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Convergence Follows From Cesàro Summability in the Case of Slowly
Decreasing or Slowly Oscillating Double Sequences in Certain Senses

Zerrin Öndera, İbrahim Çanaka

aEge University, Department of Mathematics, İzmir, Turkey

Abstract. Let (uµν) be a double sequence of real or complex numbers which is (C, 1, 1) summable to a finite
limit. We obtain some Tauberian conditions of slow decreasing or oscillating types in terms of the generator
sequences in certain senses under which P-convergence of a double sequence (uµν) follows from its (C, 1, 1)
summability. We give Tauberian theorems in which Tauberian conditions are of Hardy and Landau types
as special cases of our results. We present some Tauberian conditions in terms of the de la Vallée Poussin
means of double sequences under which P-convergence of a double sequence (uµν) follows from its (C, 1, 1)
summability. Moreover, we give analogous results for (C, 1, 0) and (C, 0, 1) summability methods.

1. Introduction

There are many definitions of convergence for double sequences. However, convergence in Pringsheim’s
sense (or P-convergence) is the most commonly used definition of convergence for double sequences. The
reason why this definition of convergence is preferred in the theory of double sequences is that it allows a
sequence to convergence depending on a condition. Since this definition is better suited for the study of
double sequences than the others, it is not surprising that many researchers interested in convergence of
double sequences benefit from this definition in their studies.

By the early 1900s while the definition of convergence in Pringsheim’s sense emerged, the extension
of the summability theory for the single sequences to the multiple sequences was in its infancy. After the
concept of double sequence was studied by Hardy [9] and Bromwich [3] in detail, studies on this newly
defined concept had gained a tremendous momentum. One of the researchers who carried on some works
on summability of double sequences, Robison [15] proved that any bounded double sequence is transformed
by a regular transformation of Cesàro type into a another bounded double sequence. Agnew [1] obtained
the extension of certain theorems on transformations of double sequences. Afterwards, Knopp [10] found
out some Tauberian results for (C, 1, 1) summable double sequences generalizing conditions which were
came up with for single sequences by Tauber [18]. Móricz [11] put forward some Tauberian theorems for
double sequences which P-convergence follows from (C, 1, 1) summability under necessary and sufficient
conditions and slow decrease conditions in certain senses. Totur [19] examined some conditions needed
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for (C, 1, 1) summable double sequences to be convergent by using different approach. Önder and Çanak
[13] attained some Tauberian conditions in terms of slow oscillation and slow decrease in certain senses,
under which convergence of a double sequence in Pringsheim’s sense follows from its statistical (C, 1, 1)
summability. In addition to these, a considerable number of researchers have attended to the question of
summability of double sequences and related topics in recent years; these include especially Fındık et al.
[8], Belen [2], Chen and Hsu [6], Edely and Mursaleen [7], Savaş [16], Totur and Çanak [20], etc.

In order that a summability method may be useful, it should be regular for some class of double
sequences. It is known that the (C, 1, 1) summability method is regular for class of bounded double
sequences, which means that every P-convergent sequence of this class is (C, 1, 1) summable to same limit.
In the present paper, we are interested in the converse conclusion from the (C, 1, 1) summability to P-
convergence, which hold only under some additional condition so-called a Tauberian condition imposed
on the double sequence. Such results concerning the (C, 1, 1) summability of double sequences has been
investigated before, for example by Knopp [10] and Totur [19]. Our main purpose in this paper is to re-
examine the question of how P-convergence is obtained from the (C, 1, 1) summability of double sequences
using an approach based on generator sequences in certain senses which are defined differently from that
adopted by Knopp [10] and Totur [19]. To motivate this, in § 2 we recall basic definitions and notations
with respect to double sequences and its Cesàro means in certain senses. Later on, we introduce generator
sequences, the Kronecker identities, emerging depends on these sequences, and de la Vallée Poussin means
for double sequences in certain senses. In § 3, we firstly present some lemmas to be benefitted in the proofs
of main results of its relevant section for double sequences. In the sequel, we establish a Tauberian theorem
for double sequences that P-convergence follows from the (C, 1, 1) summability under conditions of slow
decrease of generator sequence (V11(0)

µν (∆11u)) in certain senses and additional condition on (uµν) and we
present some corollaries related to this theorem. And also, we examine some conditions needed for the
(C, 1, 1) summable double sequences to be convergent. In § 4 and § 5 in parallel with § 3, we attain some
Tauberian results for the (C, 1, 0) and (C, 0, 1) summable double sequences, respectively.

2. Preliminaries

In this section, we begin with basic definitions and notations with respect to double sequences and its
Cesàro means in certain senses needed throughout this paper. In the sequel, we mention about how relations
exist between described notions and we construct some examples concerning statements which hold for
single sequences but not for double sequences. Besides we familiarize the generator sequences, Kronecker
identities, emerging depends on these sequences, and de la Vallée Poussin means for double sequences in
certain senses. We end this section by introducing concepts of slow decrease and slow oscillation in certain
senses and we state how a transition exists between them in the wake of defining of these concepts.

A double sequence u = (uµν) is a function u from N ×N (N is the set of natural numbers) into the set
K (K is the set of real R or complex C numbers). The real or complex number uµν denotes the value of the
function at a point (µ, ν) ∈N ×N and is called the (µ, ν)-term of the double sequence.
We denote the set of all double sequences of real and complex numbers by w2(R) and w2(C), respectively.

A double sequence (uµν) is said to be convergent in Pringsheim’s sense (or P-convergent) to ` if for every
ε > 0 there exists a positive integer ν0(ε) such that |uµν − `| < ε whenever µ, ν ≥ ν0 (see [14]). The number `
is called the Pringsheim limit of u and we denote by P − limµ,ν→∞ uµν = `.

We say that a double sequence (uµν) converges to ` if (uµν) tends to ` as both µ and ν tend to infinity
independently of one another. We denote the set of all P-convergent double sequences of real and complex
numbers by c2(R) and c2(C), respectively.

We note that convergence mentioned throughout this paper is convergence in Pringsheim’s sense.
A double sequence (uµν) is bounded if there exists a positive number M such that |uµν| < M for all µ and

ν.
We denote the set of all bounded double sequences of real and complex numbers by `2

∞(R) and `2
∞(C),

respectively.
We note that a P-convergent double sequence may not be bounded contrary to the case in single



Z. Önder, İ. Çanak / Filomat 34:13 (2020), 4489–4511 4491

sequences. For instance, the sequence (uµν) defined by

uµν =


3ν if µ = 1; ν = 0, 1, 2, . . . ,
3µ+3 if ν = 4; µ = 0, 1, 2, . . . ,
0 otherwise

is P-convergent, but it is unbounded.
For a double sequence (uµν), we define its (C, 1, 1) means by

σ11
µν(u) :=

1
(µ + 1)(ν + 1)

µ∑
i=0

ν∑
j=0

ui j (1)

for all nonnegative integers µ, ν (see [11]).
The (C, 1, 0) and (C, 0, 1) means of (uµν) are defined by

σ10
µν(u) :=

1
µ + 1

µ∑
i=0

uiν and σ01
µν(u) :=

1
ν + 1

ν∑
j=0

uµ j

for all nonnegative integers µ, ν, respectively.
A double sequence (uµν) is said to be (C, 1, 1) summable to a finite number ` if (σ11

µν(u)) converges to the same
number in Pringsheim’s sense. Similarly, the (C, 1, 0) and (C, 0, 1) summable sequences are defined.

We note that a P-convergent double sequence need not be (C, 1, 1) summable. For instance, the sequence
(uµν) defined by

uµν =


wµ if ν = 0; µ = 0, 1, 2, . . . ,
wν if µ = 0; ν = 0, 1, 2, . . . ,
0 otherwise,

where (wν) =

 ν∑
k=0

(−1)k+1k

 , is convergent to 0. On the other hand, one can check that

uµν =



−
µ
2 if ν = 0; µ = 2k, k = 0, 1, 2, . . . ,

µ+1
2 if ν = 0; µ = 2k + 1, k = 0, 1, 2, . . . ,
−
ν
2 if µ = 0; ν = 2q, q = 0, 1, 2, . . . ,

ν+1
2 if µ = 0; ν = 2q + 1, q = 0, 1, 2, . . . ,

0 otherwise.

So, we have from the definition of (C, 1, 1) means that

σ11
µν(u) =


0 if µ, ν are even,

1
2(µ+1) if µ is even, ν is odd,

1
2(ν+1) if µ is odd, ν is even,
1
4 if µ,ν are odd.

Since the limit

lim
µ,ν→∞

σ11
µν(u) = lim

µ,ν→∞

1
(µ + 1)(ν + 1)

µ∑
i=0

ν∑
j=0

ui j =

 1
4 if µ,ν are odd
0 otherwise

the sequence (σ11
µν(u)) is not convergent and hence (uµν) is not (C, 1, 1) summable.
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In addition to this, a P-convergent double sequence is (C, 1, 1) summable to its P-limit under the bound-
edness condition of double sequence (see [1]). However, the converse of this statement is not always true.
In other words, a double sequence which is (C, 1, 1) summable and bounded may not be P-convergent. An
example indicating this case was constructed by Mursaleen and Edely [12].

