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Abstract. The notion of uniform continuity in fuzzy metric spaces was first introduced by George and
Veeramani in 1995. Later, Gregori et al. gave some contributions to the theory. As a consequence of the
study, we introduce the notion of RUC fuzzy metric space. Also, necessary and sufficient conditions for a
fuzzy metric space to be an RUC fuzzy metric space are studied. In addition, several examples are given.

1. Introduction

Fuzzy metric spaces have been constructed by several authors from different points of view [3, 4, 18, 20].
In particular, Kramosil and Michalek introduced a concept of fuzzy metric with the help of continuous
t-norms in [20]. Later, George and Veeramani [4] modified in a slight but appealing way the concept given
by Kramosil and Michalek and proved that the topology generated by such a fuzzy metric is Hausdorff.
Whereafter, Gregori and Romaguera [14] showed that the topological space generated by such a fuzzy
metric is metrizable. The new version of fuzzy metric is more restrictive, but it determines the class of
spaces that are tightly connected with the class of metrizable topological spaces. Thus it is interesting to
explore it. Some classical theorems in metric spaces have been adapted to realm of fuzzy metric spaces [14],
but Gregori and Romaguera [15] proved that there are non-completable fuzzy metric spaces, which is very
different from the classical metric completion. So fuzzy metric spaces seem to be a structure that leads to a
theory which seems to be a richer one than that of metric spaces. In the past more than 10 years, Gregori et al.
[10–13, 16] gave much progress to the study of completable fuzzy metric spaces. In addition, Romaguera
and Sanchis [26] introduced a notion of fuzzy metric group and investigated properties of the quotient
subgroups of a fuzzy metric group. An arclength notion of continuous curves in fuzzy metric spaces
was proposed, and some arclength properties, including invariance, additive, continuity and boundedness
were explored by Chen et al. in [1]. Savchenko and Zarichnyi [28] studied fuzzy ultrametrics on the set
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of probability measures. Kočinac [19] gave some selection properties of fuzzy metric spaces. Other more
contributions to the study of fuzzy metric spaces can be found in [6–9, 21–25, 27, 29].

For the purpose of generalizing uniform continuity in metric spaces to realm of fuzzy metric spaces,
George and Veeramani [5] introduced the notion of uniform continuity of mappings in fuzzy metric spaces.
Later, Gregori et al. [17] gave appropriate fuzzy notions of equinormality and Lebesgue property, and
studied several characterizations of uniform continuity in fuzzy metric spaces, in the sense of George and
Veeramani. It is natural to investigate other more equivalent conditions of uniform continuity in fuzzy
metric spaces. In this paper we do it. Here, we introduce the concept of R-uniformly continuous fuzzy
metric spaces, in the sense of George and Veeramani. Also, we explore several necessary and sufficient
conditions for a fuzzy metric space to be anR-uniformly continuous fuzzy metric space. Furthermore, two
examples are given.

2. Preliminaries

Throughout the paper the letter N and R shall denote the set of all positive integers and the set of all
real numbers, respectively. Our basic reference for general topology is [2].

Definition 2.1. ([4]) A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous t-norm if it satisfies the
following conditions:

(i) ∗ is associative and commutative;
(ii) ∗ is continuous;

(iii) a ∗ 1 = a for all a ∈ [0, 1];
(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

Obviously, a ∗ b = a · b and a ∗ b = min{a, b} are two common examples of continuous t-norms.

Definition 2.2. ([4]) A 3-tuple (X,M, ∗) is said to be a fuzzy metric space if X is an arbitrary set, ∗ is a continuous
t-norm and M is a fuzzy set on X × X × (0,∞) satisfying the following conditions for all x, y, z ∈ X and
s, t ∈ (0,∞):

(i) M(x, y, t) > 0;
(ii) M(x, y, t) = 1 if and only if x = y;

(iii) M(x, y, t) = M(y, x, t);
(iv) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t + s);
(v) the function M(x, y, ·) : (0,∞)→ [0, 1] is continuous.

If (X,M, ∗) is a fuzzy metric space, (M, ∗) will be called a fuzzy metric on X.

