
Filomat 34:13 (2020), 4399–4417
https://doi.org/10.2298/FIL2013399L

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, using the monotone iterative technique and the Banach contraction mapping
principle, we study a class of fractional differential system with integral boundary on an infinite interval.
Some explicit monotone iterative schemes for approximating the extreme positive solutions and the unique
positive solution are constructed.

1. Introduction

The purpose of this paper is to study monotone iterative schemes of positive solutions for the following
fractional differential system with integral boundary conditions

Dα1 u(t) + f1(t,u(t), v(t),Dα1−1u(t),Dα2−1v(t)) = 0, n1 − 1 < α1 ≤ n1,
Dα2 v(t) + f2(t,u(t), v(t),Dα1−1u(t),Dα2−1v(t)) = 0, n2 − 1 < α2 ≤ n2,

u(0) = u′(0) = · · · = u(n1−2)(0) = 0,Dα1−1u(+∞) =

∫ +∞

0
h1(t)u(t)dt,

v(0) = v′(0) = · · · = v(n2−2)(0) = 0,Dα2−1v(+∞) =

∫ +∞

0
h2(t)v(t)dt,

(1)

where t ∈ J = [0,+∞), fi ∈ C(J × R × R × R × R, J),ni ∈ N+, hi(t) ∈ L[0,+∞),Dαi are the standard Riemann-
Liouville fractional derivative of order αi, i = 1, 2. Here we emphasize that the nonlinearity terms fi rely on
the lower-order fractional derivative of multiple unknown functions and the fractional infinite boundary
value rely on the infinite integral of unknown functions.

In recent decades, there has been a rapid growth in the number of fractional calculus from both theoretical
and applied perspectives, more detailed description of the subject can be found in the books [1–4]. We note
that most of the current results on the existence of fractional differential equations are focused on the finite
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interval, see [5–23]. On the other hand, some authors have also focused on the solvability of fractional
differential equations on the infinite intervals, some excellent results were obtained, see [24–36].

In [27] by applying standard fixed point theorems, the authors obtained the existence and uniqueness
of solutions for a coupled system of fractional differential equations with m-point fractional boundary
conditions 

Dpu(t) + f (t, v(t)) = 0, p ∈ (2, 3),
Dqv(t) + 1(t,u(t)) = 0, q ∈ (2, 3),
u(0) = u′(0) = 0, Dp−1u(+∞) =

∑m−2
i=1 βiu(ξi),

v(0) = v′(0) = 0, Dq−1v(+∞) =
∑m−2

i=1 γiv(ξi),

where t ∈ J = [0,+∞), f , 1 ∈ C(J×R,R), 0 < ξ1 < ξ2 < · · · < ξm−2 < +∞, βi, γi > 0, such that 0 <
∑m−2

i=1 βiu(ξi) <
Γ(p) and 0 <

∑m−2
i=1 γiv(ξi) < Γ(q), Dp,Dq are the Riemann-Liouville fractional derivatives.

In [30] Zhai and Ren studied a coupled system of fractional differential equations on an unbounded
domain:



Dαu(t) + ϕ(t, v(t),Dγ1 v(t)) = 0, α ∈ (2, 3], γ1 ∈ (0, 1),
Dβv(t) + ψ(t,u(t),Dγ2 u(t)) = 0, β ∈ (2, 3], γ2 ∈ (0, 1),

I3−αu(0) = 0, Dα−2u(0) =

∫ h

0
11(s)u(s)ds, Dα−1u(+∞) = Mu(ξ) + a,

I3−βv(0) = 0, Dβ−2v(0) =

∫ h

0
12(s)v(s)ds, Dβ−1v(+∞) = Nv(η) + b,

(2)

where t ∈ J = [0,+∞), ϕ, ψ ∈ C(J ×R ×R,J),M,N are real numbers satisfying 0 < Mξα−1 < Γ(α), 0 < Nηβ−1 <
Γ(β), ξ, η, h > 0, and a, b ∈ R+, 11, 12 ∈ L1[0, h] are nonnegative functions. By applying fixed point theorems,
sufficient conditions for the existence and uniqueness of solutions to the system (2) are provided , which is
a natural expansion of the results in [28].

In [33] Zhang et al. applied a monotone iterative method to study a nonlinear fractional boundary value
problem on a half line {

Dαu(t) + f (t,u(t),Dα−1u(t)) = 0, α ∈ (1, 2],
u(0) = 0, Dα−1u(+∞) = βu(ξ), β > 0,

where t ∈ J = [0,+∞), f ∈ C(J × R × R,R). The positive extremal solutions and iterative sequence for
approximating them are derived. A similar approach is used in [37–41].

Motivated by the mentioned papers, an interesting and a nature question is if we know the existence of
solution for the system (1), how can we seek it? This thought motivates the research of iterative schemes of
positive solutions for the system (1).

By using the monotone iterative method, in this paper we establish two explicit monotone iterative
schemes for approximating the extreme positive solutions and construct an explicit iterative schemes for
approximating the unique positive solution, which are more interesting and meaningful than the traditional
design route that obtains the existence of solutions. Here we obtain not only the existence of the solution
for the system, but also the iterative schemes of the solution. Furthermore, we extend the iterative solution
problem of a single equation to the system which is different from [11, 26, 30, 34, 37–41]. Finally, the main
results extend the fractional derivative from the low-order to the high-order fractional derivatives.

2. Preliminaries

We first introduce the hypotheses that will play an important role in subsequent proof.

(H1) hi(t) ∈ L[0,+∞) and
∫ +∞

0
hi(t)tαi−1dt = Λi < Γ(αi), fi(t, 0, 0, 0, 0) . 0,∀t ∈ J, i = 1, 2.

(H2) The nonnegative functions ai0(t), aik(t) ∈ L[0,+∞) and constants λik ≥ 0 satisfy

| fi(t,u1,u2,u3,u4)| ≤ ai0(t) +

4∑
k=1

aik(t)|uk|
λik ,∀t ∈ J, uk ∈ R, i = 1, 2, k = 1, 2, 3, 4.
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and ∫ +∞

0
ai0(t)dt = a∗i0 < +∞,

∫ +∞

0
ai3(t)dt = a∗i3 < +∞,

∫ +∞

0
ai4(t)dt = a∗i4 < +∞,∫ +∞

0
ai1(t)(1 + tα1−1)λi1 dt = a∗i1 < +∞,

∫ +∞

0
ai2(t)(1 + tα2−1)λi2 dt = a∗i2 < +∞, i = 1, 2.

(H3) The nonnegative functions bik(t) ∈ L[0,+∞) satisfy

| fi(t,u1,u2,u3,u4) − fi(t, ū1, ū2, ū3, ū4)| ≤
4∑

k=1

bik(t)|uk − ūk|,

∀t ∈ J, uk, ūk ∈ R, i = 1, 2, k = 1, 2, 3, 4.

and ∫ +∞

0
bi1(t)(1 + tα1−1)dt = b∗i1 < +∞,

∫ +∞

0
bi2(t)(1 + tα2−1)dt = b∗i2 < +∞,∫ +∞

0
bi3(t)dt = b∗i3 < +∞,

∫ +∞

0
bi4(t)dt = b∗i4 < +∞,

∫ +∞

0
| fi(t, 0, 0, 0, 0)|dt = τi < +∞, i = 1, 2.