Throughout this paper, the symbols uµν = OL(1), uµν = O(1) and uµν = o(1) represent that (uµν) is
bounded below, bounded and P-convergent to zero as µ, ν→∞, respectively.

For a double sequence (uµν), we define

∆11uµν = ∆10∆01uµν = ∆10

(
∆01uµν

)
= ∆01

(
∆10uµν

)
= uµν − uµ,ν−1 − uµ−1,ν + uµ−1,ν−1,

∆10uµν = uµν − uµ−1,ν,

∆01uµν = uµν − uµ,ν−1

for all integers µ, ν ≥ 1.
The Kronecker identities for a sequence (uµν) are defined by

uµν − σ10
µν(u) =

1
µ + 1

µ∑
i=1

i∆10uiν =: V10(0)

µν (∆10u)

and

uµν − σ01
µν(u) =

1
ν + 1

ν∑
j=1

j∆01uµ j =: V01(0)

µν (∆01u)

for nonnegative integers µ, ν.
The double sequence (V10(0)

µν (∆10u)) is the (C, 1, 0) mean of the sequence (µ∆10uµν) and called the generator

sequence of (uµν) in the sense (1, 0). In harmony with this defining, the double sequence (V01(0)

µν (∆01u)) is the
(C, 0, 1) mean of the sequence (ν∆01uµν) and called the generator sequence of (uµν) in the sense (0, 1) (see
[10]).
More generally, the double Kronecker identity for a sequence (uµν) are defined by means of the generator
sequences (V10(0)

µν (∆10u)) and (V01(0)

µν (∆01u)) as follows:

uµν − σ11
µν(u) = V11(0)

µν (∆11u)

where

V11(0)

µν (∆11u) := V10(0)

µν (∆10u) + V01(0)

µν (∆01u) −
1

(µ + 1)(ν + 1)

µ∑
i=1

ν∑
j=1

i j∆11ui j

for nonnegative integers µ, ν.
The double sequence (V11(0)

µν (∆11u)) is called the generator sequence of (uµν) in the sense (1, 1) (cf. [2]).

In addition, the (C, 1, 1) means of integer order α ≥ 0 of sequences (uµν) and
(
V11(0)

µν (∆11u)
)

are defined by

σ11(α)

µν (u) :=


1

(µ + 1)(ν + 1)

µ∑
i=0

ν∑
j=0

σ11(α−1)

i j (u) if α ≥ 1

uµν if α = 0

and

V11(α)

µν (∆11u) :=


1

(µ + 1)(ν + 1)

µ∑
i=0

ν∑
j=0

V11(α−1)

i j (∆11u) if α ≥ 1

V11(0)

µν (∆11u) if α = 0
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respectively.
In parallel with these, the (C, 1, 0) means of integer order α ≥ 0 of sequences (uµν) and

(
V10(0)

µν (∆10u)
)

are
defined by

σ10(α)

µν (u) :=


1

µ + 1

µ∑
i=0

σ10(α−1)

iν (u) if α ≥ 1

uµν if α = 0

and

V10(α)

µν (∆10u) :=


1

µ + 1

µ∑
i=0

V10(α−1)

iν (∆10u) if α ≥ 1

V10(0)

µν (∆10u) if α = 0

respectively. Similarly, the (C, 0, 1) means of integer order α ≥ 0 of sequences (uµν) and
(
V01(0)

µν (∆01u)
)

can be
defined.
Throughout this paper, we will use the notation σ11

µν and V11(1)

µν instead of σ11(1)

µν (u) and V11(1)

µν (∆11u) for the sake
of convenience.

The de la Vallée Poussin means of a double sequence (uµν) in sense (1, 1) are defined by

τ>,11
µν (u) :=

1
(λµ − µ)(λν − ν)

λµ∑
i=µ+1

λν∑
j=ν+1

ui j, λ > 1 (2)

and

τ<,11
µν (u) :=

1
(µ − λµ)(ν − λν)

µ∑
i=λµ+1

ν∑
j=λν+1

ui j, 0 < λ < 1 (3)

for sufficiently large nonnegative integers µ, ν. Here, we denote the integral part of λµ by λµ := [λµ].
In parallel with these, the de la Vallée Poussin means of a double sequence (uµν) in sense (1, 0) are defined
by

τ>,10
µν (u) :=

1
λµ − µ

λµ∑
i=µ+1

uiν, λ > 1 (4)

and

τ<,10
µν (u) :=

1
µ − λµ

µ∑
i=λµ+1

uiν, 0 < λ < 1 (5)

for sufficiently large nonnegative integersµ, ν. Similarly, the de la Vallée Poussin means of a double sequence
(uµν) in sense (0, 1) can be defined.

At present, we define analogous concepts of Schmidt’s slow decrease and slow oscillation conditions
for sequences (uµν) of real and complex numbers in certain senses (see [17]). In the wake of defining of
these concepts, we mention about how a transition exists between them.
Let λµ := [λµ] denote the integral part of λµ. We say that a double sequence (uµν) of real numbers is slowly
decreasing in sense (1, 1) if

lim
λ→1+

lim inf
µ,ν→∞

min
µ+1≤i≤λµ
ν+1≤ j≤λν

(
ui j − uµν

)
≥ 0; (6)
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that is, for each ε > 0 there exist ν0 = ν0(ε) and λ = λ(ε) > 1 such that

ui j − uµν ≥ −ε whenever ν0 < µ < i ≤ λµ and ν0 < ν < j ≤ λν.

Condition (6) is equivalent to

lim
λ→1−

lim inf
µ,ν→∞

min
λµ<i≤µ
λν< j≤ν

(
uµν − ui j

)
≥ 0; (6′)

that is, for each ε > 0 there exist ν0 = ν0(ε) and 0 < λ = λ(ε) < 1 such that

uµν − ui j ≥ −ε whenever ν0 < λµ < i ≤ µ and ν0 < λν < j ≤ ν.

We say that a double sequence (uµν) of complex numbers is slowly oscillating in sense (1, 1) if

lim
λ→1+

lim sup
µ,ν→∞

max
µ+1≤i≤λµ
ν+1≤ j≤λν

∣∣∣ui j − uµν
∣∣∣ = 0; (7)

that is, for each ε > 0 there exist ν0 = ν0(ε) and λ = λ(ε) > 1 such that∣∣∣ui j − uµν
∣∣∣ ≤ ε whenever ν0 < µ < i ≤ λµ and ν0 < ν < j ≤ λν.

Condition (7) is equivalent to

lim
λ→1−

lim inf
µ,ν→∞

min
λµ<i≤µ
λν< j≤ν

∣∣∣uµν − ui j

∣∣∣ = 0; (7′)

that is, for each ε > 0 there exist ν0 = ν0(ε) and 0 < λ = λ(ε) < 1 such that

|uµν − ui j| ≤ ε whenever ν0 < λµ < i ≤ µ and ν0 < λν < j ≤ ν.

It can be seen from (7) that a P-convergent double sequence of complex numbers is slowly oscillating in
sense (1, 1), but converse of this is not true in general. An example indicating this situation was constructed
by Çakalli and Patterson [4].
We say that a double sequence (uµν) of real numbers is slowly decreasing in sense (1, 0) if

lim
λ→1+

lim inf
µ,ν→∞

min
µ+1≤i≤λµ

(uiν − uµν) ≥ 0, (8)

or equivalently,

lim
λ→1−

lim inf
µ,ν→∞

min
λµ<i≤µ

(uµν − uiν) ≥ 0, (8′)

besides it is said to be slowly decreasing in the strong sense (1, 0) if (8) is satisfied with

min
µ+1≤i≤λµ
ν+1≤ j≤λν

(
ui j − uµ j

)
instead of min

µ+1≤i≤λµ

(
uiν − uµν

)
. (9)

We say that a double sequence (uµν) of complex numbers is slowly oscillating in sense (1, 0) if

lim
λ→1+

lim sup
µ,ν→∞

max
µ+1≤i≤λµ

|uµν − uiν| = 0, (10)

or equivalently,

lim
λ→1−

lim sup
µ,ν→∞

max
λµ<i≤µ

|uµν − uiν| = 0, (10′)
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besides it is said to be slowly oscillating in the strong sense (1, 0) if (10) is satisfied with

max
µ+1≤i≤λµ
ν+1≤ j≤λν

∣∣∣ui j − uµ j

∣∣∣ instead of max
µ+1≤i≤λµ

∣∣∣uiν − uµν
∣∣∣ . (11)

Similarly, conditions of slow decrease and slow oscillation of double sequence (uµν) of real and complex
numbers in sense (0, 1) and the strong sense (0, 1) can be defined.

