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Abstract. In this work, we examine the topology of special type of sequences in which each candidate
is a polynomial with its coefficients are of integers taken from a discrete set. The paper develops a
different perspective with regard to the recent progress in the theory of polynomials with bounded integer
coefficients. In the context of discrete control systems, we apply the theory to one dimensional reachability
problem of a convex polyhedra with finite number of controls acting on the system and prove that the
reachable set of the discrete model is dense in the set of real numbers under the suitable finite control set.

1. Introduction

Much attention has recently been attracted to the topological structure of sets of polynomials with
bounded integer coefficients with applications in analysis and theory of numbers [2, 12, 13]. Among these
sets, the one that holds its importance in this context, is the following spectrum

Xm(λ) =
{
c0 + c1λ + · · · + ckλ

k : ci ∈ {0, 1, · · · ,m}, k ∈N
}
,

which has been introduced by Erdös et al in [10] for the case 1 < λ < 2 and m = 1. The topology of the
set Xm(λ) was examined and results were obtained about the behaviour of differences between consecutive
terms of the set for cases of all transcendental and Pisot numbers (see also [9]). Recall that a Pisot number
is an algebraic integer which is greater than one and all of its conjugates have modulus less than one. There
are huge literature for application of Pisot numbers in theory of numbers, we refer to [2, 13, 14, 16]. Recent
progress was done in [12] where answers were given for perspectives and open problem raised by Erdös et
al in [10]. In [12], the following set of polynomials was considered

Ym(λ) =
{
c0 + c1λ + · · · + ckλ

k : ci ∈ {0,±1,±2, · · · ,±m}, k ∈N
}
,

for real number λ > 1, and m integer. It was shown that Ym(λ) is dense in R if and only if λ < m + 1 and
λ is not a Pisot number. It should be noted that Ym(λ) is not dense in R whenever λ is a Pisot number(see
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[14]), or λ ≥ m + 1 (see [11]). In addition to that, Ym(λ) has a finite accumulation point in R if and only if
λ < m + 1 and λ is not a Pisot number (see [2]).

The present paper is devoted to the study of topological structure of the set Xm(λ) for the case m = bλc,
i.e., integer part of λ and λ > 1. Here, we analyse the behaviour of differences of consecutive terms of the
set and obtain related results in the general setting. Moreover, the work is extended to the new class of
X := Xbλc(λ) as the set of pairwise combination of terms from the set Xm(λ) with a transcendental number
γ ∈ (0, 1) in the following sense

Y := {αi + γα j| αi, α j ∈ X for i, j ∈N}.

Here, we study the topology of the set Y and prove our main result that the gap between each consecutive
terms of the set tends to zero. As an application of the main result, we concentrate on the controllability
problem of a convex polyhedra rolling in R. More precisely, the problem is a discrete model of the form

xn+1 = λxn + η, x0 = 0, (1)

where λ > 1 and η is ranging from finite control set. Our motivation comes from here that each discrete
points of the system can be represented as polynomial in λ with bounded coefficients emerged from the
finite set. In literature, the problem is related to robotics and we refer to the papers [4, 6, 7] for analysing
reachability property of the system under finite control set. Those works are answering the problem
whether it is possible to design a finite control set in such a way that the reachable set of a convex polyhedra
with those controls acting on the system is dense in the space. Several techniques applied to the papers
[18], [26] to obtain denseness criteria of a vehicle’s reachable set in some certain spaces and to the paper
[20] for a model of a robot’s finger in the framework of the theory of expansions in non-integer bases
where the density of its reachability set was studied. In addition, an iterative algorithm was developed
in [5] to interpolate graph signals from only a partial set of samples which results a better performance in
computational efficiency. There are other estimates and iterations technique applied to different types of
discrete systems which were considered in the papers [3, 8, 27]. Moreover, we refer to the paper [1] for
finding sufficient conditions that assure existence and uniqueness of approximate fixed point of a mapping
with best proximity point results.