Definition 2.3. ([4]) Let (X,M, ∗) be a fuzzy metric space and let r ∈ (0, 1), t > 0 and x ∈ X. The set

BM(x, r, t) = {y ∈ X|M(x, y, t) > 1 − r}

is called the open ball with center x and radius r with respect to t.

It is obvious that {BM(x, r, t)|x ∈ X, t > 0, r ∈ (0, 1)} forms a base of a topology τM in X. {BM(x, 1
n ,

1
n )|n ∈N}

is a neighborhood base at x for the topology τM for all x ∈ X (see [4]).

Proposition 2.4. ([4]) Let (X,M, ∗) be a fuzzy metric space. A sequence (xn) in X converges to x0 ∈ X if and only if
lim
n→∞

M(xn, x0, t) = 1 for all t > 0.

The following is straightforward.

Remark 2.5. A sequence (xn) in a fuzzy metric space (X,M, ∗) is convergent to x0 ∈ X if and only if for each
r ∈ (0, 1) and each t > 0, there exists n0 ∈N such that M(xn, x0, t) > 1 − r for all n > n0.
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Definition 2.6. ([4]) Let (X, d) be a metric space. Define a ∗ b = a · b for all a, b ∈ [0, 1], and let Md be the real
value mapping on X × X × (0,∞) defined by

Md(x, y, t) =
t

t + d(x, y)
.

Then (X,Md, ·) is a fuzzy metric space and (Md, ·) is called the standard fuzzy metric induced by d.

Definition 2.7. ([4]) Let (X,M, ∗) be a fuzzy metric space. A sequence (xn) in X is called Cauchy if for each
r ∈ (0, 1) and each t > 0, there exists n0 ∈N such that M(xn, xm, t) > 1− r for all n,m ≥ n0. (X,M, ∗) (or simply
X) is called complete if every Cauchy sequence in X is convergent with respect to τM.

Definition 2.8. ([14]) A fuzzy metric space (X,M, ∗) is called compact if (X, τM) is a compact topological
space.

3. Equivalent Conditions of Uniform Continuity

We start this section by recalling the concept of uniformly continuous on two fuzzy metric spaces.

Definition 3.1. ([5]) A mapping f from a fuzzy metric space (X1,M1, ∗1) to a fuzzy metric space (X2,M2, ∗2)
is called uniformly continuous if for each r2 ∈ (0, 1) and each t2 > 0, there exist r1 ∈ (0, 1) and t1 > 0 such that
M2( f (x), f (y), t2) > 1 − r2 whenever x, y ∈ X1 and M1(x, y, t1) > 1 − r1.

Definition 3.2. Two sequences (xn) and (yn) in a fuzzy metric space (X,M, ∗) are called asymptotic if for each
r ∈ (0, 1) and each t > 0, there exists n0 ∈N such that M(xn, yn, t) > 1 − r for all n > n0.

Clearly, for each subsequence ((xni ), (yni )) of ((xn), (yn)) in X × X, if (xn) and (yn) are asymptotic, then so
are (xni ) and (yni ). Let M(A,B, t) := sup{M(a, b, t)|a ∈ A, b ∈ B} for all A,B ⊂ X and t > 0 (see Definition 2.4
of [29]). It is immediate to see that M(A,B, t) = 1 for every t > 0 if (xn) and (yn) are asymptotic, where
A = {xn|n ∈N} and B = {yn|n ∈N}.

Lemma 3.3. Let (X,M, ∗) be a fuzzy metric space, ε ∈ (0, 1) and t > 0. Assume that (xn) and (yn) are two sequences
in X such that for each n ∈ N, M(xn, yn, t) ≤ 1 − ε. Then there exists a subsequence ((xni ), (yni )) of ((xn), (yn)) and
ε0 ∈ (0, ε) such that M(xnk , ynl ,

t
4 ) < 1 − ε0 for all k, l ∈N, where ni < n j if i < j.