We note that if a sequence (uµν) is slowly decreasing in sense (1, 0) and slowly decreasing in the strong
sense (0, 1), then (uµν) is slowly decreasing in sense (1, 1). In harmony with this statement, we can say that
if a sequence (uµν) is slowly decreasing in sense (0, 1) and slowly decreasing in the strong sense (1, 0), then
(uµν) is slowly decreasing in sense (1, 1), as well.
In fact, assume that (uµν) is slowly decreasing in sense (0, 1) and in the strong sense (1, 0) without loss of
generality. For all large enough µ and ν, that is, µ, ν ≥ ν0 and λ > 1, we have

min
µ+1≤i≤λµ
ν+1≤ j≤λν

(
ui j − uµν

)
= min

µ+1≤i≤λµ
ν+1≤ j≤λν

(
ui j − uµ j + uµ j − uµν

)
≥ min
µ+1≤i≤λµ
ν+1≤ j≤λν

(
ui j − uµ j

)
+ min
ν+1≤ j≤λν

(
uµ j − uµν

)
. (12)

Taking the lim inf and the limit of both sides of (12) as µ, ν → ∞ and λ → 1+ respectively, we obtain that
the terms on the right-hand side of (12) are greater than 0. Thus, we arrive that (uµν) is slowly decreasing
in sense (1, 1).

Similarly, if a sequence (uµν) is slowly oscillating in sense (1, 0) and slowly oscillating in the strong sense
(0, 1), then (uµν) is slowly oscillating in sense (1, 1). In harmony with this statement, we can say that if a
sequence (uµν) is slowly oscillating in sense (0, 1) and slowly oscillating in the strong sense (1, 0), then (uµν)
is slowly oscillating in sense (1, 1), as well.
In fact, assume that (uµν) is slowly oscillating in sense (1, 0) and in the strong sense (0, 1) without loss of
generality. For all large enough µ and ν, that is, µ, ν ≥ ν0 and λ > 1, we have

max
µ+1≤i≤λµ
ν+1≤ j≤λν

∣∣∣ui j − uµν
∣∣∣ = max

µ+1≤i≤λµ
ν+1≤ j≤λν

∣∣∣ui j − uiν + uiν − uµν
∣∣∣ ≤ max

µ+1≤i≤λµ
ν+1≤ j≤λν

∣∣∣ui j − uiν

∣∣∣ + max
ν+1≤ j≤λν

∣∣∣uiν − uµν
∣∣∣ . (13)

Taking the lim sup and the limit of both sides of (13) as µ, ν → ∞ and λ → 1+ respectively, we obtain that
the terms on the right-hand side of (13) are equal to 0. Thus, we arrive that (uµν) is slowly decreasing in
sense (1, 1).

3. Some Results for the (C, 1, 1) Summable Double Sequences

This section essentially consists of two parts. In the first part, we present some lemmas to be benefited
in the proofs of main results of this section for double sequences. In the second part, we discuss various
Tauberian conditions which pave the way for a Tauberian conclusion from the (C, 1, 1) summability to
convergence for double sequences. In the sequel, we end this section by some corollaries.

3.1. Lemmas

In this subsection, we express and prove the following assertions to be utilized in the proofs of main
results of this section for double sequences. The following lemma presents two representations of difference
between the general terms of double sequences (uµν) and (σ11

µν(u)) by the aid of the de la Vallée Poussin
means of the sequence (uµν) in sense (1, 1).

Lemma 3.1. Let u = (uµν) be a double sequence.
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(i) For λ > 1 and sufficiently large µ, ν, we have

uµν − σ11
µν(u) =

(λµ + 1)(λν + 1)
(µ + 1)(ν + 1)

(
σ11
λµ,λν
− τ>,11

µν

)
−
λµ + 1
µ + 1

(
σ11
λµ,ν
− τ>,11

µν

)
−

λν + 1
ν + 1

(
σ11
µ,λν
− τ>,11

µν

)
−

(
τ>,11
µν − uµν

)
. (14)

(ii) For 0 < λ < 1 and sufficiently large µ, ν, we have

uµν − σ11
µν(u) =

(λµ + 1)(λν + 1)
(µ + 1)(ν + 1)

(
σ11
λµ,λν
− τ<,11

µν

)
−
λµ + 1
µ + 1

(
σ11
λµ,ν
− τ<,11

µν

)
−

λν + 1
ν + 1

(
σ11
µ,λν
− τ<,11

µν

)
+

(
uµν − τ<,11

µν

)
. (15)

Proof. (i) For λ > 1, we have

τ>,11
µν (u) =

1
(λµ − µ)(λν − ν)

λµ∑
i=µ+1

λν∑
j=ν+1

ui j

=
1

(λµ − µ)(λν − ν)



λµ∑
i=0

−

µ∑
i=0


 λν∑

j=0

−

ν∑
j=0


 ui j

=
1

(λµ − µ)(λν − ν)


λµ∑
i=0

λν∑
j=0

−

λµ∑
i=0

ν∑
j=0

−

µ∑
i=0

λν∑
j=0

+

µ∑
i=0

ν∑
j=0

 ui j

=
(λµ + 1)(λν + 1)
(λµ − µ)(λν − ν)

σ11
λµ,λν
−

(λµ + 1)(ν + 1)
(λµ − µ)(λν − ν)

σ11
λµ,ν

−
(µ + 1)(λν + 1)

(λµ − µ)(λν − ν)
σ11
µ,λν

+
(µ + 1)(ν + 1)

(λµ − µ)(λν − ν)
σ11
µ,ν (16)

for sufficiently large µ, ν. It follows from equation (16) that

−σ11
µν(u) =

(λµ + 1)(λν + 1)
(µ + 1)(ν + 1)

σ11
λµ,λν
−
λµ + 1
µ + 1

σ11
λµ,ν
−
λν + 1
ν + 1

σ11
µ,λν

−
(λµ − µ)(λν − ν)

(µ + 1)(ν + 1)
τ>,11
µν

=
(λµ + 1)(λν + 1)

(µ + 1)(ν + 1)
σ11
λµ,λν
−
λµ + 1
µ + 1

σ11
λµ,ν
−
λν + 1
ν + 1

σ11
µ,λν

−

[
(λµ + 1)(λν + 1)

(µ + 1)(ν + 1)
−
λµ + 1
µ + 1

−
λν + 1
ν + 1

+ 1
]
τ>,11
µν

=
(λµ + 1)(λν + 1)

(µ + 1)(ν + 1)

(
σ11
λµ,λν
− τ>,11

µν

)
−
λµ + 1
µ + 1

(
σ11
λµ,ν
− τ>,11

µν

)
−

λν + 1
ν + 1

(
σ11
µ,λν
− τ>,11

µν

)
− τ>,11

µν (17)

for sufficiently large µ, ν. If we add the term uµν to both sides of equality (17), we complete the proof of (i).
(ii) This is similar to the proof of part (i) of Lemma 3.1.

In the next lemma proved by Totur [19], the difference between the general terms of double sequences
(uµν) and (σ11

µν(u)) interprets differently from the statement given in Lemma 3.1.
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Lemma 3.2. ([11], Lemma 1) Let u = (uµν) be a double sequence.

(i) For λ > 1 and sufficiently large µ, ν, we have

uµν − σ11
µν(u) =

(λµ + 1)(λν + 1)
(λµ − µ)(λν − ν)

(
σ11
λµ,λν
− σ11

λµ,ν
− σ11

µ,λν
+ σ11

µν

)
+

λµ + 1
λµ − µ

(
σ11
λµ,ν
− σ11

µν

)
+
λν + 1
λν − ν

(
σ11
µ,λν
− σ11

µν

)
−

1
(λµ − µ)(λν − ν)

λµ∑
i=µ+1

λν∑
j=ν+1

(
ui j − uµν

)
.

(ii) For 0 < λ < 1 and sufficiently large µ, ν, we have

uµν − σ11
µν(u) =

(λµ + 1)(λν + 1)
(µ − λµ)(ν − λν)

(
σ11
µν − σ

11
λµ,ν
− σ11

µ,λν
+ σ11

λµ,λν

)
+

λµ + 1
µ − λµ

(
σ11
µν − σ

11
λµ,ν

)
+
λν + 1
ν − λν

(
σ11
µν − σ

11
µ,λν

)
+

1
(µ − λµ)(ν − λν)

µ∑
i=λµ+1

ν∑
j=λν+1

(
uµν − ui j

)
.

To be also evaluated as a result of Lemma 3.2, the below-mentioned representations were obtained
by Totur [19] during the demonstration of the de la Vallée Poussin means of double sequence (uµν) being
(C, 1, 1) summable to ` are convergent to same number.

Lemma 3.3. ([19], Lemma 4) Let u = (uµν) be a double sequence.