In the monograph [25] and papers [22–24] consider different problems of optimal control theory with
higher order linear/semilinear discrete and continuous systems. Necessary and sufficient optimality condi-
tions are derived incorporating the Euler-Lagrange and Hamiltonian type inclusions/equations. Moreover,
we refer to the books [15, 19] for several basic notions and results on topology, measure theory and functional
analysis.

The paper is organized as follows.
In Section 2, we give preliminaries about some basic concepts, theorem and lemma. In this part, we

mention about Kronecker’s density theorem which simply asserts that given any irrational number ξ, the
set of fractional part of {iξ} for i ∈ Z is dense in open interval (0, 1) (see [17]) and provide one application.
Moreover, we consider certain subsets of X and Y, namely sets of all finite sum of even powers of λ terms in
X and Y respectively. In addition, γ is defined as a transcendental number which is bounded by constants
depending on λ for later purposes.

In Section 3, we provide the main results of the paper. Proof techniques applied in this section are
adopted from the papers [9, 10] and without utilizing Pisot number analysis, topological properties of the
sets X and Y are derived and at the end, it is concluded that differences of successive terms of Y approach
to zero. The paper develops a different point of view in regard to the recent progress done in the work [12].

In Section 4, we conclude the paper by mentioning about some perspectives related to the research.
Here, we consider a problem of controllability in robotics. In this part, we analyse the interaction in
between displacements of a convex polyhedra by means of finite controls in one dimensional space. The
movement of a convex polyhedra for each step can be described as the first order recurrence relation. The
paper answers density property of the reachable set of the system for λ > A := 1+

√
5

2 . The case λ = 1, is
considered separately and proven that reachable set is dense inR as a consequence of Kronecker’s theorem.
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2. Preliminaries

In this section, we provide some definitions and principles together with theorems. Firstly, we start
with definition of algebraic and transcendental number.

Definition 2.1. An algebraic number is any real number which is a root of a non-zero polynomial in one variable
with rational coefficients. If a number is not algebraic then it is called a transcendental number.

Pigeonhole Principle: for n + 1 different real numbers x0, x1, · · · , xn in closed interval [0, 1]. Then, one can
say that there exists two numbers xi, x j with i , j satisfying

|xi − x j| ≤
1
n
.

Now, we give Kronecker’s Theorem which relies on estimating any real number by means of given irrational
number (see [17]).

Theorem 2.2. If ξ is irrational, then the set of points ({nξ} : n ∈N) is dense in the interval (0, 1).

As an application of Theorem 2.2, we provide the following useful result.

Lemma 2.3. Let ξ and η be rationally independent positive real numbers, i.e., ξη ∈ I. Then, the set

K := { jη + iξ | i, j ∈ Z},

is dense in R.

The proof of Lemma 2.3 is straightforward. Namely, for given ξ and η be rationally independent
numbers, we know that ξ

η ∈ I. Then for any ε > 0, we have from Theorem 2.2 that for any real number
τ ∈ R,

|{κ} −N −M
ξ
η
| <

ε
η
,

where κ =
τ
η

and for some M,N ∈ Z. Hence, we conclude that

∣∣∣∣τ − ((
bκc + N

)
η + Mξ

)∣∣∣∣ < ε. (2)

Observe that both bκc + N and M are integers in (2).
Let λ > 1 be a real number and for n ∈ N, we consider the unique (bλc + 1) expansion of n as the

following way

n = c0 + c1(bλc + 1) + c2(bλc + 1)2 + · · · + ck(bλc + 1)k,

where ci ∈ {0, 1, · · · , bλc}, and set the sequence of the following form

αn = c0 + c1λ + · · · + ckλ
k. (3)

Define the set X as all collection of (3) and let the sequence {βi} be its increasing rearrangement. Let γ ∈ (0, 1)

be a transcendental number such that
λ
γ
∈ I and satisfying the following inequality

max
{ 1
λ2 ,

λ − 1
λ bλc

}
< γ <

1
λ
. (4)
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Define Xe as the set of all finite sum of even powers of λ terms in X. More precisely,

Xe :=
{ k∑

i=0

ciλ
2i
| k ∈N, ci ∈ {0, 1, · · · , bλc}

}
. (5)