Proof. Let t > 0 and 0 < ε0 < ε1 < ε < 1 with (1− ε0) ∗ (1− ε0) > 1− ε1 and (1− ε1) ∗ (1− ε1) > 1− ε. For each
n ∈N, put

Xn = {m ∈N|M(xn, ym,
t
4

) ≥ 1 − ε0},

Yn = {m ∈N|M(yn, xm,
t
4

) ≥ 1 − ε0}.

Suppose that p ∈ Xn and q ∈ Xn with p , q. Then

M(yp, yq,
t
2

) ≥M(yp, xn,
t
4

) ∗M(xn, yq,
t
4

) ≥ (1 − ε0) ∗ (1 − ε0) > 1 − ε1.

We claim that
M(xp, yq,

t
2

) < 1 − ε1,

which follows that
M(xp, yq,

t
4

) ≤M(xp, yq,
t
2

) < 1 − ε1 < 1 − ε0.

If not, then

M(xp, yp, t) ≥M(xp, yq,
t
2

) ∗M(yq, yp,
t
2

) ≥ (1 − ε1) ∗ (1 − ε1) > 1 − ε,
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which contradicts M(xn, yn, t) ≤ 1 − ε for every n ∈ N. It is easy to see that the sequence ((xni ), (yni )) is as
required if Xn is infinite for some n ∈N, where ni ∈ Xn and ni < n j if i < j. Similarly, this can be proved to Yn.
To complete the proof, it suffices to consider the case that both Xn and Yn are finite for every n ∈N. Put n1 = 1.
Let m′1 = max{m|m ∈ Xn1 ∪Yn1 } and n2 = max{n1,m′1}+ 1. Then M(xn1 , yn2 ,

t
4 ) < 1− ε0, M(xn2 , yn1 ,

t
4 ) < 1− ε0,

M(xn1 , yn1 ,
t
4 ) ≤ M(xn1 , yn1 , t) ≤ 1 − ε < 1 − ε0 and M(xn2 , yn2 ,

t
4 ) ≤ M(xn2 , yn2 , t) ≤ 1 − ε < 1 − ε0. Let

m′2 = max{m|m ∈
2⋃

j=1
(Xn j ∪ Yn j )} and n3 = max{n2,m′2} + 1. Then M(xnk , ynl ,

t
4 ) < 1 − ε0, where k, l ∈ {1, 2, 3}.

So, by induction on i, we can obtain a strictly increasing sequence (ni) of positive integers such that
M(xnk , ynl ,

t
4 ) < 1 − ε0 for all k, l ∈N. We are done.

Theorem 3.4. Let f : X → Y be a mapping between two fuzzy metric spaces (X,M, ∗) and (Y,N, ?). Then the
following are equivalent.

(i) f is uniformly continuous.
(ii) If (xn) and (yn) are asymptotic sequences in X, then ( f (xn)) and ( f (yn)) are asymptotic sequences in Y.

(iii) Let A and B be a pair of nonempty subsets of X. Then N( f (A), f (B), t) = 1 for every t > 0 if M(A,B, t) = 1 for
every t > 0.

Proof. (i) ⇒ (ii) Assume that f is uniformly continuous. Then, for each ε ∈ (0, 1) and t > 0, there exist
r ∈ (0, 1) and s > 0 such that N( f (x), f (y), t) > 1 − ε whenever x, y ∈ X and M(x, y, s) > 1 − r. Since (xn) and
(yn) are asymptotic sequences in X, we can find N0 ∈ N such that M(xn, yn, s) > 1 − r for all n > N0. So
N( f (xn), f (yn), t) > 1 − ε for all n > N0, which means that ( f (xn)) and ( f (yn)) are asymptotic sequences in Y.

(ii)⇒ (iii) Let A and B be a pair of nonempty subsets of X. Assume that M(A,B, t) = 1 for every t > 0.
Then, for each n ≥ 2, we can pick xn ∈ A and yn ∈ B such that M(xn, yn, 1

n ) > 1 − 1
n . So (xn) and (yn) are

asymptotic sequences in X. Due to (ii), ( f (xn)) and ( f (yn)) are asymptotic sequences in Y, which implies
that N( f (A), f (B), t) = 1 for every t > 0.