(H4) Functions fi(t,u1,u2,u3,u4) are increasing with respect to the variables u1,u2,u3,u4,∀t ∈ J, i = 1, 2.
Next we list some definitions and lemmas that are helpful to the proof of principal theorems.
Definition 2.1(see [1, 3]). The Riemann-Liouville fractional integral of order q > 0 for an integrable

function 1 is defined as

Iq1(x) =
1

Γ(q)

∫ x

0
(x − t)q−11(t)dt,

provided that the integral exists.
Definition 2.2.(see [1, 3]) The Riemann-Liouville fractional derivative of order q > 0 for an integrable

function 1 is defined as

Dq1(x) =
1

Γ(n − q)

( d
dx

)n
∫ x

0
(x − t)n−q−11(t)dt,

where n = [q] + 1, [α] is the smallest integer greater than or equal to α, provided that the right-hand side is
pointwise defined on (0,+∞).

Lemma 2.1.(see [1, 3]) Let q > 0 and u ∈ C(0, 1) ∩ L(0, 1). Then the general solution of fractional
differential equation Dqu(t) = 0 is

u(t) = c1tq−1 + c2tq−2 + · · · + cntq−n,

where ci ∈ R, i = 1, 2, · · · ,n and n − 1 < q < n.

Lemma 2.2. Let yi ∈ C[0,+∞) with
∫ +∞

0
hi(t)tαi−1dt , Γ(αi),ni − 1 < αi ≤ ni, i = 1, 2. Then the fractional

differential system boundary value problem

Dα1 u(t) + y1(t) = 0, n1 − 1 < α1 ≤ n1,
Dα2 v(t) + y2(t) = 0, n2 − 1 < α2 ≤ n2,

u(0) = u′(0) = · · · = u(n1−2)(0) = 0,Dα1−1u(+∞) =

∫ +∞

0
h1(t)u(t)dt,

v(0) = v′(0) = · · · = v(n2−2)(0) = 0,Dα2−1v(+∞) =

∫ +∞

0
h2(t)v(t)dt,

(3)

has the integral representation
u(t) =

∫ +∞

0
K1(t, s)y1(s)ds,

v(t) =

∫ +∞

0
K2(t, s)y2(s)ds,

(4)
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where

Ki(t, s) = Ki1(t, s) + Ki2(t, s), i = 1, 2. (5)

with

Ki1(t, s) =
1

Γ(αi)

{
tαi−1

− (t − s)αi−1, 0 ≤ s ≤ t ≤ +∞,
tαi−1, 0 ≤ t ≤ s ≤ +∞,

(6)

Ki2(t, s) =
tαi−1

Γ(αi) −Λi

∫ +∞

0
hi(t)Ki1(t, s)dt. (7)

Proof. From Lemma 2.1, we can turn differential system (3) into an equivalent integral system{
u(t) = −Iα1 y1(t) + c11tα1−1 + c12tα1−2 + . . . + c1n1 tα1−n1 ,
v(t) = −Iα2 y2(t) + c21tα2−1 + c22tα2−2 + . . . + c2n2 tα2−n2 ,

(8)

where c11, c12, · · · , c1n1 , c21, c22, · · · , c2n2 are arbitrary constants. With the help of conditions u(0) = u′(0) =
· · · = u(n1−2)(0) = 0 and v(0) = v′(0) = · · · = v(n2−2)(0) = 0, it is easy to know that c12 = c13 = · · · = c1n1 = c22 =
c23 = · · · = c2n2 = 0. From (8) we have

u(t) = −
1

Γ(α1)

∫ t

0
(t − s)α1 y1(s)ds + c11tα1−1,

v(t) = −
1

Γ(α2)

∫ t

0
(t − s)α2 y2(s)ds + c21tα2−1.

(9)

Then 
Dα1−1u(t) = c11Γ(α1) −

∫ t

0
y1(s)ds,

Dα2−1v(t) = c21Γ(α2) −
∫ t

0
y2(s)ds.

(10)

Hence
Dα1−1u(+∞) = c11Γ(α1) −

∫ +∞

0
y1(s)ds,

Dα2−1v(+∞) = c21Γ(α2) −
∫ +∞

0
y2(s)ds.

(11)

Based on the conditions Dα1−1u(+∞) =
∫ +∞

0 h1(t)u(t)dt and Dα2−1v(+∞) =
∫ +∞

0 h2(t)v(t)dt, we have
c11 =

1
Γ(α1)

∫ +∞

0
h1(t)u(t)dt +

1
Γ(α1)

∫ +∞

0
y1(s)ds,

c21 =
1

Γ(α2)

∫ +∞

0
h2(t)v(t)dt +

1
Γ(α2)

∫ +∞

0
y2(s)ds.

(12)

Submitting (12) to (10), we know

u(t) = −
1

Γ(α1)

∫ t

0
(t − s)α1 y1(s)ds +

tα1−1

Γ(α1)

[ ∫ +∞

0
h1(t)u(t)dt +

∫ +∞

0
y1(s)ds

]
=

∫
∞

0
K11(t, s)y1(s)ds +

tα1−1

Γ(α1)

∫ +∞

0
h1(t)u(t)dt,

v(t) = −
1

Γ(α2)

∫ t

0
(t − s)α2 y2(s)ds +

tα2−1

Γ(α2)

[ ∫ +∞

0
h2(t)v(t)dt +

∫ +∞

0
y2(s)ds

]
=

∫
∞

0
K21(t, s)y2(s)ds +

tα2−1

Γ(α2)

∫ +∞

0
h2(t)v(t)dt.

(13)
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Multiplying both sides of the above equality by h1(t) and h2(t) and integrating from 0 to +∞ , we obtain
∫ +∞

0
h1(t)u(t)dt =

Γ(α1)
Γ(α1) −Λ1

∫ +∞

0
h1(t)

∫ +∞

0
K11(t, s)y1(s)dsdt,∫ +∞

0
h2(t)v(t)dt =

Γ(α2)
Γ(α2) −Λ2

∫ +∞

0
h2(t)

∫ +∞

0
K21(t, s)y2(s)dsdt.

Combining (13), we have

u(t) =

∫ +∞

0
K11(t, s)y1(s)ds +

tα1−1

Γ(α1) −Λ1

∫ +∞

0
h1(t)

∫ +∞

0
K11(t, s)y1(s)dsdt

=

∫
∞

0
K11(t, s)y1(s)ds +

∫
∞

0
K12(t, s)y1(s)ds,

=

∫
∞

0
K1(t, s)y1(s)ds,

v(t) =

∫ +∞

0
K21(t, s)y2(s)ds +

tα2−1

Γ(α2) −Λ2

∫ +∞

0
h2(t)

∫ +∞

0
K21(t, s)y2(s)dsdt

=

∫ +∞

0
K21(t, s)y2(s)ds +

∫ +∞

0
K22(t, s)y2(s)ds

=

∫ +∞

0
K2(t, s)y2(s)ds.

The proof is completed.
Remark 2.1. From (4), (5), (6) and (7), by direct calculation, we have

Dα1−1u(t) =

∫ +∞

0
K∗1(t, s)y1(s)ds,

Dα2−1v(t) =

∫ +∞

0
K∗2(t, s)y2(s)ds,

where
K∗i (t, s) = K∗i1(t, s) + K∗i2(t, s), i = 1, 2.

with

K∗i1(t, s) =

{
0, 0 ≤ s ≤ t ≤ +∞,
1, 0 ≤ t ≤ s ≤ +∞,

K∗i2(t, s) =
Γ(αi)

Γ(αi) − ∆i

∫ +∞

0
hi(t)Ki1(t, s)dt.