(i) For λ > 1 and sufficiently large µ, ν, we have

τ>,11
µν (u) − σ11

µν(u) =
(λµ + 1)(λν + 1)
(λµ − µ)(λν − ν)

(
σ11
λµ,λν
− σ11

λµ,ν
− σ11

µ,λν
+ σ11

µν

)
+

λµ + 1
λµ − µ

(
σ11
λµ,ν
− σ11

µν

)
+
λν + 1
λν − ν

(
σ11
µ,λν
− σ11

µν

)
.

(ii) For 0 < λ < 1 and sufficiently large µ, ν, we have

τ<,11
µν (u) − σ11

µν(u) =
(λµ + 1)(λν + 1)
(µ − λµ)(ν − λν)

(
σ11
λµ,λν
− σ11

λµ,ν
− σ11

µ,λν
+ σ11

µν

)
+

λµ + 1
µ − λµ

(
σ11
µν − σ

11
λµ,ν

)
+
λν + 1
ν − λν

(
σ11
µν − σ

11
µ,λν

)
.

In [5], Çanak proved that a generator sequence is convergent under some suitable conditions. Inspiring
this theorem given for the single sequences, we indicate under which conditions a double generator
sequence of (uµν) in sense (1, 1) is P-convergent.
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Lemma 3.4. For a double sequence u = (uµν) of real numbers, let the assumptions

lim
λ→1+

lim inf
µ,ν→∞

(
σ11
λµ,ν
− τ>,11

µν

)
≥ 0, lim

λ→1+
lim inf
µ,ν→∞

(
σ11
µ,λν
− τ>,11

µν

)
≥ 0,

lim
λ→1+

lim sup
µ,ν→∞

(
σ11
λµ,λν
− τ>,11

µν

)
≤ 0

(18)

and

lim
λ→1−

lim sup
µ,ν→∞

(
σ11
λµ,ν
− τ<,11

µν

)
≤ 0, lim

λ→1−
lim sup
µ,ν→∞

(
σ11
µ,λν
− τ<,11

µν

)
≤ 0,

lim
λ→1−

lim inf
µ,ν→∞

(
σ11
λµ,λν
− τ<,11

µν

)
≥ 0

(19)

hold. If the conditions

lim
λ→1+

lim inf
µ,ν→∞

(
τ>,11
µν − uµν

)
≥ 0 (20)

and

lim
λ→1−

lim inf
µ,ν→∞

(
uµν − τ<,11

µν

)
≥ 0 (21)

are satisfied, then the generator sequence (V11(0)

µν (∆11u)) is P-convergent to 0.

Proof. Assume that conditions (18)-(21) are satisfied. In order to prove that
(V11(0)

µν (∆11u)) is P-convergent to 0, we examine difference between the general terms of sequences (uµν)
and (σ11

µν(u)) in two cases λ > 1 and 0 < λ < 1. We firstly consider the case λ > 1. If we take the lim sup of
both sides of identity (14) as µ, ν→∞, then we obtain that for each λ > 1

lim sup
µ,ν→∞

(
uµν − σ11

µν(u)
)
≤ lim sup

µ,ν→∞

(λµ + 1)(λν + 1)
(µ + 1)(ν + 1)

lim sup
µ,ν→∞

(
σ11
λµ,λν
− τ>,11

µν

)
+ lim sup

µ,ν→∞

λµ + 1
µ + 1

lim sup
µ,ν→∞

(
−

(
σ11
λµ,ν
− τ>,11

µν

))
+ lim sup

µ,ν→∞

λν + 1
ν + 1

lim sup
µ,ν→∞

(
−

(
σ11
µ,λν
− τ>,11

µν

))
+ lim sup

µ,ν→∞

(
−

(
τ>,11
µν − uµν

))
= λ2 lim sup

µ,ν→∞

(
σ11
λµ,λν
− τ>,11

µν

)
− λ lim inf

µ,ν→∞

(
σ11
λµ,ν
− τ>,11

µν

)
− λ lim inf

µ,ν→∞

(
σ11
µ,λν
− τ>,11

µν

)
− lim inf

µ,ν→∞

(
τ>,11
µν − uµν

)
because of that

lim
µ→∞

λµ + 1
µ + 1

= λ and lim
ν→∞

λν + 1
ν + 1

= λ. (22)

If we take the limit of both sides of the last inequality as λ→ 1+, we get

lim sup
µ,ν→∞

(
uµν − σ11

µν(u)
)
≤ lim

λ→1+
lim sup
µ,ν→∞

(
σ11
λµ,λν
− τ>,11

µν

)
− lim

λ→1+
lim inf
µ,ν→∞

(
σ11
λµ,ν
− τ>,11

µν

)
− lim

λ→1+
lim inf
µ,ν→∞

(
σ11
µ,λν
− τ>,11

µν

)
− lim

λ→1+
lim inf
µ,ν→∞

(
τ>,11
µν − uµν

)
.
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From assumptions in (18) and (20), it follows that

lim sup
µ,ν→∞

(
uµν − σ11

µν(u)
)
≤ 0. (23)

On the other hand, we consider the case 0 < λ < 1. If we take the lim inf of both sides of identity (15) as
µ, ν→∞, then we obtain that for each 0 < λ < 1

lim inf
µ,ν→∞

(
uµν − σ11

µν(u)
)
≥ lim inf

µ,ν→∞

(λµ + 1)(λν + 1)
(µ + 1)(ν + 1)

lim inf
µ,ν→∞

(
σ11
λµ,λν
− τ<,11

µν

)
+ lim inf

µ,ν→∞

λµ + 1
µ + 1

lim inf
µ,ν→∞

(
−

(
σ11
λµ,ν
− τ<,11

µν

))
+ lim inf

µ,ν→∞

λν + 1
ν + 1

lim inf
µ,ν→∞

(
−

(
σ11
µ,λν
− τ<,11

µν

))
+ lim inf

µ,ν→∞

(
uµν − τ<,11

µν

)
= λ2 lim inf

µ,ν→∞

(
σ11
λµ,λν
− τ<,11

µν

)
− λ lim sup

µ,ν→∞

(
σ11
λµ,ν
− τ<,11

µν

)
− λ lim sup

µ,ν→∞

(
σ11
µ,λν
− τ<,11

µν

)
+ lim inf

µ,ν→∞

(
uµν − τ<,11

µν

)
because of limits in (22). If we take the limit of both sides of last inequality as λ→ 1−, we get

lim inf
µ,ν→∞

(
uµν − σ11

µν(u)
)
≥ lim

λ→1−
lim inf
µ,ν→∞

(
σ11
λµ,λν
− τ<,11

µν

)
− lim

λ→1−
lim sup
µ,ν→∞

(
σ11
λµ,ν
− τ<,11

µν

)
− lim

λ→1−
lim sup
µ,ν→∞

(
σ11
µ,λν
− τ<,11

µν

)
+ lim

λ→1−
lim inf
µ,ν→∞

(
uµν − τ<,11

µν

)
.

From assumptions in (19) and (21), it follows that

lim inf
µ,ν→∞

(
uµν − σ11

µν(u)
)
≥ 0. (24)

If we combine inequalities (23) with (24), we conclude

lim
µ,ν→∞

(
uµν − σ11

µν(u)
)

= 0

which means by the double Kronecker identity that (V11(0)

µν (∆11u)) is P- convergent to 0.

3.2. Main Results

In this subsection, we prove a Tauberian theorem for double sequences that P-convergence follows from
the (C, 1, 1) summability under the conditions of slow decrease of the generator sequence (V11(0)

µν (∆11u)) in
certain senses and additional condition on (uµν) and we present some corollaries related to this theorem. In
the sequel, we end this part by giving some Tauberian conditions for the (C, 1, 1) summability method.

Theorem 3.5. Let a bounded double sequence (uµν) be (C, 1, 1) summable to a number `. If its generator sequence
(V11(0)

µν (∆11u)) is slowly decreasing in sense (0, 1) (or (1, 0)) and slowly decreasing in the strong sense (1, 0) (or (0, 1)),
then (uµν) is P- convergent to `.
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Proof. Suppose that a bounded double sequence (uµν) is (C, 1, 1) summable to ` and (V11(0)

µν (∆11u)) is slowly
decreasing in sense (0, 1) and slowly decreasing in the strong sense (1, 0) without loss of generality. In order
to prove that (uµν) is P-convergent to same number, we firstly indicate that (V11(0)

µν (∆11u)) is P-convergent to
0. Since (σ11

µν(u)) is P-convergent to ` and the (C, 1, 1) summability method is regular under the boundedness
condition of the sequence (uµν), we obtain that (σ11(2)

µν (u)) is also convergent to same number. It follows
from the double Kronecker identity that (V11(1)

µν (∆11u)) is P-convergent to 0. For λ > 1, if we replace uµν by
V11(0)

µν (∆11u) in Lemma 3.2 (i), we obtain

V11(0)

µν − V11(1)

µν =
(λµ + 1)(λν + 1)
(λµ − µ)(λν − ν)

(
V11(1)

λµ,λν
− V11(1)

λµ,ν
− V11(1)