(iii)⇒ (i) Assume that f is not uniformly continuous. Then there exist ε0 ∈ (0, 1) and t0 > 0 such that for
each r ∈ (0, 1) and each s > 0, there exist x0, y0 ∈ X such that M(x0, y0, s) > 1− r and N( f (x0), f (y0), t0) ≤ 1−ε0.
Therefore, for each n ≥ 2, we can choose xn, yn ∈ X such that M(xn, yn, 1

n ) > 1− 1
n and N( f (xn), f (yn), t0) ≤ 1−ε0.

Without loss of generality, we may suppose that {xn|n ≥ 2} ∩ {yn|n ≥ 2} = Ø. So (xn) and (yn) are asymptotic
sequences in X. Moreover, by Lemma 3.3, we can take a subsequence ((xni ), (yni )) of ((xn), (yn)) and ε′ ∈ (0, ε0)
such that N( f (xnk ), f (ynl ),

t0
4 ) < 1 − ε′ for all k, l ∈ N, where ni < n j if i < j. Fix A = {xni |i ∈ N} and

B = {yni |i ∈N}. We deduce that N( f (A), f (B), t0
4 ) ≤ 1 − ε′ < 1. Since (xni ) and (yni ) are asymptotic sequences

in X, we get that M(A,B, t) = 1 for every t > 0. It follows from (iii) that N( f (A), f (B), t0
4 ) = 1, which is a

contradiction. We finish the proof.

4. On RUC Fuzzy Metric Spaces

In the following discussion, we always assume that the metric of R is the Euclidian metric | · |, and its
corresponding standard fuzzy metric is M|·|(x, y, t) = t

t+|x−y| .

Definition 4.1. ([17]) A fuzzy metric (M, ∗) on a set X is called equinormal if for each pair of disjoint nonempty
closed subsets A and B of (X, τM), there exists s > 0 such that sup{M(a, b, s)|a ∈ A, b ∈ B} < 1.

Definition 4.2. ([17]) A real value mapping f on a fuzzy metric space (X,M, ∗) is said to be R-uniformly
continuous provided that for each ε > 0 there exist r ∈ (0, 1) and s > 0 such that | f (x) − f (y)| < ε whenever
M(x, y, s) > 1 − r.

It is trivial to check that a mapping f from a fuzzy metric space (X,M, ∗) to the fuzzy metric space
(R,M|·|, ·) is uniformly continuous if and only if it is R-uniformly continuous.

Lemma 4.3. ([17]) Let (X,M, ∗) be a fuzzy metric space. Then every real valued continuous mapping on (X, τM) is
R-uniformly continuous if and only if (M, ∗) is an equinormal fuzzy metric on X.
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Definition 4.4. A fuzzy metric space (X,M, ∗) is said to be R-uniformly continuous (or simply RUC) if every
real valued continuous mapping on (X, τM) is R-uniformly continuous.

Immediately, we can see that each compact fuzzy metric space is RUC using the proof in [17]. However,
the converse is false in general. We illustrate this fact with an example.

Example 4.5. Let X = (0, 1). For any a, b ∈ [0, 1], denote a ∗ b = a · b. For any x, y ∈ X and t > 0, define M by

M(x, y, t) =


1, x = y,
xyt, x , y, t ≤ 1,
xy, x , y, t > 1.

Then (X,M, ∗) is a fuzzy metric space and τM is the discrete topology (see [9]). So (X,M, ∗) is RUC. However,
it is clear that (X,M, ∗) fails to be compact.

Lemma 4.6. Let (xni ) be a subsequence of a Cauchy sequence (xn) in X . If (xni ) is convergent to x0 ∈ X, then (xn) is
convergent to x0.

Proof. Let ε ∈ (0, 1) and t > 0. Then we can pick ε1 ∈ (0, ε) such that

(1 − ε1) ∗ (1 − ε1) > 1 − ε.