Now, define the following set

Ye := {αi + γα j| αi, α j ∈ Xe for i, j ∈N}. (6)

Let {ζi} and {τi} be the increasing rearrangement of Ye and Y respectively, i.e.,

ζ0 < ζ1 < ζ2 · · · and τ0 < τ1 < τ2 · · ·

Observe that ζ0 = τ0 = 0, ζ1 = τ1 = γ and ζ2 = τ2 = 1. Moreover, define the following limits

I(λ) = lim inf(ζi+1 − ζi) and S(λ) = lim sup(τi+1 − τi). (7)

Lemma 2.4. For any k ∈N, the following inequalities

γλ2k+2 < 1 + bλc
(
1 + γ

) k∑
i=0

λ2i, (8)

and

λ2k+2 < 1 + γ bλcλ2k+2 + bλc
(
1 + γ

) k∑
i=0

λ2i, (9)

hold.

Proof. Firstly, we prove the inequality (8). By using (4),

1 + bλc
(
1 + γ

) k∑
i=0

λ2i > 1 +
(
bλc +

λ − 1
λ

) k∑
i=0

λ2i

= 1 +
(
1 + bλc −

1
λ

) k∑
i=0

λ2i

> 1 +
(
λ −

1
λ

) k∑
i=0

λ2i = 1 + λ2k+1
−

1
λ
> γλ2k+2.

Namely, we obtain the first inequality. For the second one, we use (4), i.e.,

1 + γ bλcλ2k+2+ bλc
(
1 + γ

) k∑
i=0

λ2i > 1 +
λ − 1
λ

λ2k+2 +
(
bλc +

λ − 1
λ

) k∑
i=0

λ2i

> 1 + λ2k+2
− λ2k+1 +

(
λ −

1
λ

) k∑
i=0

λ2i > λ2k+2.

Hence, we have the second inequality.
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Lemma 2.5. For λ > A, the following inequality

λ2n+2 > bλc
n∑

i=0

λ2i,

holds for all n ∈N.

Proof. Since λ > A, we have that λ2
− λ − 1 > 0. Here, we would prove that for any n ∈N,

λ2n+1 >
n∑

i=0

λ2i, (10)

holds by induction. At first,

λ2
− λ − 1 > 0 ⇐⇒ λ3

− λ2
− λ > 0 =⇒ λ3

− λ2
− 1 > 0.

Hence, we have that λ3 > λ2 + 1, i.e., it is true for n = 1.Assume that (10) is true for n.Here, we observe that

1 + λ2 + · · · + λ2n + λ2n+2 < λ2n+1 + λ2n+2 < λ2n+3,

which implies the case for n + 1. Therefore, we have (10) by induction.
As a result,

λ2n+1 >
n∑

i=0

λ2i =⇒ λ2n+2 > bλc
n∑

i=0

λ2i.

3. Main Results

Theorem 3.1. For each n ∈N, the following inequality

βn+1 − βn ≤ 1,

holds.

Proof. To prove the theorem, we use induction by n. Here, for case n = 1, recall that β0 = 0 and β1 = 1, i.e.,
β1 − β0 = 1 which is true.

For induction hypothesis, assume that it is true for case n, i.e., βi+1 − βi ≤ 1 for i = 1, 2, · · · ,n. We prove
that it is true for the case n + 1, i.e., βn+2 − βn+1 ≤ 1.

Let βn+1 = ξ0 + ξ1λ + · · · + ξsλs, for ξi ∈ {0, 1, · · · , bλc}. Here, ξ0 is either bλc or different from bλc .
If we have the case ξ0 , bλc , then ξ0 would be in {0, 1, · · · , bλc − 1}, i.e., βn+1 + 1 ∈ X. This implies that

βn+1 ≤ βn+2 ≤ βn+1 + 1 which means βn+2 − βn+1 ≤ 1.
Now, assume that ξ0 = bλc . Let k be the largest integer such that ξ0 = ξ1 = · · · = ξk = bλc . Then,

ξk+1 ∈ {0, 1, · · · , bλc − 1}, i.e.,

βn+1 = bλc (1 + λ + · · · + λk) + ξk+1λ
k+1 +

s∑
i=k+2

ξiλ
i. (11)