µ,λν
+ V11(1)

µν

)
+

λµ + 1
λµ − µ

(
V11(1)

λµ,ν
− V11(1)

µν

)
+
λν + 1
λν − ν

(
V11(1)

µ,λν
− V11(1)

µν

)
−

1
(λµ − µ)(λν − ν)

λµ∑
i=µ+1

λν∑
j=ν+1

(
V11(0)

i j − V11(0)

µν

)
=

(λµ + 1)(λν + 1)
(λµ − µ)(λν − ν)

(
V11(1)

λµ,λν
− V11(1)

λµ,ν
− V11(1)

µ,λν
+ V11(1)

µν

)
+

λµ + 1
λµ − µ

(
V11(1)

λµ,ν
− V11(1)

µν

)
+
λν + 1
λν − ν

(
V11(1)

µ,λν
− V11(1)

µν

)
−

1
(λµ − µ)(λν − ν)

λµ∑
i=µ+1

λν∑
j=ν+1

(
V11(0)

i j − V11(0)

µ j

)

−
1

(λµ − µ)(λν − ν)

λµ∑
i=µ+1

λν∑
j=ν+1

(
V11(0)

µ j − V11(0)

µν

)
≤

(λµ + 1)(λν + 1)
(λµ − µ)(λν − ν)

(
V11(1)

λµ,λν
− V11(1)

λµ,ν
− V11(1)

µ,λν
+ V11(1)

µν

)
+

λµ + 1
λµ − µ

(
V11(1)

λµ,ν
− V11(1)

µν

)
+
λν + 1
λν − ν

(
V11(1)

µ,λν
− V11(1)

µν

)
− min

µ<i≤λµ
ν< j≤λν

(
V11(0)

i j − V11(0)

µ j

)
− min
ν< j≤λν

(
V11(0)

µ j − V11(0)

µν

)
(25)

for sufficiently large enough µ, ν. Considering that (V11(1)

µν (∆11u)) is P-convergent to 0,

lim
µ→∞

λµ + 1
λµ − µ

=
λ

λ − 1
and lim

ν→∞

λν + 1
λν − ν

=
λ

λ − 1
,

if we take the lim sup of both sides of inequality (25) as µ, ν→∞, then we reach

lim sup
µ,ν→∞

(
V11(0)

µν − V11(1)

µν

)
≤ − lim inf

µ,ν→∞
min
µ<i≤λµ
ν< j≤λν

(
V11(0)

i j − V11(0)

µ j

)
− lim inf

µ,ν→∞
min
ν< j≤λν

(
V11(0)

µ j − V11(0)

µν

)
.

If we take the limit of both sides of last inequality as λ→ 1+, then we find

lim sup
µ,ν→∞

(
V11(0)

µν − V11(1)

µν

)
≤ − lim

λ→1+
lim inf
µ,ν→∞

min
µ<i≤λµ
ν< j≤λν

(
V11(0)

i j − V11(0)

µ j

)
− lim
λ→1+

lim inf
µ,ν→∞

min
ν< j≤λν

(
V11(0)

µ j − V11(0)

µν

)
≤ 0 (26)



Z. Önder, İ. Çanak / Filomat 34:13 (2020), 4489–4511 4501

due to the fact that (V11(0)

µν (∆11u)) is slowly decreasing in sense (0, 1) and slowly decreasing in the strong
sense (1, 0). Following a similar procedure to above for 0 < λ < 1, if we replace uµν by V11(0)

µν (∆11u) in Lemma
3.2 (ii), we obtain

V11(0)

µν − V11(1)

µν =
(λµ + 1)(λν + 1)
(µ − λµ)(ν − λν)

(
V11(1)

µν − V11(1)

λµ,ν
− V11(1)

µ,λν
+ V11(1)

λµ,λν

)
+

λµ + 1
µ − λµ

(
V11(1)

µν − V11(1)

λµ,ν

)
+
λν + 1
ν − λν

(
V11(1)

µν − V11(1)

µ,λν

)
+

1
(µ − λµ)(ν − λν)

µ∑
i=λµ+1

ν∑
j=λν+1

(
V11(0)

µν − V11(0)

i j

)
=

(λµ + 1)(λν + 1)
(µ − λµ)(ν − λν)

(
V11(1)

µν − V11(1)

λµ,ν
− V11(1)

µ,λν
+ V11(1)

λµ,λν

)
+

λµ + 1
µ − λµ

(
V11(1)

µν − V11(1)

λµ,ν

)
+
λν + 1
ν − λν

(
V11(1)

µν − V11(1)

µ,λν

)
+

1
(µ − λµ)(ν − λν)

µ∑
i=λµ+1

ν∑
j=λν+1

(
V11(0)

µν − V11(0)

µ j

)
+

1
(µ − λµ)(ν − λν)

µ∑
i=λµ+1

ν∑
j=λν+1

(
V11(0)

µ j − V11(0)

i j

)
≥

(λµ + 1)(λν + 1)
(µ − λµ)(ν − λν)

(
V11(1)

µν − V11(1)

λµ,ν
− V11(1)

µ,λν
+ V11(1)

λµ,λν

)
+

λµ + 1
µ − λµ

(
V11(1)

µν − V11(1)

λµ,ν

)
+
λν + 1
ν − λν

(
V11(1)

µν − V11(1)

µ,λν

)
+ min

λν< j≤ν

(
V11(0)

µν − V11(0)

µ j

)
+ min
λµ<i≤µ
λν< j≤ν

(
V11(0)

µ j − V11(0)

i j

)
(27)

for sufficiently large enough µ, ν. Considering that (V11(1)

µν (∆11u)) is P-convergent to 0,

lim
µ→∞

λµ + 1
µ − λµ

=
λ

1 − λ
and lim

ν→∞

λν + 1
ν − λν

=
λ

1 − λ
,

if we take the lim inf of both sides of inequality (27) as µ, ν→∞, then we reach

lim inf
µ,ν→∞

(
V11(0)

µν − V11(1)

µν

)
≥ lim inf

µ,ν→∞
min
λν< j≤ν

(
V11(0)

µν − V11(0)

µ j

)
+ lim inf

µ,ν→∞
min
λµ<i≤µ
λν< j≤ν

(
V11(0)

µ j − V11(0)

i j

)
.

If we take the limit of both sides of last inequality as λ→ 1−, then we find

lim inf
µ,ν→∞

(
V11(0)

µν − V11(1)

µν

)
≥ lim
λ→1−

lim inf
µ,ν→∞

min
λν< j≤ν

(
V11(0)

µν − V11(0)

µ j

)
+ lim
λ→1−

lim inf
µ,ν→∞

min
λµ<i≤µ
λν< j≤ν

(
V11(0)

µ j − V11(0)

i j

)
≥ 0 (28)

due to the fact that (V11(0)

µν (∆11u)) is slowly decreasing in sense (0, 1) and slowly decreasing in the strong
sense (1, 0). If we combine inequalities (26) with (28), we conclude

lim
µ,ν→∞

V11(0)

µν (∆11u) = lim
µ,ν→∞

V11(1)

µν (∆11u).

Because (V11(1)

µν (∆11u)) is P-convergent to 0, (V11(0)

µν (∆11u)) is also P-convergent to 0, which means from the
double Kronecker identity that (uµν) is P-convergent to `.
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In consideration of Theorem 3.5, we can state the following corollary.

Corollary 3.6. Let a bounded double sequence (uµν) be (C, 1, 1) summable to a number `. If conditions

µ∆10V11(0)

µν (∆11u) ≥ −C

and

ν∆01V11(0)

µν (∆11u) ≥ −C

are satisfied for some C ≥ 0, then (uµν) is P-convergent to `.

Analogous results for double sequences of complex numbers can be formulated as follow.

Theorem 3.7. Let a bounded double sequence (uµν) be (C, 1, 1) summable to a number `. If its generator sequence
(V11(0)

µν (∆11u)) is slowly oscillating in sense (0, 1) (or (1, 0)) and slowly oscillating in the strong sense (1, 0) (or (0, 1)),
then (uµν) is P-convergent to `.

In consideration of Theorem 3.7, we can state the following corollary.

Corollary 3.8. Let a bounded double sequence (uµν) be (C, 1, 1) summable to a number `. If conditions

|µ∆10V11(0)

µν (∆11u)| ≤M

and

|ν∆01V11(0)

µν (∆11u)| ≤M

are satisfied for some M ≥ 0, then (uµν) is P-convergent to `.

Before finishing this subsection, we examine some conditions needed for the (C, 1, 1) summable double
sequences to be convergent.

Theorem 3.9. Let a double sequence (uµν) be (C, 1, 1) summable to a number `. If conditions

lim
λ→1+

lim inf
µ,ν→∞

(
τ>,11
µν − uµν

)
≥ 0 (29)

and

lim
λ→1−

lim inf
µ,ν→∞

(
uµν − τ<,11

µν

)
≥ 0 (30)

are satisfied, then (uµν) is P-convergent to `.

