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Multiple Weak Solutions for a Kind of Time-Dependent Equation
Involving Singularity
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Abstract. The existence of at least three weak solutions for a kind of nonlinear time-dependent equation
is studied. In fact, we consider the case that the source function has singularity at origin. To this aim, the
variational methods and the well-known critical points theorem are main tools.

1. Introduction

The linear Sobolev equations have a real physical background (see [5, 35, 37]) and are studied in [11, 15].
Because of their complexity, they haven’t exact solutions (except some very especial cases [3]). There
are different methods to study the solution of these problems. One of the standard methods is the fixed
point theory that investigate the existence of solutions of nonlinear boundary value problems [2, 6, 12–
14, 16, 29, 31, 34, 38]. The calculus of variation is another impressive technique and for using this technique,
one needs to show that the given boundary value problem should possess a variational structure on some
convenient spaces [1, 4, 9, 10, 17–28, 30, 32, 33, 36].

In the present paper, we study the weak solutions of
∂u
∂t −

∂(4u)
∂t = µ f (x, t,u) in Ω,

u = 0 on ∂Ω,
u(x, 0) = 1(x) x ∈ Ω,

(1)

where Ω is a non-empty bounded open subset ofRN with ∂Ω ∈ C1, µ is a positive parameter, f : Ω×R+
×R→

R is a Carathéodory function and has a singularity at the origin with respect to the time variable and
1 : Ω→ R vanishes on ∂Ω.
The aim of this paper is to find an interval for µ for which the problem (1) admits at least three distinct
weak solutions.

By integrating the first equation of (1) we get∫ t

0

∂u(x, s)
∂s

ds −
∫ t

0

∂∆u(x, s)
∂s

ds =

∫ t

0
µ f (x, s,u)ds, (2)

2010 Mathematics Subject Classification. 35J20; 34B15
Keywords. Sobolev equation, Weak solution, Critical point theory, Variational method, Singularity
Received: 29 October 2019; Accepted: 24 November 2019
Communicated by Maria Alessandra Ragusa
Email addresses: f.abdolrazaghi@edu.ikiu.ac.ir (F. Abdolrazaghi), razani@sci.ikiu.ac.ir (A. Razani),

r.mirzaei@sci.ikiu.ac.ir (R. Mirzaei)



F. Abdolrazaghi et al. / Filomat 34:13 (2020), 4567–4574 4568

or

−∆u(x, t) = µF(x, t,u) − u(x, t) + 1(x) − ∆1(x), (3)

where

F(x, t,u) =

∫ t

0
f (x, s,u)ds. (4)

The equation (3) is a time-dependent elliptic equation.

Definition 1.1. A function u : Ω→ R is called a weak solution of the problem (1) if u ∈ H1
0 and∫

Ω
∇u(x, t) · ∇v(x)dx −µ

∫
Ω

F(x, t,u(x))v(x)dx +
∫

Ω
u(x, t)v(x)dx

−

∫
Ω
1(x)v(x)dx +

∫
Ω

∆1(x)v(x)dx = 0,
(5)

for all v ∈ H1
0 and t ≥ 0.

Definition 1.2. Define the functionals ϕ, ϑ : H1
0 → R by ϕ(u) := 1

2‖u‖
2 and

ϑ(u) :=
∫

Ω
F̃(x, t,u)dx − 1

2µ

∫
Ω

(u(x, t))2 dx + 1
µ

∫
Ω
1(x)u(x, t)dx

−
1
µ

∫
Ω

∆1(x)u(x, t)dx,

respective, where F̃(x, t, η) :=
∫ η

0 F(x, t, s)ds.

Notice that ϕ and ϑ are well-defined and C1, ϕ′, ϑ′ ∈ X∗, ϕ′(u)(v) =
∫

Ω
∇u(x) · ∇v(x)dx and

ϑ′(u)(v) =
∫

Ω
F(x, t,u(x))v(x)dx − 1

µ

∫
Ω

u(x, t)v(x)dx

+ 1
µ

∫
Ω
1(x)v(x)dx − 1

µ

∫
Ω

∆1(x)v(x)dx.

Remark 1.3. A critical point of Iµ := ϕ − µϑ is exactly a weak solution of (1).

