remark 3.3. Let R be a ring and {Ri}i∈I a family of zero-dimensional rings such that R is imbeddable into∏
Ri. According to Remark 2.7 and [6] the set A(R,ΠRi) is not C−stable, where C := {BS : S ∈ B f in(

∏
Ri)}

is the basis of open sets of the Zariski topology onZ(R,
∏

Ri).
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4. The F − lim of a Collection of Zero-Dimensional Rings

Let R be a subring of a ring S. The first goal of this section is to define the F − lim of the set Z(R,S).
Then we give a characterization of Z(R,S) by using the F − lim. Thereby, its relationship with ultrafilter
limit and the direct limit of a family of rings.

Definition 4.1. Let A be a set, S(A) be the set of all subsets of A and let I be an infinite set. Let {Si}i∈I be a
family of S(A), and let F be an ultrafilter on I, then we define the F − lim of {Si}i∈I by:

F − lim
i∈I

Si := {a ∈ A : {i ∈ I : a ∈ Si} ∈ F }.

We note that the set F − limi∈I Si is a subset of A and we have that:

F − lim
i∈I

Si =
⋃
X∈F

(
⋂
i∈X

Si).

Proposition 4.2. Let R is subring of the ring S such thatZ(R,S) , ∅. Let {Ri}i∈I ∈ Z(R,S), and F is an ultrafilter
on I. Then the ring F − limi∈I Ri is a direct union of zero-dimensional subrings of S.

Proof. By Definition 4.1, we have that F − limi∈I Ri =
⋃

A∈F (
⋂

i∈A Ri), and according to Theorem 2.1
⋂

i∈A Ri
is a zero-dimensional ring for each A in F . On the other hand, if A ∈ F and A ⊂ A′ ⊂ I, then A′ ∈ F . Then
the union is direct.

Proposition 4.3. Let {Ri}i∈I be a nonempty family of zero-dimensional subrings of a ring S and F be an ultrafilter
on I. Let SX = ∩i∈XRi for each X ∈ F , if for each X some Ri is an artinian reduced ring, F − limi∈I Ri is a direct
union of artinian rings.

Proof. Let I be set and letF an ultrafilter on I. For each nonempty family {Ri}i∈I of zero-dimensional subrings
of a ring S, let SX = ∩i∈XRi for each X ∈ F . Assuming that some Rx in {Ri}i∈X is an artinian reduced ring
then SX is a zero-dimensional sub-ring of artinian reduced ring (because SX = ∩i∈XRi ⊆ Rx). That means,
SX is a zero-dimensional reduced ring with only finitely many idempotents, therefore is an artinian ring.
Then similar proof of the Lemma 4.2 may show that F − limi∈I Ri is a direct union of artinian rings.

Lemma 4.4. Let X ⊆ Z(R,ΠRi) and U be an ultrafilter on X, then for each subset {S j : j ∈ J} ⊆ X and each
ultrafilter F on J. We have F − lim j∈J Si ∈ Z(R,ΠRi), and SU = F − lim j∈J S j with SU is the ultrafilter limit of X.

Proof. Let σ : J→ X be a bijection, and let F = {σ−1(F) : F ∈ U}. Then F is an ultrafilter on J. For each j ∈ J,
we put σ( j) = S j. Then,

a ∈ SU ⇔ B{a} ∩ X ∈ U ⇔ { j ∈ J : a ∈ S j} ∈ F ⇔ a ∈ F − lim
j∈J

S j.

Therefore, SU = F − lim j∈J S j. On other hand, according to Theorem 3.1 F − lim j∈J Si ∈ Z(R,ΠRi).

Definition 4.5. Let I be an arbitrary set and let F be any ultrafilter on I. Let xi ∈ X for i ∈ I, we say that x is
an ultralimit of xi with respect to F if only if for every open set O of X with x ∈ X {i ∈ I xi ∈ O} ∈ F when
denoted by limF xi = x.

We say that X is F−complete if and only if for all choices of xi ∈ X there is a x ∈ X such that limF xi = x.
We recall that X is ultracomplete if for every set I, all sequences xi ∈ X for i ∈ I and every ultrafilter F on
I, there is an x ∈ X with limF xi = x, this is the equivalent of saying that X is F−complete for every I and
every ultrafilter F on I.