Proof. Suppose that a double sequence (uµν) is (C, 1, 1) summable to ` and conditions (29) and (30) are
satisfied. In order to prove that (uµν) is P-convergent to same number, it is enough to indicate that
conditions in (18) and (19) are verified. For λ > 1, we have from Lemma 3.3 (i)

σ11
λµ,ν
− τ>,11

µν =
(λµ + 1)(λν + 1)
(λµ − µ)(λν − ν)

(
σ11
λµ,ν
− σ11

λµ,λν
− σ11

µν + σ11
µ,λν

)
+

µ + 1
λµ − µ

(
σ11
µν − σ

11
λµ,ν

)
+
λν + 1
λν − ν

(
σ11
µν − σ

11
µ,λν

)
. (31)

for sufficiently large µ, ν. Considering that (σ11
µν(u)) is P-convergent to ` and

lim
µ→∞

λµ + 1
λµ − µ

=
λ

λ − 1
and lim

µ→∞

µ + 1
λµ − µ

=
1

λ − 1
, (32)
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if we take the lim inf of both sides of equality (31) as µ, ν→∞, then we reach

lim inf
µ,ν→∞

(
σ11
λµ,ν
− τ>,11

µν

)
≥

(
λ

λ − 1

)2

lim inf
µ,ν→∞

(
σ11
λµ,ν
− σ11

λµ,λν
− σ11

µν + σ11
µ,λν

)
+

1
λ − 1

lim inf
µ,ν→∞

(
σ11
µν − σ

11
λµ,ν

)
+

λ
λ − 1

lim inf
µ,ν→∞

(
σ11
µν − σ

11
µ,λν

)
.

If we take the limit of both sides of last inequality as λ→ 1+, then we find

lim
λ→1+

lim inf
µ,ν→∞

(
σ11
λµ,ν
− τ>,11

µν

)
≥ 0.

In the same vein, for λ > 1, we have from Lemma 3.3 (i)

σ11
µ,λν
− τ>,11

µν =
(λµ + 1)(λν + 1)
(λµ − µ)(λν − ν)

(
σ11
λµ,ν
− σ11

λµ,λν
− σ11

µν + σ11
µ,λν

)
+

λµ + 1
λµ − µ

(
σ11
µν − σ

11
λµ,ν

)
+
ν + 1
λν − ν

(
σ11
µν − σ

11
µ,λν

)
(33)

for sufficiently large µ, ν. Considering that (σ11
µν(u)) is P-convergent to ` and limits in (32) exist, if we take

the lim inf of both sides of equality (33) as µ, ν→∞, then we reach

lim inf
µ,ν→∞

(
σ11
µ,λν
− τ>,11

µν

)
≥

(
λ

λ − 1

)2

lim inf
µ,ν→∞

(
σ11
λµ,ν
− σ11

λµ,λν
− σ11

µν + σ11
µ,λν

)
+

λ
λ − 1

lim inf
µ,ν→∞

(
σ11
µν − σ

11
λµ,ν

)
+

1
λ − 1

lim inf
µ,ν→∞

(
σ11
µν − σ

11
µ,λν

)
.

If we take the limit of both sides of last inequality as λ→ 1+, then we find

lim
λ→1+

lim inf
µ,ν→∞

(
σ11
µ,λν
− τ>,11

µν

)
≥ 0.

In addition to what is attained above, for λ > 1, we have from Lemma 3.3 (i)

σ11
λµ,λν
− τ>,11

µν =
(µ + 1)(λν + 1)

(λµ − µ)(λν − ν)

(
σ11
µ,λν
− σ11

λµ,λν

)
+

(λµ + 1)(ν + 1)
(λµ − µ)(λν − ν)

(
σ11
λµ,ν
− σ11

µν

)
+

ν + 1
λν − ν

(
σ11
µν − σ

11
λµ,λν

)
(34)

sufficiently large µ, ν. Considering that (σ11
µν(u)) is P-convergent to ` and limits in (32) exist, if we take the

lim sup of both sides of equality (34) as µ, ν→∞, then we reach

lim sup
µ,ν→∞

(
σ11
λµ,λν
− τ>,11

µν

)
≤

λ

(λ − 1)2 lim sup
µ,ν→∞

(
σ11
µ,λν
− σ11

λµ,λν

)
+

λ

(λ − 1)2 lim sup
µ,ν→∞

(
σ11
λµ,ν
− σ11

µν

)
+

1
λ − 1

lim sup
µ,ν→∞

(
σ11
µν − σ

11
λµ,λν

)
.
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If we take the limit of both sides of last inequality as λ→ 1+, then we find

lim
λ→1+

lim sup
µ,ν→∞

(
σ11
λµ,λν
− τ>,11

µν

)
≤ 0.

Thus, we can declare that conditions in (18) are verified. Following a similar procedure to above for
0 < λ < 1, we can observe that conditions in (19) are also verified. In that case, we obtain from Lemma
3.4 that (V11(0)

µν (∆11u)) is P-convergent to 0. Therefore, we conclude from the double Kronecker identity that
(uµν) is P-convergent to `.

4. Some Results for the (C, 1, 0) Summable Double Sequences

This section essentially consists of two parts. In the first part, we present some lemmas to be benefited
in the proofs of main results of this section for double sequences. In the second part, we discuss various
Tauberian conditions which pave the way for a Tauberian conclusion from the (C, 1, 0) summability to
convergence for double sequences. In the sequel, we end this section by some corollaries.

4.1. Lemmas

In this subsection, we express and prove the following assertions to be utilized in the proofs of main
results of this section for double sequences. The following lemma presents two representations of difference
between the general terms of double sequences (uµν) and (σ10

µν(u)) by means of the de la Vallée Poussin means
of the sequence (uµν) in sense (1, 0).

Lemma 4.1. Let u = (uµν) be a double sequence.

(i) For λ > 1 and sufficiently large µ, ν, we have

uµν − σ10
µν(u) = −

λµ + 1
µ + 1

(
σ10
λµ,ν
− τ>,10

µν

)
−

(
τ>,10
µν − uµν

)
. (35)

(ii) For 0 < λ < 1 and sufficiently large µ, ν, we have

uµν − σ10
µν(u) = −

λµ + 1
µ + 1

(
σ10
λµ,ν
− τ<,10

µν

)
+

(
uµν − τ<,10

µν

)
. (36)

Proof. (i) For λ > 1, we have

τ>,10
µν (u) =

1
λµ − µ

λµ∑
i=µ+1

uiν =
1

λµ − µ


λµ∑
i=0

−

µ∑
i=0

 uiν

=
λµ + 1
λµ − µ

σ10
λµ,ν
−
µ + 1
λµ − µ

σ10
µ,ν (37)

for sufficiently large µ, ν. It follows from equation (37) that

−σ10
µν(u) = −

λµ + 1
µ + 1

σ10
λµ,ν

+
λµ − µ

µ + 1
τ>,10
µν

= −
λµ + 1
µ + 1

σ10
λµ,ν

+

[
λµ + 1
µ + 1

− 1
]
τ>,10
µν

= −
λµ + 1
µ + 1

(
σ10
λµ,ν
− τ>,10

µν

)
− τ>,10

µν (38)

for sufficiently large µ, ν. If we add the term uµν to both sides of equality (38), we complete the proof of (i).
(ii) This is similar to the proof of part (i) of Lemma 4.1.
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In the next lemma being a consequence of Lemma 3.2, the difference between the general terms of double
sequences (uµν) and (σ10

µν(u)) interprets differently from the statement given in Lemma 4.1.

Lemma 4.2. ([11], Lemma 2) Let u = (uµν) be a double sequence.

(i) For λ > 1 and sufficiently large µ, ν, we have

uµν − σ10
µν(u) =

λµ + 1
λµ − µ

(
σ10
λµ,ν
− σ10

µν

)
−

1
λµ − µ

λµ∑
i=µ+1

(
uiν − uµν

)
.

(ii) For 0 < λ < 1 and sufficiently large µ, ν, we have

uµν − σ10
µν(u) =

λµ + 1
µ − λµ

(
σ10
µν − σ

10
λµ,ν

)
+

1
µ − λµ

µ∑
i=λµ+1

(
uµν − uiν

)
.

Lemma 4.3. ([19], Lemma 4) Let u = (uµν) be a double sequence.

(i) For λ > 1 and sufficiently large µ, ν, we have

τ>,10
µν (u) − σ10

µν(u) =
λµ + 1
λµ − µ

(
σ10
λµ,ν
− σ10

µν

)
.

(ii) For 0 < λ < 1 and sufficiently large µ, ν, we have

τ<,10
µν (u) − σ10

µν(u) =
λµ + 1
µ − λµ

(
σ10
µν − σ

10
λµ,ν

)
.

In [5], Çanak proved that a generator sequence is convergent under some suitable conditions. Inspiring
this theorem given for the single sequences, we indicate under which conditions a double generator
sequence of (uµν) in sense (1, 0) is P-convergent.