Notice from (11) that βn+1 + λk+1
∈ X. Hence, if one can have c0, c1, · · · , ck ∈ {0, 1, · · · , bλc} such that

bλc (1 + λ + · · · + λk) < c0 + c1λ + · · · + ckλ
k + λk+1

≤ 1 + bλc (1 + λ + · · · + λk), (12)
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holds, then one can have the following

βn+2 ≤ c0 + c1λ + · · · + ckλ
k + λk+1 +

s∑
i=k+1

ξiλ
i
≤ 1 + βn+1,

which proves the case n + 1. Therefore, it suffices to prove the existence of such {ci}
k
i=0 satisfying (12).

Note firstly that (bλc + 1 − λ)(1 + λ + · · · + λk) > 0 which implies

λk+1 < 1 + bλc (1 + λ + · · · + λk). (13)

From (13), if we have λk+1 > bλc (1 + λ + · · · + λk), then we obtain (12) by simply choosing c0 = · · · = ck = 0.
Otherwise, assume that λk+1

≤ bλc (1 +λ+ · · ·+λk). Let βη = bλc (1 +λ+ · · ·+λk) which is a term in X. Here,
η ≤ n + 1 and the next term would be of the form

βη+1 = c0 + c1λ + · · · + ckλ
k + λk+1,

for some c0, c1, · · · , ck ∈ {0, 1, · · · , bλc}. Since there would be no term of X in between βη and βη+1, we conclude
that

X ∩ (βη − λk+1, βη+1 − λ
k+1) = ∅. (14)

Observe that c0 + c1λ + · · · + ckλk
∈ X and βη − λk+1 + 1 < βη. Therefore, by using the induction hypothesis

together with (14), one can have the following

βη − λ
k+1 < c0 + c1λ + · · · + ckλ

k
≤ βη − λ

k+1 + 1, (15)

which concludes the proof of (12).

Theorem 3.2. For each n ∈N, the following inequality

ζn+1 − ζn ≤ 1

holds.

Proof. We apply proof by induction. Here, for case n = 1 recall that ζ0 = 0 and ζ1 = γ, i.e., ζ1 − ζ0 = γ < 1
which is true.

For induction hypothesis, assume that it is true for case n, i.e., ζi+1 − ζi ≤ 1 for i = 1, 2, · · · ,n. We
prove that it is true for the case n + 1, i.e., ζn+2 − ζn+1 ≤ 1. Let ζn+1 = ξ0 + ξ1λ2 + · · · + ξsλ2s, where
ξi ∈ {i + jγ | i, j ∈ {0, 1, · · · , bλc}}. As it is examined in Theorem 3.1, either ξ0 , (1 + γ) bλc or ξ0 = (1 + γ) bλc .

For the first case, one can say either ζn+1 + 1 ∈ Ye or ζn+1 + γ ∈ Ye or both of them holds. Hence, we have
either

ζn+2 ≤ ζn+1 + 1 or ζn+2 ≤ ζn+1 + γ,

which proves the case for n + 1.
For the second case, we assume that ξ0 = (1 +γ) bλc . Let k be the largest integer such that ξ0 = ξ1 = · · · =

ξk = (1 + γ) bλc . More precisely,

ζn+1 = bλc
(
1 + γ

) k∑
i=0

λ2i + ξk+1λ
2k+2 +

s∑
i=k+2

ξiλ
2i.

Here, we examine two cases separately.
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Case 1. Let us assume that ξk+1 = i + bλcγ, where i ∈ {0, 1, · · · , bλc}. It can be seen from assumption on
k that i , bλc , which implies ζn+1 + λ2k+2

∈ Ye. More precisely,

ζn+1 − bλc
(
1 + γ

) k∑
i=0

λ2i
− bλcγλ2k+2 + λ2k+2

∈ Ye. (16)

If we have

λ2k+2 > bλcγλ2k+2 + bλc
(
1 + γ

) k∑
i=0

λ2i, (17)

then, from Lemma 2.4, we conclude that

ζn+2 ≤ ζn+1 − bλc
(
1 + γ

) k∑
i=0

λ2i
− bλcγλ2k+2 + λ2k+2 < 1 + ζn+1.