Lemma 2.3. For (s, t) ∈ J × J, if hypothesis (H1) is satisfied, then

0 ≤ Ki(t, s) ≤
tαi−1

Γ(αi) −Λi
, 0 ≤

Ki(t, s)
1 + tαi−1 ≤

1
Γ(αi) −Λi

, i = 1, 2.

Proof. From (6) and (7), it is obvious that

0 ≤ Ki1(t, s) ≤
tαi−1

Γ(αi)
,∀(t, s) ∈ J × J,

and

0 ≤ Ki2(t, s) ≤
tαi−1

Γ(αi) −Λi

∫ +∞

0

hi(t)tαi−1

Γ(αi)
dt =

Λitαi−1

Γ(αi)(Γ(αi) −Λi)
,∀(t, s) ∈ J × J.

So

0 ≤ Ki(t, s) = Ki1(t, s) + Ki2(t, s) ≤
tαi−1

Γ(αi) −Λi
,∀(t, s) ∈ J × J.
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Furthermore

0 ≤
Ki(t, s)

1 + tαi−1 ≤
1

Γ(αi) −Λi
,∀(t, s) ∈ J × J.

The proof is completed.
Remark 2.2. From Remark 2.1, by direct calculation, we can easily know that

0 ≤ K∗i (t, s) = K∗i1(t, s) + K∗i2(t, s) ≤ 1 +
Λi

Γ(α) −Λi
=

Γ(αi)
Γ(αi) −Λi

,∀(t, s) ∈ J × J, i = 1, 2,

Let E = {u ∈ C(J,R)| supt∈J
|u(t)|

1+tα1−1 < +∞} and X = {u ∈ E,Dα1−1u ∈ C(J,R)| supt∈J |D
α1−1u(t)| < +∞} be

equipped with the norm
‖u‖X = max{‖u‖0, ‖Dα1−1u‖1},

where ‖u‖0 = supt∈J
|u(t)|

1+tα1−1 and ‖Dα1−1u‖1 = supt∈J |D
α1−1u(t)|. Also let F = {v ∈ C(J,R)| supt∈J

|v(t)|
1+tα2−1 < +∞}

and Y = {v ∈ F,Dα2−1v ∈ C(J,R)| supt∈J |D
α2−1v(t)| < +∞} be equipped with the norm

‖u‖Y = max{‖v‖0, ‖Dα2−1v‖1},

where ‖v‖0 = supt∈J
|v(t)|

1+tα2−1 and ‖Dα2−1v‖1 = supt∈J |D
α2−1v(t)|. Thus the space (X, ‖ · ‖X) and (Y, ‖ · ‖Y) are two

Banach spaces which have been shown in [24]. Moreover, the product space (X×Y, ‖ · ‖X×Y) is also a Banach
space with the norm

‖ · ‖X×Y = max{‖u‖X, ‖v‖Y}.

Lemma 2.4. If hypothesis (H2) is satisfied, then for ∀(u, v) ∈ X × Y, we have

∫ +∞

0
| fi(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s))|ds ≤ a∗i0 +

4∑
k=1

a∗ik||(u, v)||λik
X×Y, i = 1, 2.

Proof. For ∀(u, v) ∈ X × Y, by hypothesis (H2), we have∫ +∞

0
| fi(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s))|ds

≤

∫ +∞

0

(
ai0(s) + ai1(s)|u(s)|λi1 + ai2(s)|v(s)|λi2 + ai3(s)|Dα1−1u(s))|λi3 + ai4(s)|Dα2−1v(s))|λi4

)
ds

≤a∗i0 +

∫ +∞

0
ai1(s))(1 + sα1−1)λi1

|u(s)|λi1

(1 + sα1−1)λi1
ds +

∫ +∞

0
ai2(s))(1 + sα2−1)λi2

|v(s)|λi2

(1 + sα2−1)λi2
ds

+

∫ +∞

0
ai3(s)|Dα1−1u(s)|λi3 ds +

∫ +∞

0
ai4(s)|Dα2−1v(s)|λi4 ds

≤a∗i0 + a∗i1||u||
λi1
X + a∗i2||v||

λi2
Y + a∗i3||u||

λi3
X + a∗i4||v||

λi4
Y

≤a∗i0 +

4∑
k=1

a∗ik||(u, v)||λik
X×Y, i = 1, 2.

Lemma 2.5. If hypothesis (H3) is satisfied, then for ∀(u, v) ∈ X × Y, we have

∫ +∞

0
| fi(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s))|ds ≤

4∑
k=1

b∗ik||(u, v)||X×Y + τi, i = 1, 2.
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Proof. For ∀(u, v) ∈ X × Y, by hypothesis (H3), we have∫ +∞

0
| fi(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s))|ds

=

∫ +∞

0
| fi(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s)) − fi(s, 0, 0, 0, 0) + fi(s, 0, 0, 0, 0)|ds

≤

∫ +∞

0
| fi(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s)) − fi(s, 0, 0, 0, 0)|ds +

∫ +∞

0
| fi(s, 0, 0, 0, 0)|ds

≤

∫ +∞

0
bi1(s)(1 + sα1−1)

|u(s)|
1 + sα1−1 ds +

∫ +∞

0
bi2(s)(1 + sα2−1)

|v(s)|
1 + sα2−1 ds

+

∫ +∞

0
bi3(s)|Dα1−1u(s)|ds +

∫ +∞

0
bi4(s)|Dα2−1v(s)|ds +

∫ +∞

0
| fi(s, 0, 0, 0, 0)|ds

≤b∗i1||u||X + b∗i2||v||Y + b∗i3||u||X + b∗i4||v||Y + τi

≤

4∑
k=1

b∗ik||(u, v)||X×Y + τi, i = 1, 2.

Lemma 2.6. (see [24]) Let U ⊂ X be a bounded set. Then U is a relatively compact in X if the following
conditions hold:
(i) For any u ∈ U,

u(t)
1 + tα−1 and Dα−1u(t) are equicontinuous on any compact interval of J;

(ii) For any ε > 0, there is a constant C = C(ε) > 0 such that |
u(t1)

1 + tα−1
1

−
u(t2)

1 + tα−1
2

| < ε and |Dα−1u(t1)−Dα−1u(t2)| <

ε for any t1, t2 ≥ C and u ∈ U.
We define the cone P ⊂ X × Y by P = {(u, v) ∈ X × Y|u(t) ≥ 0, v(t) ≥ 0,Dα1−1u(t) ≥ 0,Dα2−1v(t) ≥ 0, t ∈ J}.