Lemma 4.4. For a double sequence u = (uµν) of real numbers, let the assumptions

lim
λ→1+

lim inf
µ,ν→∞

(
σ10
λµ,ν
− τ>,10

µν

)
≥ 0 and lim

λ→1−
lim sup
µ,ν→∞

(
σ10
λµ,ν
− τ<,10

µν

)
≤ 0 (39)

hold. If the conditions

lim
λ→1+

lim inf
µ,ν→∞

(
τ>,10
µν − uµν

)
≥ 0 (40)

and

lim
λ→1−

lim inf
µ,ν→∞

(
uµν − τ<,10

µν

)
≥ 0 (41)

are satisfied, then the generator sequence (V10(0)

µν (∆10u)) is P-convergent to 0.

Proof. Assume that conditions (39)-(41) are satisfied. In order to prove that
(V10(0)

µν (∆10u)) is P-convergent to 0, we examine difference between the general terms of sequences (uµν)
and (σ10

µν(u)) in two cases λ > 1 and 0 < λ < 1. We firstly consider the case λ > 1. If we take the lim sup of
both sides of equality (35) as µ, ν→∞, then we obtain that for each λ > 1

lim sup
µ,ν→∞

(
uµν − σ10

µν(u)
)
≤ lim sup

µ,ν→∞

λµ + 1
µ + 1

lim sup
µ,ν→∞

(
−

(
σ10
λµ,ν
− τ>,10

µν

))
+ lim sup

µ,ν→∞

(
−

(
τ>,10
µν − uµν

))
= −λ lim inf

µ,ν→∞

(
σ10
λµ,ν
− τ>,10

µν

)
− lim inf

µ,ν→∞

(
τ>,10
µν − uµν

)
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because of that

lim
µ→∞

λµ + 1
µ + 1

= λ. (42)

If we take the limit of both sides of last inequality as λ→ 1+, we get

lim sup
µ,ν→∞

(
uµν − σ10

µν(u)
)
≤ − lim

λ→1+
lim inf
µ,ν→∞

(
σ10
λµ,ν
− τ>,10

µν

)
− lim
λ→1+

lim inf
µ,ν→∞

(
τ>,10
µν − uµν

)
.

From assumptions in (39) and (40), it follows that

lim sup
µ,ν→∞

(
uµν − σ10

µν(u)
)
≤ 0. (43)

On the other hand, we consider the case 0 < λ < 1. If we take the lim inf of both sides of equality (36) as
µ, ν→∞, then we obtain that for each 0 < λ < 1

lim inf
µ,ν→∞

(
uµν − σ10

µν(u)
)
≥ lim inf

µ,ν→∞

λµ + 1
µ + 1

lim inf
µ,ν→∞

(
−

(
σ10
λµ,ν
− τ<,10

µν

))
+ lim inf

µ,ν→∞

(
uµν − τ<,10

µν

)
= −λ lim sup

µ,ν→∞

(
σ10
λµ,ν
− τ<,10

µν

)
+ lim inf

µ,ν→∞

(
uµν − τ<,10

µν

)
because of limit in (42). If we take the limit of both sides of last inequality as λ→ 1−, we get

lim inf
µ,ν→∞

(
uµν − σ10

µν(u)
)
≥ − lim

λ→1−
lim sup
µ,ν→∞

(
σ10
λµ,ν
− τ<,10

µν

)
+ lim
λ→1−

lim inf
µ,ν→∞

(
uµν − τ<,10

µν

)
.

From assumptions in (39) and (41), it follows that

lim inf
µ,ν→∞

(
uµν − σ10

µν(u)
)
≥ 0. (44)

If we combine inequalities (43) with (44), we conclude

lim
µ,ν→∞

(
uµν − σ10

µν(u)
)

= 0

which means by the double Kronecker identity that (V10(0)

µν (∆10u)) is P-convergent to 0.

4.2. Main Results

In this subsection, we prove a Tauberian theorem for double sequences that P-convergence follows from
the (C, 1, 0) summability under the conditions of slow decrease of the generator sequence (V10(0)

µν (∆10u)) in
sense (1, 0) and we present some corollaries related to this theorem. In the sequel, we end this part by
giving some Tauberian conditions for the (C, 1, 0) summability method.

Theorem 4.5. Let a double sequence (uµν) be (C, 1, 0) summable to a number `. If the generator sequence (V10(0)

µν (∆10u))
is slowly decreasing in sense (1, 0), then (uµν) is P-convergent to `.

Proof. Suppose that a double sequence (uµν) is (C, 1, 0) summable to ` and (V10(0)

µν (∆10u)) is slowly decreasing in
sense (1, 0). In order to prove that (uµν) is P- convergent to same number, we firstly indicate that (V10(0)

µν (∆10u))
is P-convergent to 0. Since (σ10

µν(u)) is P-convergent to ` and the (C, 1, 0) summability method is regular, we
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obtain that (σ10(2)

µν (u)) is also convergent to same number. It follows from the double Kronecker identity that
(V10(1)

µν (∆10u)) is P-convergent to 0. For λ > 1, if we replace uµν by V10(0)

µν (∆10u) in Lemma 4.2 (i), we obtain

V10(0)

µν (∆10u) − V10(1)

µν (∆10u) =
λµ + 1
λµ − µ

(
V10(1)

λµ,ν
− V10(1)

µν

)
−

1
λµ − µ

λµ∑
i=µ+1

(
V10(0)

iν − V10(0)

µν

)
≤

λµ + 1
λµ − µ

(
V10(1)

λµ,ν
− V10(1)

µν

)
− min
µ<i≤λµ

(
V10(0)

iν − V10(0)

µν

)
. (45)

for sufficiently large µ, ν. Considering that (V10(1)

µν (∆10u)) is P-convergent to 0 and

lim
µ→∞

λµ + 1
λµ − µ

=
λ

λ − 1

if we take the lim sup of both sides of inequality (45) as µ, ν→∞, then we reach

lim sup
µ,ν→∞

(
V10(0)

µν (∆0u) − V10(1)

µν (∆10u)
)
≤ − lim inf

µ,ν→∞
min
µ<i≤λµ

(
V10(0)

iν − V10(0)

µν

)
.

If we take the limit of both sides of last inequality as λ→ 1+, then we find

lim sup
µ,ν→∞

(
V10(0)

µν (∆10u) − V10(1)

µν (∆10u)
)
≤ − lim

λ→1+
lim inf
µ,ν→∞

min
µ<i≤λµ

(
V10(0)

iν − V10(0)

µν

)
≤ 0 (46)

due to the fact that (V10(0)

µν (∆10u)) is slowly decreasing in sense (1, 0). Following a similar procedure to above
for 0 < λ < 1, if we replace uµν by V10(0)

µν (∆10u) in Lemma 4.2 (ii), we obtain

V10(0)

µν (∆10u) − V10(1)

µν (∆10u) =
λµ + 1
µ − λµ

(
V10(1)

µν − V10(1)

λµ,ν

)
+

1
µ − λµ

µ∑
i=λµ+1

(
V10(0)

µν − V10(0)

iν

)
≥

λµ + 1
µ − λµ

(
V10(1)

µν − V10(1)

λµ,ν

)
+ min
λµ<i≤µ

(
V10(0)

µν − V10(0)

iν

)
. (47)

for sufficiently large µ, ν. Considering that (V10(1)

µν (∆10u)) is P-convergent to 0 and

lim
µ→∞

λµ + 1
µ − λµ

=
λ

1 − λ

if we take the lim inf of both sides of inequality (47) as µ, ν→∞, then we reach

lim inf
µ,ν→∞

(
V10(0)

µν (∆10u) − V10(1)

µν (∆10u)
)
≥ lim inf

µ,ν→∞
min
µ<i≤λµ

(
V10(0)

µν − V10(0)

iν

)
.

If we take the limit of both sides of last inequality as λ→ 1−, then we find

lim inf
µ,ν→∞

(
V10(0)

µν (∆10u) − V10(1)

µν (∆10u)
)
≥ lim
λ→1−

lim inf
µ,ν→∞

min
µ<i≤λµ

(
V10(0)

µν − V10(0)

iν

)
≥ 0 (48)

due to the fact that (V10(0)

µν (∆10u)) is slowly decreasing in sense (1, 0). If we combine inequalities (46) with
(48), we conclude

lim
µ,ν→∞

V10(0)

µν (∆10u) = lim
µ,ν→∞

V10(1)

µν (∆10u).

Because (V10(1)

µν (∆10u)) is P- convergent to 0, (V10(0)

µν (∆10u)) is also P-convergent to 0, which means from the
double Kronecker identity that (uµν) is P-convergent to `.
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In consideration of Theorem 4.5, we can state the following corollary.

Corollary 4.6. Let a double sequence (uµν) be (C, 1, 0) summable to a number `. If condition

µ∆10V10(0)

µν (∆10u) ≥ −C

is satisfied for some C ≥ 0, then (uµν) is P-convergent to `.