However, if (17) is not satisfied, i.e.,

λ2k+2
≤ bλcγλ2k+2 + bλc

(
1 + γ

) k∑
i=0

λ2i,

then define ζν = bλcγλ2k+2 + bλc
(
1 + γ

)∑k
i=0 λ

2i which is an element of Ye, and of course ν ≤ n + 1. The next
term is ζν+1, and it would be in the following form

ζν+1 = c0 + c1λ
2 + · · · + ckλ

2k + λ2k+2,

for some cm ∈ {i + jγ | i, j ∈ {0, 1, · · · , bλc}} and m = 0, 1, · · · , k. Consider the open interval

Iν = (ζν − λ2k+2, ζν+1 − λ
2k+2),

for some ci ∈ {i + jγ | i, j ∈ {0, 1, · · · , bλc}}. Note that

(ζν, ζν+1) ∩ Ye = ∅. (18)

Moreover, (4) and (18) imply Iν ∩ Ye = ∅. Since, ζν − λ2k+2 + 1 < ζν, we apply induction hypothesis that

ζν − λ
2k+2 < c0 + c1λ

2 + · · · + ckλ
2k
≤ ζν − λ

2k+2 + 1,

which concludes

ζn+2 ≤ ζn+1 − ζν + c0 + c1λ
2 + · · · + ckλ

2k + λ2k+2
≤ 1 + ζn+1.

Case 2. In this case, we suppose that ξk+1 = i + jγ, where i ∈ {0, 1, · · · , bλc} and j ∈ {0, 1, · · · , (bλc − 1)}.
Therefore, ζn+1 + γλ2k+2

∈ Ye. Namely,

ζn+1 − bλc
(
1 + γ

) k∑
i=0

λ2i + γλ2k+2
∈ Ye. (19)

If we have

γλ2k+2 > bλc
(
1 + γ

) k∑
i=0

λ2i, (20)
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then from Lemma (2.4), we conclude that

ξk+2 ≤ ξk+1 − bλc
(
1 + γ

) k∑
i=0

λ2i + γλ2k+2 < 1 + ξk+1.

However, if (17) is not satisfied, i.e.,

γλ2k+2
≤ bλc

(
1 + γ

) k∑
i=0

λ2i.

Let us define ζµ = bλc
(
1 + γ

)∑k
i=0 λ

2i which is an element of Ye, and clearly µ ≤ n + 1. By using (4), the next
term would be in the following form

ζµ+1 = `0 + `1λ
2 + · · · + `kλ

2k + γλ2k+2,

for some `m ∈ {i + jγ | i, j ∈ {0, 1, · · · , bλc}} and m = 0, 1, · · · , k. Define the following open interval

Iµ = (ζµ − γλ2k+2, ζµ+1 − γλ
2k+2).

From (ζµ, ζµ+1) ∩ Ye = ∅ and (4), we have Iµ ∩ Ye = ∅. As it is discussed previously, by utilizing induction
hypothesis, we obtain

ζµ − γλ
2k+2 < `0 + `1λ

2 + · · · + `kλ
2k
≤ ζµ − γλ

2k+2 + 1,

which concludes

ζn+2 ≤ ζn+1 − ζµ + `0 + `1λ
2 + · · · + `kλ

2k + γλ2k+2
≤ 1 + ζn+1.

Hence, for both possible cases, we prove that the hypothesis is true for the case n + 1.As a result, we obtain
that ζn+1 − ζn ≤ 1 for n ∈N.

Theorem 3.3. For λ > A, the following

I(λ) = 0,

satisfies.

Proof. For n ∈N, we consider the following close interval of the form

Jn :=
[
0, (1 + γ) bλc (1 + λ2 + · · · + λ2n)

]
. (21)

Coefficients of each powers of λ can be any value from {0, 1, · · · , bλc}, i.e., there are bλc+ 1 different possible
values. Hence, the set Jn ∩ Ye contains (bλc + 1)2n+2 number of ζi’s. Here, we consider two cases: whether
λ is a transcendental or an algebraic number.