By Lemma 2.2, let T : P→ P be the operator defined as

T(u, v)(t) =

(
T1(u, v)(t)
T2(u, v)(t)

)
=


∫ +∞

0
K1(t, s) f1(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s))ds∫ +∞

0
K2(t, s) f2(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s))ds

 (14)

By Remark 2.1, we also define

Dα1−1T1(u, v)(t)

Dα2−1T2(u, v)(t)

 =


∫ +∞

0
K∗1(t, s) f1(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s))ds∫ +∞

0
K∗2(t, s) f2(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s))ds

 (15)

It is easy to know that the system (1) has a solution if and only if the operator equation (u, v) = T(u, v) has a
fixed point, where T is given by (14). In fact, if (u, v) is a solution for the system (1), by lemma 2.2, we can
obtain

u =

∫ +∞

0
K1(t, s) f1(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s))ds = T1(u, v),

v =

∫ +∞

0
K2(t, s) f2(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s))ds = T2(u, v).

That is, (u, v) is a fixed point for the operator equation (u, v) = T(u, v). On the contrary, the Riemann-Liouville
fractional derivation on both sides of the operator equation is

Dα1 u(t) = Dα1 T1(u, v)(t) = − f1(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s)),
Dα2 v(t) = Dα2 T2(u, v)(t) = − f2(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s)).
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Combining (11) and (12), we can obtain

Dα1−1u(+∞) =

∫ +∞

0
h1(t)u(t)dt, Dα2−1v(+∞) =

∫ +∞

0
h2(t)v(t)dt,

That is, (u, v) is a solution for the system (1).
Lemma 2.7. If the hypotheses (H1) and (H2) are satisfied, then the operator T : P → P is completely

continuous.
Proof. First it is easy to know T : P→ P. Since Ki(t, s) ≥ 0 and fi ≥ 0, we have Ti(u, v)(t) ≥ 0,∀(u, v) ∈ P, t ∈
J, i = 1, 2.

Next we prove in three steps that the operator T : P→ P is relatively compact.
Step 1 Let U = {(u, v)|(u, v) ∈ P, ||(u, v)||X×Y ≤M}. For ∀(u, v) ∈ U, by Lemma 2.3, Remark 2.2 and Lemma

2.4, we obtain

||T1(u, v)||0 = sup
t∈J

∣∣∣∣ ∫ +∞

0

K1(t, s)
1 + tα1−1 f1(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s))ds

∣∣∣∣
≤

1
Γ(α1) −Λ1

∫ +∞

0
| f1(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s))|ds

≤
1

Γ(α1) −Λ1

[
a∗10 +

4∑
k=1

a∗1k||(u, v)||λ1k
X×Y

] (16)

and

||T1(u, v)||1 = sup
t∈J

∣∣∣∣ ∫ ∞

0
K∗1(t, s) f1(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s))ds

∣∣∣∣
≤

Γ(α1)
Γ(α1) −Λ1

∫ +∞

0
| f1(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s))|ds

≤
Γ(α1)

Γ(α1) −Λ1

[
a∗10 +

4∑
k=1

a∗1k||(u, v)||λ1k
X×Y

]
.

(17)

Thus

||T1(u, v)||X = max
{
‖T1(u, v)‖0, ‖T1(u, v)‖1

}
≤

max{1,Γ(α1)}
Γ(α1) −Λ1

[
a∗10 +

4∑
k=1

a∗1kMλ1k
]
.

Similarly

||T2(u, v)||Y = max
{
‖T2(u, v)‖0, ‖T2(u, v)‖1

}
≤

max{1,Γ(α2)}
Γ(α2) −Λ2

[
a∗20 +

4∑
k=1

a∗2kMλ2k
]
.

Then

||T(u, v)||X×Y = max
{
‖T1(u, v)‖X, ‖T2(u, v)‖Y

}
≤ max

{max{1,Γ(α1)}
Γ(α1) −Λ1

(
a∗10 +

4∑
k=1

a∗1kMλ1k
)
,

max{1,Γ(α2)}
Γ(α2) −Λ2

(
a∗20 +

4∑
k=1

a∗2kMλ2k
)}
,

which means that TU is uniformly bounded.
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Step 2 Let I ⊂ J be any compact interval. Then, for all t1, t2 ∈ I, t2 > t1 and (u, v) ∈ U, we have∣∣∣∣T1(u, v)(t2)

1 + tα1−1
2

−
T1(u, v)(t1)

1 + tα1−1
1

∣∣∣∣
≤

∣∣∣∣ ∫ +∞

0

( K1(t2, s)

1 + tα1−1
2

−
K1(t1, s)

1 + tα1−1
1

)
f1(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s))ds

∣∣∣∣
≤

∫ +∞

0

∣∣∣∣ K1(t2, s)

1 + tα1−1
2

−
K1(t1, s)

1 + tα1−1
1

∣∣∣∣∣∣∣ f1(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s))
∣∣∣ds

(18)

Noticing that K1(t, s)/(1 + tα1−1) is uniformly continuous for any (t, s) ∈ I × I. In the meantime, the function
K1(t, s)/(1 + tα1−1) only relys on t for s ≥ t, which infers that K1(t, s)/(1 + tα1−1) is uniformly continuous on
I × (J \ I). Therefore, for all s ∈ J and t1, t2 ∈ I, we have

∀ε > 0,∃δ(ε) such that i f |t1 − t2| < δ, then
∣∣∣∣ K1(t2, s)

1 + tα1−1
2

−
K1(t1, s)

1 + tα1−1
1

∣∣∣∣ < ε. (19)

By Lemma 2.4, for all (u, v) ∈ U, we can obtain∫ +∞

0
| f1(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s))|ds ≤

[
a∗10 +

4∑
k=1

a∗1kMλ1k
]
< ∞,

together (18) and (19), which means that T1(u, v)(t)/(1 + tα1−1) is equicontinuous on I.
Note that

Dα1−1T1(u, v)(t) =

∫ +∞

0
K∗1(t, s) f1(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s))ds

and the function K∗1(t, s) ∈ C(J × J) doesn’t rely on t, which means that Dα1−1T1(u, v)(t) is equicontinuous on
I. In the same way, we can show that T2(u, v)(t)/(1 + tα2−1) and Dα2−1T2(u, v)(t) are equicontinuous. Thus T1
and T2 is equicontinuous on I.

As a natural result, the operator T is equicontinuous for all (u, v) ∈ U on any compact interval I of J.
Step 3 We show the operator T is equiconvergent at +∞. Since

lim
t→+∞

Ki(t, s)
1 + tαi−1 =

1
Γ(αi)

+
1

Γ(αi) −Λi

∫ +∞

0
h(t)Ki1(t, s)dt ≤

1
Γ(αi) −Λi

< +∞, i = 1, 2,

by knowledge of limit theory, we can deduce that for any ε > 0, there exists a constant C = C(ε) > 0, for any
t1, t2 ≥ C and s ∈ J, such that ∣∣∣∣ Ki(t2, s)

1 + tαi−1
2

−
Ki(t1, s)

1 + tαi−1
1

∣∣∣∣ < ε, i = 1, 2,

Therefore, by Lemma 2.4 and (18), we conclude that Ti(u, v)(t)/1+tαi−1(i = 1, 2) are equiconvergent at +∞. As
the function K∗i (t, s)(i = 1, 2) don’t rely on t, we can easily infer that Dαi−1Ti(u, v)(t)(i = 1, 2) is equiconvergent
at +∞.

From the above three steps, Lemma 2.6 is satisfied. So the operator T : P→ P is relatively compact.
Finally we show that the operator T : P → P is continuous. Let (un, vn), (u, v) ∈ P, such that (un, vn) →

(u, v)(n→∞). Then ||(un, vn)||X×Y < +∞, ||(u, v)||X×Y < +∞. Similar to (16) and (17), we have

||T1(un, vn)||0 = sup
t∈J

∣∣∣∣ ∫ +∞

0

K1(t, s)
1 + tα1−1 f1(s,un(s), vn(s),Dα1−1un(s),Dα2−1vn(s))ds

∣∣∣∣
≤

1
Γ(α1) −Λ1

[
a∗10 +

4∑
k=1

a∗1k||(un, vn)||λ1k
X×Y

]
,
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and

||T1(un, vn)||1 = sup
t∈J
|

∫ +∞

0
K∗1(t, s) f1(s,un(s), vn(s),Dα1−1un(s),Dα2−1vn(s))ds|

≤
Γ(α1)

Γ(α1) −Λ1

[
a∗10 +

4∑
k=1

a∗1k||(un, vn)||λ1k
X×Y

]
.