Since (xni ) is a subsequence, which converges to x0, of the Cauchy sequence (xn) in X , we can find n0 ∈ N
such that M(xk, xl,

t
2 ) > 1 − ε1 and M(xnk , x0, t

2 ) > 1 − ε1 whenever k, l,nk ≥ n0. Hence

M(xk, x0, t) ≥M(xk, xnk ,
t
2

) ∗M(xnk , x0,
t
2

) ≥ (1 − ε1) ∗ (1 − ε1) > 1 − ε,

which implies that (xn) converges to x0.

Lemma 4.7. Let (xn) and (yn) be two sequences in a fuzzy metric space (X,M, ∗). Let (tn) be a sequence in (0,∞)
with lim

n→∞
tn = 0 and lim

n→∞
M(xn, yn, tn) = 1. If ξ ∈ X is an accumulation point of (xn), then ξ is an accumulation

point of (yn).

Proof. Since ξ ∈ X is an accumulation point of (xn), we can choose a subsequence (xni ) of (xn) such that (xni )
converges to ξ. Let ε ∈ (0, 1) and t > 0. Then we can find ε1 ∈ (0, ε) such that

(1 − ε1) ∗ (1 − ε1) > 1 − ε.

Now, we can choose N0 ∈ N large enough such that M(xni , ξ,
t
2 ) > 1 − ε1, tni <

t
2 and M(xni , yni ,

t
2 ) ≥

M(xni , yni , tni ) > 1 − ε1 for all ni > N0. Hence

M(yni , ξ, t) ≥M(yni , xni ,
t
2

) ∗M(xni , ξ,
t
2

) ≥ (1 − ε1) ∗ (1 − ε1) > 1 − ε.

So lim
ni→∞

M(yni , ξ, t) = 1, which implies that ξ is an accumulation point of (yn).

Theorem 4.8. Let (X,M, ∗) be an RUC fuzzy metric space. Then (X,M, ∗) is complete and the set d(X) of all
accumulation points in X is compact.

Proof. Suppose that (X,M, ∗) is not complete. Then there exists a Cauchy sequence (xn) of distinct points in
X such that it does not converge in X. Put A = {x2m|m ∈ N} and B = {x2m−1|m ∈ N}. Due to Lemma 4.6, we
get that A and B is a pair of disjoint nonempty closed subsets of X. According to Lemma 4.3, we can choose
s > 0 such that sup{M(a, b, s)|a ∈ A, b ∈ B} < 1. Set ε0 = 1 − sup{M(a, b, s)|a ∈ A, b ∈ B}. Then 0 < ε0 < 1.
Hence there exists n0 ∈N such that for all n,m > n0,

M(xn, xm, s) > 1 − ε0 = sup{M(a, b, s)|a ∈ A, b ∈ B}.
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A contradiction occurs.
Next, we are going to prove that d(X) is compact. Obviously, d(X) is closed in X. Suppose that d(X) is

not compact. Then there exists a sequence (xn) of distinct points in d(X) such that any subsequence of (xn)
is not convergent. Let Xn = {xm|m , n}. Then Xn is closed. By Lemma 4.3, we can find s > 0 such that
sup{M(xn, b, s)|b ∈ Xn} < 1. Pick k(n) ∈N such that 1

k(n) < s. Put sn = min{ 1
n ,

1
k(n) }. Then

cn = sup{M(xn, b, sn)|b ∈ Xn} ≤ sup{M(xn, b, s)|b ∈ Xn} < 1.

Note that each xn is an accumulation point of X, we can choose yn ∈ X with yn , xn such that

1 > M(xn, yn, sn) > max{1 −
1

n + 1
, cn} = bn

for every n ∈N. Hence yn ∈ BM(xn, 1 − bn, sn). Notice that, for any y ∈ BM(xn, 1 − bn, sn),

M(xn, y, sn) > bn ≥ cn = sup{M(xn, b, sn)|b ∈ Xn}.