Case 1. Assume that λ is a transcendental number. Then, there are (bλc + 1)2n+2 different elements of

the set Jn ∩ Ye. This comes from the fact that
λ
γ
∈ I and a transcendental number cannot be expressed as a

root of polynomial with integer coefficients. In addition to that, for given any ε > 0, it is possible to find a
large m ∈N such that

(1 + γ) bλc (1 + λ2 + · · · + λ2m) < ε
(
(1 + bλc)2m+2

− 1
)
. (22)
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Here, we obtain that (bλc+ 1)2m+2
− 1 number of intervals with length ε coverJm and there are (bλc+ 1)2m+2

number of different ζi’s in Jm. Therefore, from pigeonhole principle, one interval contains at least two
different values from Jm, i.e., this is true for arbitrary small ε, implies I(λ) = 0.

Case 2. Let λ be an algebraic number. In this part, we prove that for any k ∈ N, λ cannot be the root of
following polynomial of even powers

P(x) := c0 + c1x2 + · · · + ckx2k

for ci ∈ {0,±1, · · · ,± bλc}whenever λ > A.
Assume the contrary, i.e., if such k ∈ N exists, then we have that ckλ2k = −ck−1λ2k−2

− · · · − c0. Suppose
without loss of generality that ck > 0, by using Lemma 2.5, we obtain

ckλ
2k
≥ λ2k > bλc

k−1∑
i=0

λ2i
≥ −ck−1λ

2k−2
− · · · − c0,

which contradicts with λ being the root of P(x). This observation shows us that there would be no common
terms of Ye inJn.More precisely, there would be (bλc+1)2n+2 terms which cannot coincide in the setJn∩Ye.
As it is discussed before, by applying same procedure, we obtain that I(λ) = 0.

Theorem 3.4. The following

lim inf
k→∞

(βk+1 − βk) = 0,

satisfies for all transcendental λ > 1.

The proof of Theorem 3.4 is very similar to the proof of Theorem 3.3, so it is omitted.

Lemma 3.5. For λ > A and given any ε > 0, one can find a subsequence {zn} of ζn such that the following two
conditions are satisfied

(i)
∑

i∈I zi ∈ Ye where I ⊂N.

(ii) ε < z2k+1 − z2k < (1 + bλc)2ε for k ∈N.

Proof. We give a proof by induction. Firstly, we prove that both cases hold for n = 1, i.e., find z1, z0 ∈ Ye
such that both conditions satisfy. From Theorem 3.3, we have that I(λ) = 0 which means for an arbitrary
ε > 0, it is possible to find k ∈N such that 0 < ζk+1 − ζk < ε. More precisely, we have

0 < βsk+1 − βsk + γ(βrk+1 − βrk ) < ε

where ζk+1 = βsk+1 + γβrk+1 and ζk = βsk + γβrk .
If βsk+1 and βsk share the same termλ2n for some n ∈N,with coefficient νk+1, νk ∈ {0, 1, · · · , bλc} respectively.

Without loss of generality, assume that νk+1 ≤ νk, then we establish new terms as

β̂sk+1 = βsk+1 − νk+1λ
2n and β̂sk = βsk − νk+1λ

2n. (23)

It should be noted that there may be more terms λn such that both βsk+1 and βsk share, but doing the
same process as it is done in (23), we can still have that β̂sk+1 + β̂sk ∈ Xe which means both terms share
no common terms λn. Same observation is valid for βrk+1 and βrk , i.e., one can have β̂rk+1 and β̂rk such that
β̂rk+1 − β̂rk = βrk+1 − βrk and β̂rk+1 + β̂rk ∈ Xe. Hence, our new constructed terms would be the following

ζ̂k+1 = β̂sk+1 + γβ̂rk+1 and ζ̂k = β̂sk + γβ̂rk

satisfying both ζ̂k+1 + ζ̂k ∈ Ye and 0 < ζ̂k+1 − ζ̂k < ε. Let m ∈ N be the least even number satisfying the
following relation

λm(ζ̂k+1 − ζ̂k) < ε < λm+2(ζ̂k+1 − ζ̂k). (24)
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Multiplying (24) by λ2, gives the following

ε < λm+2(ζ̂k+1 − ζ̂k) < λ2ε < (bλc + 1)2ε.