Fix q ∈ [1, 2∗[, Embedding Theorem [7] shows H1
0(Ω) c

↪→ Lq(Ω), i.e. there exists cq > 0 such that for all
u ∈ H1

0(Ω)

‖u‖Lq(Ω) ≤ cq‖u‖, (6)

where

cq ≤
meas(Ω)

2∗−q
2∗q√

N(N − 2)π

(
N!

2Γ(N/2 + 1)

) 1
N

, (7)

Γ is the Gamma function, 2∗ = 2N/(N − 2) and meas(Ω) denotes the Lebesgue measure of Ω.

2. Three weak solutions

In this section the existence of at least three weak solutions for the problem (1) is proved. Due to do this,
we apply [8, Theorem 3.6] which is given below

Theorem 2.1. (see [8], Theorem 3.6). let X be a reflexive real Banach space, Φ : X→ R be a coercive, continuously
Gateaux differentiable and sequentially weakly lower semicontinuous functional whose Gateaux derivative admits a
continuous inverse on X∗, Ψ : X→ R be a continuously Gateaux differentiable functional whose Gateaux derivative
is compact such that Φ(0) = Ψ(0) = 0. Assume that there exist r > 0 and x ∈ X, with r < Φ(x), such that:
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1.
supΦ(x)≤r Ψ(x)

r < Ψ(x)
Φ(x) ;

2. for each λ ∈ Λr :=] Φ(x)
Ψ(x) ,

r
supΦ(x)≤r Ψ(x) [ the functional Φ − λΨ is coercive.

Then, for each λ ∈ Λr, the functional Φ − λΨ has at least three distinct critical points in X.

Set

D := sup
x∈Ω

dist(x, ∂Ω), κ := D
√

2
2πN/4

(
Γ(N/2+1)

DN−(D/2)N

) 1
2 ,

K1 := 2
√

2c1(2N
−1)

D2 , K2 :=
2

q+2
2 cq

q(2N
−1)

qD2 .

(8)

Now, we can state the main result.

Theorem 2.2. Let f : Ω ×R+
×R→ R be a Carathéodory function and 1 : Ω→ R vanishes on ∂Ω. Assume

(1) There exist non-negative constants m1,m2 and q ∈]1, 2N
N−2 [ such that

F(x, t, s) ≤ m1 + m2 | s |q−1 +
1
µ

(
s − 1(x) + ∆1(x)

)
for all (x, t, s) ∈ Ω ×R+

×R.

(2) F̃(x, t, η) ≥ 1
µ

(
1
2η

2
− η1(x) + η∆1(x)

)
for every (x, t, η) ∈ Ω ×R+

×R.

(3) There exist positive constants a and b < 2 such that

F̃(x, t, η) ≤ a(1 + |η|b) +
1
µ

(1
2
η2
− η1(x) + η∆1(x)

)
.

(4) There exist positive constants α, β with β > ακ such that

infx∈Ω

(
F̃(x, t, β) − 1

µ

(
1
2β

2
− β1(x) + β∆1(x)

))
β2 > m1

K1

α
+ m2K2α

q−2,

where κ,K1,K2 are given by (8).

Then the problem (1) has at least three weak solutions in H1
0(Ω), for each parameter µ belonging to Λ(α, β) :=

2(2N
−1)

D2 × (δ1, δ2), where

δ1 := β2

infx∈Ω

(
F̃(x,t,β)− 1

µ ( 1
2 β

2−β1(x)+β∆1(x))
) and δ2 := 1

m1
K1
α +m2K2αq−2

.

Proof. Set X := H1
0(Ω) and define the functionals ϕ(u) and ϑ(u) by Definition 1.2. Clearly, ϑ and ϕ satisfy

the assumptions of [8, Theorem 3.6]. By (1)

F̃(x, t, η) ≤
1
µ

(1
2
η2
− η1(x) + η∆1(x)

)
+ m1|η| + m2

|η|q

q
(9)
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for every (x, t, η) ∈ Ω ×R+
×R. Thus