Analogous results for double sequences of complex numbers can be formulated as follow.

Theorem 4.7. Let a double sequence (uµν) be (C, 1, 0) summable to a number `. If its generator sequence (V10(0)

µν (∆10u))
is slowly oscillating in sense (1, 0), then (uµν) is P-convergent to `.

In consideration of Theorem 4.7, we can state the following corollary.

Corollary 4.8. Let a double sequence (uµν) be (C, 1, 0) summable to a number `. If condition

|µ∆10V10(0)

µν (∆10u)| ≤M

is satisfied for some M ≥ 0, then (uµν) is P-convergent to `.

Before finishing this subsection, we examine some conditions needed for the (C, 1, 0) summable double
sequences to be convergent.

Theorem 4.9. Let a double sequence (uµν) be (C, 1, 0) summable to a number `. If conditions

lim
λ→1+

lim inf
µ,ν→∞

(
τ>,10
µν − uµν

)
≥ 0 (49)

and

lim
λ→1−

lim inf
µ,ν→∞

(
uµν − τ<,10

µν

)
≥ 0 (50)

are satisfied, then (uµν) is P-convergent to `.

Proof. Suppose that a double sequence (uµν) is (C, 1, 0) summable to ` and conditions (49) and (50) are
satisfied. In order to prove that (uµν) is P-convergent to same number, it is enough to indicate that
conditions in (39) are verified. For λ > 1, we have from Lemma 3.3 (i)

σ10
λµ,ν
− τ>,10

µν =
µ + 1
λµ − µ

(
σ10
µν − σ

10
λµ,ν

)
(51)

for sufficiently large µ, ν. Considering that (σ10
µν(u)) is P-convergent to `,

lim
µ→∞

λµ + 1
λµ − µ

=
λ

λ − 1
, (52)

if we take the lim inf of both sides of equality (51) as µ, ν→∞, then we reach

lim inf
µ,ν→∞

(
σ10
λµ,ν
− τ>,10

µν

)
≥

1
λ − 1

lim inf
µ,ν→∞

(
σ10
µν − σ

10
λµ,ν

)
.

If we take the limit of both sides of last inequality as λ→ 1+, then we find

lim
λ→1+

lim inf
µ,ν→∞

(
σ10
λµ,ν
− τ>,10

µν

)
≥ 0.

Thus, we can declare that the first of conditions in (39) is verified. Following a similar procedure to above
for 0 < λ < 1, we can observe that second one is also verified. In that case, we obtain from Lemma 4.4 that
(V10(0)

µν (∆10u)) is P-convergent to 0. Therefore, we conclude from the double Kronecker identity that (uµν) is
P-convergent to `.
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5. Some Results for the (C, 0, 1) Summable Double Sequences

This section essentially consists of two parts. In the first part, we present some lemmas to be benefited
in the proofs of main results of this section for double sequences. In the second part, we discuss various
Tauberian conditions which pave the way for a Tauberian conclusion from the (C, 0, 1) summability to
convergence for double sequences. In the sequel, we end this section by some corollaries.

5.1. Lemmas

In this subsection, we express and prove the following assertions to be utilized in the proofs of main
results of this section for double sequences. The following lemma presents two representations of difference
between the general terms of double sequences (uµν) and (σ01

µν(u)) by the aid of the de la Vallée Poussin
means of the sequence (uµν) in sense (0, 1).

Lemma 5.1. Let u = (uµν) be a double sequence.

(i) For λ > 1 and sufficiently large µ, ν, we have

uµν − σ01
µν(u) = −

λν + 1
ν + 1

(
σ01
µ,λν
− τ>,01

µν

)
−

(
τ>,01
µν − uµν

)
. (53)

(ii) For 0 < λ < 1 and sufficiently large µ, ν, we have

uµν − σ01
µν(u) = −

λν + 1
ν + 1

(
σ01
µ,λν
− τ<,01

µν

)
+

(
uµν − τ<,01

µν

)
. (54)

Proof. This is similar to the proof of parts (i) and (ii) of Lemma 4.1.

In the next lemma being a consequence of Lemma 3.2, the difference between the general terms of double
sequences (uµν) and (σ01

µν(u)) interprets differently from the statement given in Lemma 5.1.

Lemma 5.2. ([19], Lemma 5) Let u = (uµν) be a double sequence.

(i) For λ > 1 and sufficiently large µ, ν, we have

uµν − σ01
µν(u) =

λν + 1
λν − ν

(
σ01
µ,λν
− σ01

µν

)
−

1
λν − ν

λν∑
j=ν+1

(
uµ j − uµν

)
.

(ii) For 0 < λ < 1 and sufficiently large µ, ν, we have

uµν − σ01
µν(u) =

λν + 1
ν − λν

(
σ01
µν − σ

01
µ,λν

)
+

1
ν − λν

ν∑
j=λν+1

(
uµν − uµ j

)
.

Lemma 5.3. ([19], Lemma 4) Let u = (uµν) be a double sequence.

(i) For λ > 1 and sufficiently large µ, ν, we have

τ>,01
µν − σ

01
µν(u) =

λν + 1
λν − ν

(
σ01
µ,λν
− σ01

µν

)
.

(ii) For 0 < λ < 1 and sufficiently large µ, ν, we have

τ<,01
µν − σ

01
µν(u) =

λν + 1
ν − λν

(
σ01
µν − σ

01
µ,λν

)
.
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In [5], Çanak proved that a generator sequence is convergent under some suitable conditions. Inspiring this
theorem given for the single sequences, we indicate under which conditions a double generator sequence
of (uµν) in sense (0, 1) is P-convergent.

Lemma 5.4. For a double sequence u = (uµν) of real numbers, let the assumptions

lim
λ→1+

lim inf
µ,ν→∞

(
σ01
µ,λν
− τ>,01

µν

)
≥ 0 and lim

λ→1−
lim sup
µ,ν→∞

(
σ01
µ,λν
− τ<,01

µν

)
≤ 0 (55)

hold. If the conditions

lim
λ→1+

lim inf
µ,ν→∞

(
τ>,01
µν − uµν

)
≥ 0 (56)

and

lim
λ→1−

lim inf
µ,ν→∞

(
uµν − τ<,01

µν

)
≥ 0 (57)

are satisfied, then the generator sequence (V01(0)

µν (∆01u)) is P-convergent to 0.

Proof. This is similar to the proof of Lemma 4.4.

5.2. Main Results

In this subsection, we prove a Tauberian theorem for double sequences that P-convergence follows from
the (C, 0, 1) summability under the conditions of slow decrease of the generator sequence (V01(0)

µν (∆01u)) in
sense (0, 1) and we present some corollaries related to this theorem. In the sequel, we end this part by
giving some Tauberian conditions for the (C, 0, 1) summability method.

Theorem 5.5. Let a double sequence (uµν) be (C, 0, 1) summable to a number `. If its generator sequence (V010

µν (∆01u))
is slowly decreasing in sense (0, 1), then (uµν) is P-convergent to `.

Proof. This is similar to the proof of Theorem 4.5.

In consideration of Theorem 5.5, we can state the following corollary.

Corollary 5.6. Let a double sequence (uµν) be (C, 0, 1) summable to a number `. If condition

µ∆01V01(0)

µν (∆01u) ≥ −C

is satisfied for some C ≥ 0, then (uµν) is P-convergent to `.

Analogous results for double sequences of complex numbers can be formulated as follow.

Theorem 5.7. Let a bounded double sequence (uµν) be (C, 0, 1) summable to a number `. If its generator sequence
(V01(0)

µν (∆01u)) is slowly oscillating in sense (0, 1), then (uµν) is P-convergent to `.

In consideration of Theorem 5.7, we can state the following corollary.

Corollary 5.8. Let a double sequence (uµν) be (C, 0, 1) summable to a number `. If condition

|µ∆01V01(0)

µν (∆01u)| ≤M

is satisfied for some M ≥ 0, then (uµν) is P-convergent to `.

Before finishing this subsection, we examine some conditions needed for the (C, 0, 1) summable double
sequences to be convergent.
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Theorem 5.9. Let a double sequence (uµν) be (C, 0, 1) summable to a number `. If conditions

lim
λ→1+

lim inf
µ,ν→∞

(
τ>,01
µν − uµν

)
≥ 0 (58)

and

lim
λ→1−

lim inf
µ,ν→∞

(
uµν − τ<,01

µν

)
≥ 0 (59)

are satisfied, then (uµν) is P-convergent to `.

Proof. This is similar to the proof of Theorem 4.9.

6. Conclusion

In this paper, we have obtained several Tauberian conditions in terms of the generator sequences in
certain senses under which P-convergence of a double sequences follows from its (C, 1, 1) summability.
Similar results have been given for (C, 1, 0) and (C, 0, 1) summability methods. In a forthcoming work, we
plan to obtain analogous results for the weighted mean of double sequences.
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