By continuity of function f1 and the Lebesgue dominated convergence theorem, we obtain

lim
n→∞

∫ +∞

0

K1(t, s)
1 + tα1−1 f1(s,un(s), vn(s),Dα1−1un(s),Dα2−1vn(s))ds

=

∫ +∞

0

K1(t, s)
1 + tα1−1 f1(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s))ds,

and

lim
n→∞

∫ +∞

0
K∗1(t, s) f1(s,un(s), vn(s),Dα1−1un(s),Dα2−1vn(s))ds

=

∫
∞

0
K∗1(t, s) f1(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s))ds.

Then

‖T1(un, vn) − T1(u, v)‖0 ≤ sup
t∈J

∫ +∞

0

K1(t, s)
1 + tα−1

∣∣∣∣ f1(s,un(s), vn(s),Dα1−1un(s),Dα2−1vn(s))

− f1(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s))
∣∣∣∣ds→ 0, n→∞,

and

‖T1(un, vn) − T1(u, v)‖1 ≤ sup
t∈J

∫ +∞

0
K∗1(t, s)

∣∣∣∣ f1(s,un(s), vn(s),Dα1−1un(s),Dα2−1vn(s))

− f1(s,u(s), v(s),Dα1−1u(s),Dα2−1v(s))
∣∣∣∣ds→ 0, n→∞.

So, as n→∞,

‖T1(un, vn) − T1(u, v)‖X = max{‖T1(un, vn) − T1(u, v)‖0, ‖T1(un, vn) − T1(u, v)‖1} → 0.

This means that the operator T1 is continuous. At the same way, we can show than the operator T2 is
continuous. That is, the operator T is continuous.

In view of the above all arguments, we deduce that the operator T : P → P is completely continuous.
Therefore proof is completed.

3. Main results

For convenience, we set

Li =
1

Γ(αi) −Λi
, i = 1, 2, L = max{L1,L2,Γ(α1)L1,Γ(α2)L2}.

Define a partial order over the product space:
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u1
v1

)
≥

(
u2
v2

)
if u1(t) ≥ u2(t), v1(t) ≥ v2(t),Dα1−1u1(t) ≥ Dα1−1u2(t),Dα2−1v1(t) ≥ Dα2−1v2(t), t ∈ J.
Theorem 3.1. Assume that (H1),(H2) and (H4) hold. There exists a positive constant R such that the system
(1) have two positive solutions (u∗, v∗) and (w∗, z∗) satisfying 0 ≤ ‖(u∗, v∗)‖X×Y ≤ R and 0 ≤ ‖(w∗, z∗)‖X×Y ≤ R.
Moreover, limn→∞(un, vn) = (u∗, v∗) and limn→∞(wn, zn) = (w∗, z∗), (un, vn) and (wn, zn) can be given by the
following monotone iterative schemes

(un, vn) = T(un−1, vn−1) =

(
T1(un−1, vn−1)(t)
T2(un−1, vn−1)(t)

)
,n = 1, 2, . . . , with (u0(t), v0(t)) =

(
Rtα1

Rtα2

)
(20)

and

(wn, zn) = T(wn−1, zn−1) =

(
T1(wn−1, zn−1)(t)
T2(wn−1, zn−1)(t)

)
,n = 1, 2, . . . , with (w0(t), z0(t)) =

(
0
0

)
. (21)

In addition (
w0(t)
z0(t)

)
≤

(
w1(t)
z1(t)

)
≤ · · · ≤

(
wn(t)
zn(t)

)
≤ · · · ≤

(
w∗

z∗

)
≤ · · · ≤

(
u∗

v∗

)
≤ · · · ≤

(
un(t)
vn(t)

)

≤ · · · ≤

(
u2(t)
v2(t)

)
≤

(
u1(t)
v1(t)

)
≤

(
u0(t)
v0(t)

)
(22)

and Dα1−1w0(t)

Dα2−1z0(t)

 ≤ Dα1−1w1(t)

Dα2−1z1(t)

 ≤ · · · ≤ Dα1−1wn(t)

Dα2−1zn(t)

 ≤ · · · ≤ Dα1−1w∗

Dα2−1z∗

 ≤ · · · ≤ Dα1−1u∗

Dα2−1v∗


≤ · · · ≤

Dα1−1un(t)

Dα2−1vn(t)

 ≤ · · · ≤ Dα1−1u2(t)

Dα2−1v2(t)

 ≤ Dα1−1u1(t)

Dα2−1v1(t)

 ≤ Dα1−1u0(t)

Dα2−1v0(t)

 . (23)

Proof. First, Lemma 2.7 leads to the fact that T(P) ⊂ P for any (u, v) ∈ P, t ∈ J.
Next, for 0 ≤ λ1k, λ2k < 1(k = 1, 2, 3, 4), choose

R ≥ max
{
5a∗10, 5a∗20, (5La∗1k)1/(1−λ1k), (5La∗2k)1/(1−λ2k)

}
, k = 1, 2, 3, 4,

and define UR = {(u, v) ∈ P : ||(u, v)||X×Y ≤ R}. For any (u, v) ∈ UR, similar to (16) and (17), we obtain

||T1(u, v)||0 ≤ L1

[
a∗10 +

4∑
k=1

a∗1k||(u, v)||λ1k
X×Y

]
≤ L

[
a∗10 +

4∑
k=1

a∗1kRλ1k
]
≤ R

and

||T1(u, v)||1 ≤ L1

[
a∗10 +

4∑
k=1

a∗1k||(u, v)||λ1k
X×Y

]
≤ L

[
a∗10 +

4∑
k=1

a∗1kRλ1k
]
≤ R.

This implies that ||T1(u, v)||X ≤ R for all (u, v) ∈ UR. In the same way, ||T2(u, v)||Y ≤ R. Consequently we have

||T(u, v)||X×Y =
{
‖T1(u, v)‖X, ‖T2(u, v)‖Y

}
≤ R.

That is, T(UR) ⊂ UR.
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According to (20) and (21), it is obvious that (u0(t), v0(t)), (w0(t), z0(t)) ∈ UR. By the complete continuity
of the operator T, we define the schemes (un, vn) and (wn, zn) by (un, vn) = T(un−1, vn−1), (wn, zn)= T(wn−1, zn−1)
for n = 1, 2, . . . . Since T(B) ⊂ B, we can know that (un, vn), (wn, zn) ∈ T(B) for n = 1, 2, . . . . Hence we need
show that there exist (u∗, v∗) and (w∗, z∗) satisfying limn→∞(un, vn) = (u∗, v∗) and limn→∞(wn, zn) = (w∗, z∗),
which are two monotone schemes for positive solutions of the system (1).