We deduce that BM(xn, 1 − bn, sn) ∩ Xn = Ø. Fix X′ = {xn|n ∈N} and Y′ = {yn|n ∈N}. Then X′ ∩ Y′ = Ø and
X′ is closed. Note that lim

n→∞
sn = 0 and lim

n→∞
M(xn, yn, sn) = 1. According to Lemma 4.6 and Lemma 4.7, we

obtain that Y′ is closed. Due to Lemma 4.3, we can take s′ > 0 such that sup{M(a, b, s′)|a ∈ X′, b ∈ Y′} < 1.
Let ε ∈ (0, 1). Then there exists m ∈N such that 1

m < min{s′, ε}. Thus

M(xm, ym, s′) ≥M(xm, ym,
1
m

) ≥M(xm, ym, sm) > bm ≥ 1 −
1

m + 1
> 1 − ε,

which is a contradiction. We are done.

Now we will show that the converse of the preceding theorem is not true, in general.

Example 4.9. Let X = [0, 1
3 ]∪N∪ {n + 1

n |n ∈N}. Then (X,M|·|, ·) is a fuzzy metric spaces. It is immediate to
see that X is complete and d(X) = [0, 1

3 ] is compact in X. Let f : X→ R be a mapping defined by

f (x) =


−1, x ∈ [0, 1

3 ],
0, x ∈N,
1, x ∈ {n + 1

n |n ∈N}.

It is straightforward to show that f is continuous. However, f is not R-uniformly continuous. In fact, fix
ε0 = 1

2 . For any r ∈ (0, 1) and s > 0, there exists N0 = [ 1−r
sr ] + 1 ∈N such that

M|·|(N0,N0 +
1

N0
, s) =

s
s + 1

N0

= 1 −
1

N0

s + 1
N0

> 1 − r.

But
| f (N0) − f (N0 +

1
N0

)| = |0 − 1| = 1 >
1
2

= ε0.

Consequently, (X,M|·|, ·) is not RUC.

5. Equivalent Characterizations of RUC Fuzzy Metric Spaces

In the section, we will study several equivalent characterizations of R-uniformly continuous fuzzy
metric spaces.

Definition 5.1. Let (X,M, ∗) be a fuzzy metric space and let r ∈ (0, 1), t > 0 and A ⊆ X. The set

BM(A, r, t) = {y ∈ X|M(A, y, t) > 1 − r}

is called the open ball with center A and radius r with respect to t.
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Theorem 5.2. Let (X,M, ∗) be a fuzzy metric space. Then (X,M, ∗) is RUC if and only if for any pair of disjoint
nonempty closed subsets A and B of X, there exist r0 ∈ (0, 1) and t0 > 0 such that BM(A, r0, t0) ∩ BM(B, r0, t0) = Ø.

Proof. Suppose that (X,M, ∗) is RUC. Let A and B be a pair of disjoint nonempty closed subsets of X.
Assume that BM(A, r, t) ∩ BM(B, r, t) , Ø for any r ∈ (0, 1) and t > 0. Then for each n ≥ 2 there exists zn ∈

BM(A, 1
n ,

1
n )∩BM(B, 1

n ,
1
n ). Therefore we can choose xn ∈ A and yn ∈ B such that zn ∈ BM(xn, 1

n ,
1
n )∩BM(yn, 1

n ,
1
n )

for every n ≥ 2. Let ε ∈ (0, 1) and s > 0. Then there exists sufficiently large N0 ∈ N such that 2
n < s and

(1 − 1
n ) ∗ (1 − 1

n ) > 1 − ε for all n > N0. Hence

M(xn, yn, s) ≥M(xn, yn,
2
n

) ≥M(xn, zn,
1
n

) ∗M(zn, yn,
1
n

) ≥ (1 −
1
n

) ∗ (1 −
1
n

) > 1 − ε

for all n > N0. It follows that sup{M(a, b, s)|a ∈ A, b ∈ B} = 1 for any s > 0, which contradicts that (X,M, ∗) is
RUC by Lemma 4.3.

Conversely, Let A and B be a pair of disjoint nonempty closed subsets of X. Suppose that there exist
r0 ∈ (0, 1) and t0 > 0 such that BM(A, r0, t0) ∩ BM(B, r0, t0) = Ø. Then BM(a, r0, t0) ∩ BM(b, r0, t0) = Ø for any
a ∈ A and b ∈ B. Hence M(a, b, t0) ≤ 1− r0 for any a ∈ A and b ∈ B, which means that sup{M(a, b, t0)|a ∈ A, b ∈
B} ≤ 1 − r0 < 1. According to Lemma 4.3, we conclude that (X,M, ∗) is RUC. The proof is finished.