Now let z1 = λm+2ζ̂k+1 and z0 = λm+2ζ̂k, then we establish the first two terms satisfying both conditions.
Now, let us assume that it is true for the case n, i.e., there exist z0, z1, · · · , z2n−1 such that both conditions
(i) and (ii) hold. We prove that the case is true for n + 1, i.e., we construct z2k and z2k+1 in such a way
that these together with z0, z1, · · · , z2n−1 satisfy (i) and (ii). Let p be the highest even power of λ in zi for
i = 0, 1, · · · , 2n − 1. Here, one can find η ∈N such that

0 < ζη+1 − ζη <
ε
λp ,

where ζη+1 = βuη+1 + γβwη+1 and ζη = βuη + γβwη . If βuη+1 and βuη share the same term λ2n for some n ∈N,with
coefficients νη, νη+1 ∈ {0, 1, · · · , bλc} respectively and satisfying νη+1 ≤ νη, then simply choosing

β̂uη+1 = βuη+1 − νη+1λ
2n and β̂uη = βuη − νη+1λ

2n,

we have that β̂uη+1 + β̂uη ∈ Xe. Similarly, one can build β̂wη+1 and β̂wη such that βwη+1 − βwη = β̂wη+1 − β̂wη and
β̂wη+1 + β̂wη ∈ Xe. Hence, we construct the following terms

ζ̂η+1 = β̂uη+1 + γβ̂wη+1 and ζ̂η = β̂uη + γβ̂wη ,

which satisfy ζ̂η+1 + ζ̂η ∈ Ye and 0 < ζ̂η+1 − ζ̂η <
ε
λp . Let ` ∈N be an even number such that

λ`(ζ̂η+1 − ζ̂η) <
ε
λp < λ

`+2(ζ̂η+1 − ζ̂η) =⇒
ε
λp < λ

`+2(ζ̂η+1 − ζ̂η) < (bλc + 1)2 ε
λp .

Now, we choose our next candidates as z2n+1 = λp+`+2ζ̂η+1 and z2n = λp+`+2ζ̂η, which together with
z0, z1, · · · , z2n−1 satisfy both conditions (i) and (ii). Hence, the proof is completed by induction.

Lemma 3.6. For λ > A and given any ε > 0, it is possible to find a finite subsequence {ρi}
k
i=0 of {ζn} such that the

following two conditions hold

(i) ρ0 < ρ1 < · · · < ρk and ρk − ρ0 > λ.

(ii) ρi − ρi−1 < (1 + bλc)2ε for i = 1, · · · , k.

Proof. Let ε > 0 given and k >
λ
ε
. Now, we consider the sequence {zi}

2k−1
i=0 defined in Lemma 3.5 and adopt

the following construction for {ρi}
k
i=0

ρ0 =

k−1∑
i=0

z2i and ρi = ρi−1 + z2i−1 − z2i−2 for i = 1, 2, · · · , k. (25)

From first condition of Lemma 3.5, we obtain that ρi ∈ Ye for i = 0, · · · , k. Moreover, from the second
condition of Lemma 3.5, we have both cases (i) and (ii).

Theorem 3.7. The following

S(λ) = 0,

holds for λ > A.
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Proof. For given an arbitrary ε > 0, construct the finite subsequence {ρi}
k
i=0 of {ζn} defined in Lemma 3.6.

Namely, we have

ρ0 < ρ1 < · · · < ρk with ρi − ρi−1 < (1 + bλc)2ε and ρk − ρ0 > λ.