Proposition 4.6. Let {Si}i∈I ∈ S(A) for each i ∈ I and F be an ultrafilter on I. We have limF Si = F − limi∈I Si.
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Proof. Let Si ⊆ A for some i ∈ I, we claim that limF Si = S where S = F − limi∈I Si. Suppose that O is an
open set in S(A) such that S ∈ O. On the other hand let BF,G = {S ⊆ A : F ⊆ S and S ∩ G = ∅} where F, G are
finite subsets of A. Each BF,G is a basic open set of S(A) such that S ∈ BF,G ⊆ O. But this asserts that F ⊆ S.
Let 1 ∈ G, 1 < S. So {i : F ⊆ Si} ∈ F and also for each 1 ∈ G, {i : 1 ∈ Si} < F . It follows that for each 1 ∈ G,
{i : 1 < Si} ∈ F . Thus , {i : F ⊆ Si and f or each 1 ∈ G, 1 < Si} = {i : Si ∈ BF,G} ∈ F . Thus the claim.

Proposition 4.7. ([8, Proposition 1.9]) X is Hausdorff if and only if for all I, and all ultrafilters F on I with all
sequences xi ∈ X for i ∈ I and if limF xi exists, then this limit is unique.

Before studying the relations between the notion of F − lim and the direct union of the rings, give us a
topological property ofZ(R,

∏
Ri) using the definition and the previous property.

Proposition 4.8. Let R be a ring and {Ri}i∈I a family of zero-dimensional rings withZ(R,
∏

Ri) , ∅ then:

1. Z(R,
∏

Ri) is Hausdorff.
2. Z(R,

∏
Ri) is compact if and only if RU , ∅ for each ultrafilterU onZ(R,

∏
Ri).

Proof. 1. Let X ⊆ Z(R,
∏

Ri) andU is an ultrafilter on X. Suppose that J is an indexed set, F is an ultrafilter
on J, and S j ∈ X then by Lemma 4.4, SU = F − lim j∈J S j with SU is the ultrafilter limit of X, according to
proof of Theorem 3.1 F − lim j∈J S j is unique. On the other hand, by Proposition 4.6, Definition 4.5 and
Proposition 4.7 we have thatZ(R,

∏
Ri) is a Hausdorff space.

2. Assume thatZ(R,
∏

Ri) , ∅ then by [8, Theorem 1.6] we have that: Z(R,
∏

Ri) is compact if and only
ifZ(R,

∏
Ri) is ultracomplete. Moreover, by Definition 4.5, for every set J, all sequences {T j} j∈J ∈ Z(R,

∏
Ri)

for j ∈ J there exists a RU = F − lim j∈J T j for every ultrafilter F on J, and it is equivalent to RU , ∅ for each
ultrafilterU inZ(R,

∏
Ri).

Corollary 4.9. Let A be a nonempty subset of A(R,ΠRi) and U an ultrafilter in A, then AU the ultrafilter limit
point of A is a zero-dimensional ring.

Proof. We know that every artinian ring is a zero-dimensional ring, then A is a nonempty subsets of
Z(R,

∏
Ri), by Theorem 3.1, we have that AU is a zero-dimensional ring.

By Remark 3.3 the ring AU is not necessary artinian.

Definition 4.10. Let R be a ring and S a ring containing R. An element x ∈ S is said to be integral over R if
there exists an integer n and elements r1, ..., rn in R such that

xn + r1xn−1 + .... + rn−1x + rn = 0.

This equation is called an equation of integral dependence of x over R (of degree n). The set of all elements
of S that are integral over R is called the integral closure of R in S. If every element of S is integral over R,
we say that S is integral over R.

Lemma 4.11. Let R be a noetherian ring and Rα be a family of zero-dimensional rings, and let IZ(R,
∏

Rα) be the
set of all the rings C ∈ Z(A,

∏
Rα) such that C is integrally closed of R in

∏
Rα, then:

1. ∀S j ∈ IZ(R,
∏

Rα) ∃T j
i ∈ A(R,

∏
Rα) such that

S j = lim
−→
i∈I

T j
i .

2. For each family {S j : j ∈ J} ⊆ IZ(R,
∏

Rα) we have that {Ki : i ∈ I} ⊆ A(R,
∏

Rα) such that

F − lim
j∈J

S j = lim
−→
i∈I

Ki.
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Proof. 1. Let IZ(R,
∏

Rα) be the set of all the subrings C ∈ Z(R,
∏

Rα) such that C is integrally closed of A
in
∏

Rα, and let S j ∈ IZ(A,
∏

Rα), then by proof of [7, corollary 5.5] S j is a direct union of artinian subrings,
from where ∃T j

i ∈ A(R,
∏

Rα) such that
S j = lim

−→
i∈I

T j
i .

with I is a direct set.
2. According to Lemma 4.4 and Theorem 3.1 and [1, Proposition 3.6] , we have that F − lim j∈J S j is a

zero-dimensional integral closed of R in
∏

Rα, then F − lim j∈J S j ∈ IZ(R,
∏

Rα) and by (1) we have that

F − lim
j∈J

S j = lim
−→
i∈I

Ki

with {Ki : i ∈ I} ⊆ A(A,
∏

Rα).
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