Definition 5.3. Let (X,M, ∗) be a fuzzy metric space, Y ⊂ X, r ∈ (0, 1) and t > 0. Y is said to be fuzzy r discrete
with respect to t if M(x, y, t) < 1 − r whenever x, y ∈ Y and x , y.

Definition 5.4. Let (X,M, ∗) be a fuzzy metric space and Y ⊂ X. Y is called a fuzzy uniformly discrete set if it
is fuzzy r discrete with respect to t for some r ∈ (0, 1) and t > 0.

According to Zorn’s lemma, it is straightforward to show that, by the inclusion relationship of the sets,
X has a maximal subset which is fuzzy r discrete with respect to t for all r ∈ (0, 1) and t > 0.

Theorem 5.5. Let (X,M, ∗) be a fuzzy metric space. Then the following are equivalent.

(i) (X,M, ∗) is RUC.
(ii) The set d(X) of all accumulation points in X is compact and the set X\BM(d(X), r, t) is fuzzy uniformly discrete

for any r ∈ (0, 1) and t > 0.
(iii) Let (xn) be a sequence of pairwise distinct points in X. If lim

n→∞
M(xn, {xm|m , n}, s) = 1 for any s > 0, then (xn)

has an accumulation point in X.

Proof. (i)⇒ (ii) Assume that (X,M, ∗) is RUC. Then we obtain that d(X) is compact by Theorem 4.8. Suppose
that X\BM(d(X), r0, t0) is not fuzzy uniformly discrete for some r0 ∈ (0, 1) and t0 > 0. Then, for any n ≥ 2,
there exist xn, yn ∈ X\BM(d(X), r0, t0) such that M(xn, yn, 1

n ) > 1 − 1
n . Without loss of generality, we may

assume that {x2, y2, x3, y3, · · · , xn, yn, · · · } is a set of pairwise distinct points. Notice that X\BM(d(X), r0, t0)
is an isolated set. It follows that A = {xn|n ≥ 2} and B = {yn|n ≥ 2} is a pair of disjoint nonempty closed
subsets of X. By Theorem 5.2, there exist r0 ∈ (0, 1) and t0 > 0 such that BM(A, r0, t0) ∩ BM(B, r0, t0) = Ø.
Consequently, for any n ≥ 2, M(xn, yn, t0) ≤ 1− r0. On the other hand, we can take N0 ∈N such that 1

N0
< r0

and 1
N0
< t0. Then

M(xn, yn, t0) ≥M(xn, yn,
1
n

) > 1 −
1
n
> 1 − r0

for all n ≥ N0, which is a contradiction.
(ii)⇒ (iii) Assume that the set d(X) of all accumulation points in X is compact and the set X\BM(d(X), r, t)

is fuzzy uniformly discrete for any r ∈ (0, 1) and t > 0. Let (xn) be a sequence of pairwise distinct points in
X. Suppose that lim

n→∞
M(xn, {xm|m , n}, s) = 1 for any s > 0. We claim that {xn|n ∈ N} ∩ (X\BM(d(X), r, t)) is a

finite set for any r ∈ (0, 1) and t > 0. If not, we can find r0 ∈ (0, 1) and t0 > 0 such that {xni |i ∈ N} is infinite,
where {xni |i ∈ N} = {xn|n ∈ N} ∩ (X\BM(d(X), r0, t0)). Since X\BM(d(X), r0, t0) is fuzzy uniformly discrete,
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we can pick r1 ∈ (0, r0) and t1 ∈ (0, t0) such that M(x, y, t1) < 1 − r1 whenever x, y ∈ {xni |i ∈ N} and x , y.
Observe that, for any x ∈ {xni |i ∈N} and z ∈ {xn|n ∈N} ∩ BM(d(X), r0, t0),

M(x, z, t1) ≤M(x, z, t0) ≤ 1 − r0 < 1 − r1.