For t ∈ J, by Lemma 2.3 and (20), we know

u1(t) = T1(u0, v0)(t) =

∫ +∞

0
K1(t, s) f1(s,u0(s), v0(s),Dα1−1u0(s),Dα2−1v0(s))ds

≤tα1−1L1

[
a∗10 +

4∑
k=1

a∗1kRλ1k
]

≤Rtα1−1 = u0(t)

and

v1(t) = T2(u0, v0)(t) =

∫ +∞

0
K2(t, s) f2(s,u0(s), v0(s),Dα1−1u0(s),Dα2−1v0(s))ds

≤tα2−1L2

[
a∗20 +

4∑
k=1

a∗2kRλ2k
]

≤Rtα2−1 = v0(t),

that is

T(u, v)(t) =

(
u1(t)
v1(t)

)
=

(
T1(u0, v0)(t)
T2(u0, v0)(t)

)
≤

Rtα1−1

Rtα2−1

 =

(
u0(t)
v0(t)

)
. (24)

And then we study the monotonicity of the fractional derivative of (u, v). By (24) we know

Dα1−1u1(t) =Dα1−1T1(u0, v0)(t) =

∫ +∞

0
K∗1(t, s) f1(s,u0(s), v0(s) Dα1−1u0(s),Dα2−1v0(s))ds

≤Γ(α1)L1

[
a∗10 +

4∑
k=1

a∗1kRλ1k
]
≤ Γ(α1)R = Dα1−1u0(t),

Dα2−1v1(t) =Dα2−1T2(u0, v0)(t) =

∫ +∞

0
K∗2(t, s) f2(s,u0(s), v0(s) Dα1−1u0(s),Dα2−1v0(s))ds

≤Γ(α2)L2

[
a∗20 +

4∑
k=1

a∗2kRλ1k
]
≤ Γ(α2)R = Dα2−1v0(t),

that is

T(u, v)(t) =

Dα1−1u1(t)

Dα2−1v1(t)

 =

Dα1−1T1(u0, v0)(t)

Dα2−1T2(u0, v0)(t)

 ≤ (
Γ(α1)R
Γ(α2)R

)
=

Dα1−1u0(t)

Dα2−1v0(t)

 . (25)

Thus, from (24) and (25), for ∀t ∈ J, by the monotonicity hypothesis (H4) of the functions fi, we do the
second iteration (

u2(t)
v2(t)

)
=

(
T1(u1, v1)(t)
T2(u1, v1)(t)

)
≤

(
T1(u0, v0)(t)
T2(u0, v0)(t)

)
=

(
u1(t)
v1(t)

)
,

(
Dα1−1u2(t)
Dα2−1v2(t)

)
=

(
Dα1−1T1(u1, v1)(t)
Dα2−1T2(u1, v1)(t)

)
≤

(
Dα1−1T1(u0, v0)(t)
Dα2−1T2(u0, v0)(t)

)
=

(
Dα1−1u1(t)
Dα2−1v1(t)

)
.
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By recursion, for t ∈ J, the scheme {(un, vn)}∞n=0 satisfies(
un+1(t)
vn+1(t)

)
≤

(
un(t)
vn(t)

)
,

(
Dα1−1un+1(t)
Dα2−1vn+1(t)

)
≤

(
Dα1−1un(t)
Dα2−1vn(t)

)
.

By the aid of the iterative scheme (un+1, vn+1) = T(un, vn) and the complete continuity of the operator T, it is
easy to infer that (un, vn)→ (u∗, v∗) and T(u∗, v∗) = (u∗, v∗) .

For the scheme {(wn, zn)}∞n=0, we use a similar discussion. For t ∈ J, we have(
w1(t)
z1(t)

)
=

(
T1(w0, z0)(t)
T2(w0, z0)(t)

)
=

∫ +∞

0 K1(t, s) f1(t,w0(t), z0(t),Dα1−1w0(t),Dα2−1z0(t))ds∫ +∞

0 K2(t, s) f2(t,w0(t), z0(t),Dα1−1w0(t),Dα2−1z0(t))ds


≥

(
0
0

)
=

(
w0(t)
z0(t)

)
,

(
Dα1−1w1(t)
Dα2−1z1(t)

)
=

∫ +∞

0 K∗1(t, s) f1(t,w0(t), z0(t),Dα1−1w0(t),Dα2−1z0(t))ds∫ +∞

0 K∗2(t, s) f2(t,w0(t), z0(t),Dα1−1w0(t),Dα2−1z0(t))ds


≥

(
0
0

)
=

(
Dα1−1w0(t)
Dα2−1z0(t)

)
.

Using the the monotonicity hypothesis (H4) of the functions fi, we have(
w2(t)
z2(t)

)
=

(
T1(w1, z1)(t)
T2(w1, z1)(t)

)
≥

(
T1(w0, z0)(t)
T2(w0, z0)(t)

)
=

(
w1(t)
z1(t)

)
,

(
Dα1−1w2(t)
Dα2−1z2(t)

)
=

(
Dα1−1T1(w1, z1)(t)
Dα2−1T2(w1, z1)(t)

)
≥

(
Dα1−1T1(w0, z0)(t)
Dα2−1T2(w0, z0)(t)

)
=

(
Dα1−1w1(t)
Dα2−1z1(t)

)
.

Analogously, for n = 0, 1, 2, . . . and t ∈ J, we have(
wn+1(t)
zn+1(t)

)
≥

(
wn(t)
zn(t)

)
,

(
Dα1−1wn+1(t)
Dα2−1zn+1(t)

)
≥

(
Dα1−1wn(t)
Dα2−1zn(t)

)
.

Combining the iterative scheme (wn+1, zn+1) = T(wn, zn) and the complete continuity of the operator T, it is
easy to infer that (wn, zn)→ (w∗, z∗) and T(w∗, z∗) = (w∗, z∗) . Finally we show that (u∗, v∗) and (w∗, z∗) are the
minimal and maximal positive solutions of the system (1). Suppose that (ξ(t), η(t)) is any positive solution
of the system (1), then T(ξ(t), η(t)) = (ξ(t), η(t)) and(

w0(t)
z0(t)

)
=

(
0
0

)
≤

(
ξ(t)
η(t)

)
≤

(
Rtα1−1

Rtα2−1

)
=

(
u0(t)
v0(t)

)
,

(
Dα1−1w0(t)
Dα2−1z0(t)

)
≤

(
Dα1−1ξ(t)
Dα2−1η(t)

)
≤

(
Dα1−1u0(t)
Dα2−1v0(t)

)
.

Applying the monotone property of the operator T, we know that(
w1(t)
z1(t)

)
=

(
T1(w0, z0)(t)
T2(w0, z0)(t)

)
≤

(
ξ(t)
η(t)

)
≤

(
T1(u0, v0)(t)
T2(u0, v0)(t)

)
=

(
u1(t)
v1(t)

)
,

(
Dα1−1w1(t)
Dα2−1z1(t)

)
≤

(
Dα1−1ξ(t)
Dα2−1η(t)

)
≤

(
Dα1−1u1(t)
Dα2−1v1(t)

)
.

Repeating the above steps, we have
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wn(t)
zn(t)

)
≤

(
ξ(t)
η(t)

)
≤

(
un(t)
vn(t)

)
(
Dα1−1wn(t)
Dα2−1zn(t)

)
≤

(
Dα1−1ξ(t)
Dα2−1η(t)

)
≤

(
Dα1−1un(t)
Dα2−1vn(t)

)
,

From the above results, combine lim
n→∞

(wn, zn) = (w∗, z∗) and lim
n→∞

(un,un) = (u∗, v∗), we get the results (22) and
(23).