Define the set of the following form

Yo := λYe = {λζn}n∈N.

which is the collection of all odd powers of λ, and so, Yo ∩ Ye = ∅. Moreover, from Theorem 3.2, it can be
concluded that for any interval of length λ contains at least one element from the set Yo. Now, we consider
the following open intervals

Iτ := (τ, τ + (1 + bλc)2ε) ⊂ (0,∞). (26)

for τ > ρ0 + λ, and show that Iτ ∩ Y , ∅. By using above argument, one can find at least one element

ν ∈ [τ − ρ0 − λ, τ − ρ0] ∩ Yo. (27)

Here, ν consists of only odd powers and from (27), we have that

ν + ρ0 ≤ τ ≤ ν + ρk,

which means the set Iτ would contain at least one number of the form ν + ρi for some i = 0, 1, · · · , k. Since,
ν + ρi ∈ Y for all i, we have Iτ ∩ Y , ∅.

As a result, we obtain that

S(λ) ≤ (1 + bλc)2ε,

for arbitrary ε > 0. Hence, we have S(λ) = 0.

4. An Application

In this part, we consider the discrete model (1) with its controls taking from the set I. Here, the aim is
to build a finite control set I in such a way that the robot can reach nearly all points in the space. Let us
design the following two sets

Cλ = {0,±1,±2, · · · ,± bλc} and Cλ,γ = {i + jγ | i, j ∈ Cλ}, (28)

and reachable set for the model (1) with control set I

R(0,I) =
{ n∑

i=0

ciλ
i
∣∣∣∣ci ∈ I,n ∈N

}
. (29)

Firstly, let us consider the case λ = 1 for the model (1). If η is ranging in the set C1, then the reachable
set R(0,C1) of (1) would be the set of integers which is not dense in R. As a result of Lemma 2.3, for
η ∈ I = {±p,±q} where p, q are rationally independent numbers, we have that the reachable set R(0,I) of
(1) is dense in R. Therefore, for density, the control set can be designed as I = {±p,±q} for the case λ = 1.

For case λ > 1, we provide the following result for density.

Theorem 4.1. The reachable set R(0,Cλ,γ) of (1) is dense in R for λ > A.
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Proof. Let υ ∈ R be a real number and by applying division algorithm, we would have its λ expansion as

υ =

s∑
i=0

ciλ
i + rυ, where ci ∈ Cλ and 0 ≤ rυ < 1.

For rυ = 0, we have that υ ∈ R(0,Cλ,γ). Let us assume that 0 < rυ < 1.

From Theorem 3.7, for ε =
rυ
λp > 0, where p is a large integer satisfying p > s, it is possible to find k ∈ N

such that

τk − τk−1 ≈ ε for τk, τk−1 ∈ Y.

As a result,

υ =

s∑
i=0

ciλ
i + rυ ≈

s∑
i=0

ciλ
i + λpτk − λ

pτk−1.

where coefficients of right hand side belong to the set Cλ,γ, which is an element of R(0,Cλ,γ). Since, υ is
arbitrary here, we conclude that the reachable set R(0,Cλ,γ) of (1) is dense in R.
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A. Hamidoğlu, E. Mahmudov / Filomat 34:13 (2020), 4575–4587 4587

[21] E. N. Mahmudov, Optimal Control of Higher Order Differential Inclusions with Functional Constraints. ESAIM: COCV. (2019)
https://doi.org/10.1051/cocv/2019018.

[22] E. N. Mahmudov, Optimization of Mayer Problem with Sturm-Liouville Type Differential Inclusions. J. Optim. Theory Appl. 177:2
(2018) 345-375.

[23] E. N. Mahmudov, Optimization of Lagrange Problem with Higher Order Differential Inclusions and Endpoint Constraints,
Filomat 32:7 (2018) 2367—2382.

[24] E. N. Mahmudov, The optimality principle for discrete and first order partial differential inclusions, J. Math. Anal. Appl. 308
(2005) 605-–619.

[25] E. N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions, Elsevier: Boston, USA (2011).
[26] K. Shankar, J. W. Burdick, Motion Planning and Control for a Tethered, Rimless Wheel Differential Drive Vehicle, Proc. 2013

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nov. (2013) 4829–4836.
[27] P. C. Y. Wenga , F. K. H. Phoa, Calibrating Linear Continuous-Time Dynamical Systems via Perturbation Analysis, Filomat, 32:5

(2018) 1909—1915.