Thus, for each xn j ∈ {xni |i ∈N}, we get that M(xn j , {xm|m , n j}, t1) < 1 − r1. It follows that

sup{M(xn j , {xm|m , n j}, t1)| j ∈N} ≤ 1 − r1 < 1,

which contradicts lim
n→∞

M(xn, {xm|m , n}, t1) = 1. Since {xn|n ∈ N} ∩ BM(d(X), r, t) is an infinite set for any

r ∈ (0, 1) and t > 0, we can take zn ∈ {xn|n ∈ N} ∩ BM(d(X), 1
n ,

1
n ) for every n ≥ 2. Then, for any n ≥ 2,

there exists yn ∈ d(X) such that M(zn, yn, 1
n ) > 1 − 1

n . Hence lim
n→∞

M(zn, yn, 1
n ) = 1. Since d(X) is compact, we

conclude that (yn) has an accumulation point ξ ∈ X. According to Lemma 4.7, ξ is an accumulation point
of (zn). Observe that (zn) is a subsequence of (xn). We get that (xn) has an accumulation point ξ in X.

(iii)⇒ (i) Assume that (X,M, ∗) is not RUC. Due to Lemma 4.3, we can find a pair of disjoint nonempty
closed subsets A and B of X such that sup{M(a, b, t)|a ∈ A, b ∈ B} = 1 for all t > 0. Therefore, for any n ≥ 2,
there exist yn ∈ A and zn ∈ B such that M(yn, zn, 1

n ) > 1− 1
n . Hence we can obtain a sequence (xn) in X, where

xn =

{
ym, n = 2m − 3 with m ≥ 2,
zm, n = 2m − 2 with m ≥ 2.

Without loss of generality, we may assume that (xn) is a sequence of pairwise distinct points in X. Let s > 0.
Obviously, for any n ∈N, n = 2l − 3 or 2l − 2, where l ≥ 2. Now, let n be sufficiently large. If n = 2l − 3 with
1
l < s, then xn = yl, which implies that zl ∈ {xm|m , n}. Hence

M(xn, {xm|m , n}, s) = M(yl, {xm|m , n}, s) ≥M(yl, zl, s) ≥M(yl, zl,
1
l

) ≥ 1 −
1
l
.

If n = 2l − 2 with 1
l < s, then xn = zl, which implies that yl ∈ {xm|m , n}. So

M(xn, {xm|m , n}, s) = M(zl, {xm|m , n}, s) ≥M(zl, yl, s) ≥M(zl, yl,
1
l

) ≥ 1 −
1
l
.

Since l→∞when n→∞, we obtain that

lim
n→∞

M(xn, {xm|m , n}, s) ≥ lim
l→∞

(1 −
1
l

) = 1,

which means that lim
n→∞

M(xn, {xm|m , n}, s) = 1. According to (iii), we conclude that (xn) has an accumulation
point ξ ∈ X. Since A ∪ B is closed, we get that ξ ∈ A ∪ B. Without loss of generality, we may suppose
that ξ ∈ A. Thus ξ is an accumulation point of the sequence (yn). Note that lim

n→∞
M(yn, zn, 1

n ) = 1. Due to
Lemma 4.7, we deduce that ξ is an accumulation point of the sequence (zn). Hence ξ ∈ B, which implies
that ξ ∈ A ∩ B. A contradiction occurs. This completes the proof.

6. Conclusion

In this work, we have introduced the concept of RUC fuzzy metric space and given several equivalent
characterizations for a fuzzy metric space to be an RUC fuzzy metric space. Can we give other more
equivalent conditions for a fuzzy metric space to be an RUC fuzzy metric space?
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[27] J. Rodrı́guez-López, S. Romaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets Syst. 147 (2004) 273–283.
[28] A. Savchenko, M. Zarichnyi, Fuzzy ultrametrics on the set of probability measures, Topology 48 (2009) 130–136.
[29] P. Veeramani, Best approximation in fuzzy metric spaces, J. Fuzzy Math. 9 (2001) 75–80.