Again f (t, 0, 0, 0, 0) , 0 for all t ∈ J, we know that (0, 0) isn’t a solution of the system (1). By (22) and
(23), it is obvious that (w∗, z∗) and (u∗, v∗) are the extreme positive solutions of system (1), which can be
constructed by means of two monotone iterative schemes in (20) and (21).

With regard to the difference scope of parameters λik(i = 1, 2, k = 1, 2, 3, 4), the method is similar, so we
omit the details, thus the proof is completed.

Theorem 3.2. Suppose the hypotheses (H1) and (H3) are satisfied. If

m = L max
{ 4∑

k=1

b1k,
4∑

k=1

b2k

}
< 1, (26)

then the system (1) has a unique positive solution (u(t), v(t)) in P. Moreover, there is a iterative scheme
(un, vn), such that (un, vn)→ (u,u) as n→∞ uniformly on any finite interval of J, where

(un, vn) = T(un−1, vn−1) =

(
T1(un−1, vn−1)(t)
T2(un−1, vn−1)(t)

)
,n = 1, 2, . . . . (27)

In addition, there is an error estimate for the approximation scheme.

||(un, vn) − (u, v)||X×Y =
mn

1 −m
||(u1, v1) − (u0, v0)||X×Y,n = 1, 2, . . . . (28)

Proof Choose
r ≥ Lτ/(1 −m),

where m is defined by (26) and τ = max{τ1, τ2}, τi is defined by the hypothesis (H3).
First we prove that TUr ⊂ Ur, where Ur = {(u, v) ∈ P, ||(u, v)||X×Y ≤ r}. For any (u, v) ∈ Ur, by Lemma 2.3,

Remark 2.2 and Lemma 2.5, we have

||T1(u, v)||0 ≤ L
( 4∑

k=1

b∗1kr + τ1

)
and

||T1(u, v)||1 ≤ L
( 4∑

k=1

b∗1kr + τ1

)
,

which implies

||T1(u, v)||X ≤ L
( 4∑

k=1

b∗1kr + τi

)
≤ mr + Lτ1, ∀(u, v) ∈ Ur.

Similar

||T2(u, v)||Y ≤ L
( 4∑

k=1

b∗2kr + τ2

)
≤ mr + Lτ2, ∀(u, v) ∈ Ur.

So we have
||T(u, v)||X×Y ≤ mr + Lτ ≤ r. ∀(u, v) ∈ Ur.
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Now we show that T is a contraction. For any (u1, v1), (u2, v2) ∈ Ur, by hypothesis (H3), we obtain

||T1(u1, v1) − T1(u2, v2)||0

≤ sup
t∈J

∫ +∞

0

K1(t, s)
1 + tα1−1

∣∣∣∣ f1(s,u1(s), v1(s),Dα1−1u1(s),Dα2−1v1(s))

− f1(s,u2(s), v2(s),Dα1−1u2(s),Dα2−1v2(s))
∣∣∣∣ds

≤L
∫ +∞

0

[
b11(s)(1 + sα1−1)

|u1(s) − u2(s)|
1 + sα1−1 + b12(s)(1 + sα2−1)

|v1(s) − v2(s)|
1 + sα2−1

+ b13(s)|Dα1−1u1(s) −Dα1−1u2(s)|
]
ds + b14(s)|Dα2−1v1(s) −Dα2−1v2(s)|

]
ds

≤L
4∑

k=1

b∗1k||(u1, v1) − (u2, v2)||X×Y

and

||T1(u1, v1) − T1(u2, v2)||1 ≤ sup
t∈J

∫ +∞

0
K∗1(t, s)

∣∣∣∣ f1(s,u1(s), v1(s),Dα1−1u1(s),Dα2−1v1(s))

− f1(s,u2(s), v2(s),Dα1−1u2(s),Dα2−1v2(s))
∣∣∣∣ds

≤L
4∑

k=1

b∗1k||(u1, v1) − (u2, v2)||X×Y,

which implies

||T1(u1, v1) − T1(u2, v2)||X ≤ L
4∑

k=1

b∗1k||(u1, v1) − (u2, v2)||X×Y. (29)

In the same way, we have

||T2(u1, v1) − T2(u2, v2)||Y ≤ L
4∑

k=2

b∗2k||(u1, v1) − (u2, v2)||X×Y. (30)

From (29) and (30), we have

||T(u1, v1) − T(u2, v2)||X×Y ≤ m||(u1, v1) − (u2, v2)||X×Y, ,∀(u1, v1), (u2, v2) ∈ Ur. (31)

Since m < 1, then T is a contraction. Hence the Banach fixed-point theorem ensures that T has a unique
fixed point (u, v) in P. That is, the system (1) has a unique positive solution (u, v).

Furthermore, for any (u0, v0) ∈ P, ‖(un, vn) − (u, v)‖X×Y → 0 as n → ∞, where un = T1(un−1, vn−1), vn =
T2(un−1,Vn−1),n = 1, 2, . . . . By (31), we obtain

||(un, vn) − (un−1, vn−1)||X×Y ≤ mn−1
||(u1, v1) − (u0, v0)||X×Y,

and

||(un, vn) − (u j, v j)||X×Y ≤ ||(un, vn) − (un−1, vn−1)||X×Y + ||(un−1, vn−1) − (un−2, vn−2)||X×Y
+ · · · + ||(u j+1, v j+1) − (u j, v j)||X×Y

≤
mn(1 −m j−n)

1 −m
||(u1, v1) − (u0, v0)||X×Y.

(32)
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Letting j→ +∞ on both sides of (32), we have

||(un, vn) − (u, v)||X×Y ≤
mn

1 −m
||u1 − u0||X×Y.

Hence the proof of theorem 3.2 is completed.
Now we give two examples to illustrate the application of the main results.
Example 3.1. Consider the following fractional differential system on an infinite interval

−D2.5u(t) =
2

(10 + t)2 +
e−t
|u(t)|0.1

(1 +
√

t3)0.1
+

e−2t
|v(t)|0.3

(1 +
√

t)0.3
+

2t|D1.5u(t)|0.2

(3 + t2)2 +
|D0.5v(t)|0.4

1 + t2 ,

−D1.5v(t) =
1

(20 + t)3 +
e−3t
|u(t)|0.2

(1 +
√

t3)0.2
+

e−4t
|v(t)|0.4

(1 +
√

t)0.4
+

3t2
|D1.5u(t)|0.2

(3 + t3)2 +
2|D0.5v(t)|0.6

1 + t2 ,

u(0) = u′(0) = 0, D1.5u(+∞) =

∫ +∞

0
t−1.5e−tu(t)dt,

u(0) = 0, D0.5v(+∞) =

∫ +∞

0
t−0.5e−2tv(t)dt,

(33)

where α1 = 2.5, α1 = 1.5, h1(t) = t−1.5e−t, h2(t) = t−0.5e−2t, λ11 = 0.1, λ12 = 0.3, λ13 = 0.2, λ14 = 0.4, λ21 =
0.2, λ22 = 0.4, λ23 = 0.2, λ24 = 0.6 and