ϑ(u) :=
∫

Ω
F̃(x, t,u)dx − 1

2µ

∫
Ω

(u(x, t))2 dx + 1
µ

∫
Ω
1(x)u(x, t)dx

−
1
µ

∫
Ω

∆1(x)u(x, t)dx

≤
1
µ

∫
Ω

(
1
2 (u(x, t))2

− u(x, t)1(x) + u(x, t)∆1(x)
)

dx

+
∫

Ω

(
m1|u(x, t)| + m2

|u(x,t)|q

q

)
dx − 1

2µ

∫
Ω

(u(x, t))2 dx

+ 1
µ

∫
Ω
1(x)u(x, t)dx − 1

µ

∫
Ω

∆1(x)u(x, t)dx

≤ m1 ‖ u ‖L1(Ω) + m2
q ‖ u ‖qLq(Ω) .

Let r ∈]0,+∞[ such that ϕ(u) ≤ r. By (6),

ϑ(u) ≤

√2rc1m1 +
2

q
2 cq

qm2

q
r

q
2

 .
Set χ(r) :=

supu∈ϕ−1]−∞,r[ ϑ(u)

r . Consequently

χ(r) ≤


√

2
r

c1m1 +
2

q
2 cq

qm2

q
r

q
2−1

 , (10)

for every r > 0.
By (8), there is x0 ∈ Ω such that B(x0,D) ⊆ Ω. Set

uβ(x, t) :=


0 x ∈ Ω\B(x0,D),
2β
D (D − |x − x0|) x ∈ B(x0,D)\B(x0,D/2),
β x ∈ B(x0,D/2).

(11)

Thus uβ ∈ H1
0(Ω). So

ϕ(uβ) =
1
2

∫
Ω

|∇uβ(x, t)|2dx

=
1
2

∫
B(x0,D)\B(x0,D/2)

(2β)2

D2 dx

=
1
2

(2β)2

D2 (meas(B(x0,D)) −meas(B(x0,D/2)))

=
1
2

(2β)2

D2

πN/2

Γ(N/2 + 1)

(
DN
− (D/2)N

)
. (12)
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If we force β > ακ, by (4), α2 < ϕ(uβ) because α2 <
β2

κ2 . Also by assumption (2),

ϑ(uβ) :=
∫

Ω
F̃(x, t,uβ)dx − 1

2µ

∫
Ω

(
uβ(x, t)

)2
dx + 1

µ

∫
Ω
1(x)uβ(x, t)dx

−
1
µ

∫
Ω

∆1(x)uβ(x, t)dx

=
∫

Ω

[
F̃(x, t,uβ) − 1

µ

(
1
2 uβ(x, t)2

− 1(x)uβ(x, t) + ∆1(x)uβ(x, t)
)]

dx

≥

∫
B(x0,D/2)

[
F̃(x, t,uβ) − 1

µ

(
1
2 uβ(x, t)2

− 1(x)uβ(x, t) + ∆1(x)uβ(x, t)
)]

dx

≥ infx∈Ω

(
F̃(x, t, β) − 1

µ

(
1
2β

2
− β1(x) + β∆1(x)

))
πN/2

Γ(N/2+1)
DN

2N .

(13)

Next by dividing (12) on (13), we have

ϑ(uβ)
ϕ(uβ)

≥
D2

2(2N − 1)

infx∈Ω

(
F̃(x, t, β) − 1

µ

(
1
2β

2
− β1(x) + β∆1(x)

))
β2 . (14)

Using (10), assumption (4) implies

χ(α2) ≤ (

√
2c1m1

α
+

2
q
2 cq

qm2αq−2

q
)

=
D2

2(2N − 1)
(m1

K1

α
+ m2K2α

q−2)

<
D2

2(2N − 1)
infx∈Ω(F̃(x, t, β) −U(x, t) − G(x) −

∆

G(x))
β2

≤
ϑ(uβ)
ϕ(uβ)

.