f1(t,u1,u2,u3,u4) =
2

(10 + t)2 +
e−t
|u1|

0.1

(1 +
√

t3)0.1
+

e−2t
|u2|

0.3

(1 +
√

t)0.3
+

2t|u3|
0.2

(3 + t2)2 +
|u4|

0.4

1 + t2 ,

f2(t,u1,u2,u3,u4) =
1

(20 + t)3 +
e−3t
|u1|

0.2

(1 +
√

t3)0.2
+

e−4t
|u2|

0.4

(1 +
√

t)0.4
+

3t2
|u3|

0.2

(3 + t3)2 +
2|u4)|0.6

1 + t2 ,

It is easy to know that Γ(2.5) = 1.32934 > Λ1 =
∫ +∞

0 h1(t)t1.5dt = 1, Γ(1.5) = 0.88623 > Λ2 =∫ +∞

0 h2(t)t0.5dt = 0.5, fi(t, 0, 0, 0, 0) . 0, i = 1, 2. So the hypothesis (H1) is satisfied.
Noting that

| f1(t,u1,u2,u3,u4)| ≤
2

(10 + t)2 +
e−t
|u1|

0.1

(1 +
√

t3)0.1
+

e−2t
|u2|

0.3

(1 +
√

t)0.3
+

2t|u3|
0.2

(3 + t2)2 +
|u4|

0.4

1 + t2

= a10(t) + a11(t)|u1|
0.1 + a12(t)|u2|

0.3 + a13(t)|u3|
0.2 + a14(t)|u4|

0.4,

| f2(t,u1,u2,u3,u4)| ≤
1

(20 + t)3 +
e−3t
|u1|

0.2

(1 +
√

t3)0.2
+

e−4t
|u2|

0.4

(1 +
√

t)0.4
+

3t2
|u3|

0.2

(3 + t3)2 +
2|u4)|0.6

1 + t2

= a20(t) + a21(t)|u1|
0.2 + a22(t)|u2|

0.2 + a23(t)|u3|
0.2 + a24(t)|u4|

0.6

and

a∗10 =

∫ +∞

0
a10(t)dt =

1
5
, a∗11 =

∫ +∞

0
a11(t)(1 + t1.5)0.1dt = 1, a∗12 =

∫ +∞

0
a12(t)(1 + t0.5)0.3dt =

1
2
,

a∗13 =

∫ +∞

0
a13(t)dt =

1
3
, a∗14 =

∫ +∞

0
a14(t)dt =

π
2
,

a∗20 =

∫ +∞

0
a10(t)dt =

1
800

, a∗21 =

∫ +∞

0
a21(t)(1 + t1.5)0.2dt =

1
3
, a∗22 =

∫ +∞

0
a22(t)(1 + t0.5)0.4dt =

1
4
,

a∗23 =

∫ +∞

0
a23(t)dt =

1
3
, a∗24 =

∫ +∞

0
a24(t)dt = π.

which means that the hypothesis (H2) is satisfied.
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From the expression of the function fi, it is obvious that fi is increasing respect to the variables
u1,u2,u3,u4,∀t ∈ J, i = 1, 2. Thus the hypothesis (H4) is satisfied. By Theorem 3.1, it follows that the
system (33) have two positive solution, which can be given by the limits means of two explicit monotone
iterative scheme in (20) and (21).

Example 3.2. Consider the following fractional differential system an infinite interval

−D2.5u(t) =
2

(10 + t)2 +
e−20t
|u(t)|

1 +
√

t3
+

e−15t
|v(t)|

1 +
√

t
+

t|D1.5u(t)|
5(3 + t2)2 +

t|D0.5v(t)|
10(1 + t2)2 ,

−D1.5v(t) =
1

(20 + t)3 +
e−18t
|u(t)|

1 +
√

t3
+

e−16t
|v(t)|

1 +
√

t
+

3t2
|D1.5u(t)|

7(3 + t3)2 +
|D0.5v(t)|

20(1 + t2)2 ,

u(0) = u′(0) = 0, D1.5u(+∞) =

∫ +∞

0
t−1.5e−tu(t)dt,

u(0) = 0, D0.5v(+∞) =

∫ +∞

0
t−0.5e−2tv(t)dt,

(34)

where α1 = 2.5, α1 = 1.5, h1(t) = t−1.5e−t, h2(t) = t−0.5e−2t and

f1(t,u1,u2,u3,u4) =
2

(10 + t)2 +
e−20t
|u1|

1 +
√

t3
+

e−15t
|u2|

1 +
√

t
+

t|u3|

5(3 + t2)2 +
t|u4|

10(1 + t2)2 ,

f2(t,u1,u2,u3,u4) =
1

(20 + t)3 +
e−18t
|u1|

1 +
√

t3
+

e−16t
|u2|

1 +
√

t
+

3t2
|u3|

7(3 + t3)2 +
|u4)|

20(1 + t2)
,

Similar to the example 3.1, it is easy to verify that the hypothesis (H1) is satisfied.
Observing that

| f1(t,u1,u2,u3,u4) − f1(t,u1,u2,u3,u4)|

≤
e−20t

1 +
√

t3
|u1 − u1| +

e−15t
|

1 +
√

t
|u2 − u2| +

t
5(3 + t2)2 |u3 − u3| +

t
10(1 + t2)2 |u4 − u4|

= b11(t)|u1 − u1| + b12(t)|u2 − u2| + b13(t)|u3 − u3| + b14(t)|u4 − u4|,

| f2(t,u1,u2,u3,u4) − f2(t,u1,u2,u3,u4)|

≤
e−18t

1 +
√

t3
|u1 − u1| +

e−16t
|

1 +
√

t
|u2 − u2| +

3t2

7(3 + t3)2 |u3 − u3| +
1

20(1 + t2)
|u4 − u4|

= b21(t)|u1 − u1| + b22(t)|u2 − u2| + b23(t)|u3 − u3| + b24(t)|u4 − u4|,

and

b∗11 =

∫ +∞

0
b11(t)(1 + t1.5)dt =

1
20
, b∗12 =

∫ +∞

0
b12(t)(1 + t0.5)dt =

1
15
,

b∗13 =

∫ +∞

0
b13(t)dt =

1
30
, b∗14 =

∫ +∞

0
b14(t)dt =

1
20
,

b∗21 =

∫ +∞

0
b21(t)(1 + t1.5)dt =

1
18
, b∗22 =

∫ +∞

0
b22(t)(1 + t0.5)dt =

1
16
,

b∗23 =

∫ +∞

0
b23(t)dt =

1
21
, b∗24 =

∫ +∞

0
a24(t)dt =

π
40
.

λ1 =

∫ +∞

0
f1(t, 0, 0, 0, 0)dt =

∫ +∞

0

2
(10 + t)2 dt =

1
5
,

λ2 =

∫ +∞

0
f2(t, 0, 0, 0, 0)dt =

∫ +∞

0

1
(20 + t)3 dt =

π
8000

,
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which means that the hypothesis (H3) is satisfied. By direct computation, we have

m = L max
{ 4∑

k=1

b1k,
4∑

k=1

b2k

}
= 4.03638 ×max

{
0.2, 0.24422

}
= 0.98576 < 1.

So all conditions of Theorem 3.2 are satisfied. Then the system (34) has a unique positive solution, which
can be obtained by the limits from the iterative sequences in (27).

4. Conclusions

In this paper, we apply the monotone iterative technique and the Banach contraction mapping principle
to study a class of fractional differential system with integral boundary in an infinite interval. We first trans-
form the system (1) into an equivalent operator equation (14), and then construct some norm inequalities
related to nonlinear terms fi(i = 1, 2) by means of hypothesis conditions. Finally some explicit monotone
iterative schemes for approximating the extreme positive solutions and the unique positive solution are
established.
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