Assuming b < 2 and considering |u|b ∈ L
2
s (Ω) for all u ∈ X, Hölder’s inequality for u ∈ X implies∫

Ω
|u(x, t)|bdx ≤‖ u ‖bL2(Ω) (meas(Ω))

2−b
2 . Therefore equation (6) shows for all u ∈ X∫

Ω

|u(x, t)|bdx ≤ cb
2 ‖ u ‖b (meas(Ω))

2−b
2 ,

and by assumption (3),

Iµ(u) = ϕ(u) − µϑ(u)

= ‖u‖2
2 − µ

∫
Ω

F̃(x, t,u)dx + 1
2

∫
Ω

(u(x, t))2 dx

−

∫
Ω
1(x)u(x, t)dx +

∫
Ω

∆1(x)u(x, t)dx

≥
‖u‖2

2 − µ
∫

Ω
a
(
1 + |u(x, t)|b

)
dx

≥
‖u‖2

2 − µacb
2(meas(Ω))

2−b
2 ‖ u ‖b −aµmeas(Ω).

This means for every µ ∈ Λ(α, β) ⊆
]
ϑ(uβ)
ϕ(uβ) ,

α2

supϕ(u)≤α2 ϑ(u)

[
, Iµ is coercive. Therefore by Theorem 2.1 for each

µ ∈ Λ(α, β) the functional Iµ has at least three distinct critical points that they are weak solutions of the
problem (1).
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3. Numerical Experiment

Now, we present an example.

 ∂u
∂t −

∂(∆u)
∂t = 1

100
99

100t

(
1 +

exp(−t)
99

)
(8 + 100u + u2) ∈ Ω,u |∂Ω= 0,

u(x, 0) = 1
1000

(
1

100 −
(
x2

1 + x2
2 + x2

3

))
x ∈ Ω,

(15)

where

Ω :=
{
(x1, x2, x3) ∈ R3, x2

1 + x2
2 + x2

3 ≤ 0.1
}
,

then µ = 0.01,N = 3,D = r = 0.1, 2∗ = 6, 1(x) = 0.001
(
0.01 −

(
x2

1 + x2
2 + x2

3

))
, ∆1(x) = −0.006 and f (x, t,u) =

99
100t

(
1 +

exp(−t)
99

)
(8 + 100u + u2). Now, setting q = 3, then

c1 ≤ 0.00445759, cq ≤ 0.171543,
κ = 1.16798, K1 ≤ 8.82557, K2 ≤ 6.66307.

Clearly F(x, t, s) = 99
100

(
1 +

exp(−t)
99

) (
8 + 100s + s2

)
, suppose m1 = 9 and m2 = 1, then the assumption (1) of the

Theorem 2.2 is satisfied, i.e.

99
100

(
1 +

exp(−t)
99

) (
8 + 100s + s2

)
≤

9 + s2 + 1
0.01

(
s − 0.001

(
0.01 −

(
x2

1 + x2
2 + x2

3

))
− 0.006

)
,

for all (x, t, s) ∈ Ω ×R+
×R.

Obviously F̃(x, t, η) = 99
100

(
1 +

exp(−t)
99

) (
8η + 50η2 +

η3

3

)
, then it can be easily verified that the assumption (2)

of the Theorem 2.2 holds, i.e. for all (x, t, s) ∈ Ω ×R+
×R

99
100

(
1 +

exp(−t)
99

) (
8η + 50η2 +

η3

3

)
≥

1
0.01

(
1
2η

2
− 0.001η

(
0.01 −

(
x2

1 + x2
2 + x2

3

))
− 0.006η

)
.

Also, by choosing a = b = 10, the assumption (3) of the Theorem 2.2 is satisfied, i.e. for all (x, t, s) ∈ Ω×R+
×R

99
100

(
1 +

exp(−t)
99

) (
8η + 50η2 +

η3

3

)
≤

10(1 + η10) + 1
0.01

(
1
2η

2
− 0.001η

(
0.01 −

(
x2

1 + x2
2 + x2

3

))
− 0.006η

)
.

More, set α = 1 and β = 500 > ακ hence, for all t ≥ 0, it is not difficult to see that

162.872 =

infx∈Ω


 99

100

(
1 +

exp(−t)
99

) (
8η + 50η2 +

η3

3

)
−

1
0.01

(
1
2η

2
− 0.001η

(
0.01 −

(
x2

1 + x2
2 + x2

3

))
− 0.006η

) 


β2

> m1K1 + m2K2 = 86.0932.

Furthermore, it is observed that µ = 0.01 ∈
]

1
162.872 ,

1
86.0932

[
, therefore the problem (15) admits at least three

week solutions in according to the Theorem 2.2.
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