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Abstract. The purpose of this paper is to study the split common fixed point problems (SCFP) involved in
nonexpansive mappings in real Hilbert space. We introduce two iterative algorithms for finding a solution
of the SCFP involved in nonexpansive mappings, where one is a Mann-type iterative algorithm and another
is a Halpern-type iterative algorithm.

1. Introduction

In 1994, the split feasibility problem (SFP) was first presented by Censor and Elfving [7] for modeling
inverse problems, which arise from phase retrievals and in medical image reconstruction ([1–3]). Recently,
the SFP had also been applied to study intensity modulated radiation therapy when one attempted to
describe physical dose constraints and equivalent uniform dose constraints within a single model([6]).

To begin with, let us recall that the SFP is to find a point

x∗ ∈ C such that Ax∗ ∈ Q, (1)

where C is a close convex subset of a Hilbert space H1, Q is a close convex subset of a Hilbert space H2
and A: H1 → H2 is a bounded linear operator. To solve problem (1), Byrne [2] proposed his CQ algorithm,
which generates a sequence {xn} by

xn+1 = PC(I + γA∗(PQ − I)A)xn, n ≥ 0, (2)

where γ ∈ (0, 2/λ) and λ is the spectral radius of the operator A∗A.
Many authors have also made a continuation of the study on the CQ algorithm and its variant form,

refer to [11, 14, 17, 18, 22, 27, 30].
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On the other hand, the split common fixed point problem (SCFP) is a generalization of the SFP. The
purpose of this paper is to study the SCFP, that is, finding a point x∗ with the property

x∗ ∈ Fix(T) and Ax∗ ∈ Fix(S). (3)

This problem was first introduced by Censor and Segal [8]. We use Γ0 to denote the set of the solutions of
(3), that is, Γ0 = {x∗ : x∗ ∈ Fix(T),Ax∗ ∈ Fix(S)}. For solving (3), they suggested an algorithm, which generates
a sequence {xn} in the following manner:

xn+1 = T(xn + γA∗(S − I)Axn), n ≥ 0. (4)

Note that (4) is more general than (1). Some further generation of this algorithm were studied by [4, 5, 12–
29, 31–34]and others. One of them, Moudafi extended (4) to the following relaxed algorithm:

xn+1 = Uαn (xn + γA∗(Tβ − I)Axn), n ≥ 0,

where β ∈ (0, 1), αn ∈ (0, 1) are relaxation parameters. Using the definition of relaxed operators, observe
that this algorithm takes the following form: yn = xn + γβA∗(T − I)Axn,

xn+1 = (1 − αn)yn + αnUyn, n ≥ 0,

Recently, Chen et. al. [10] presented the following iterative method to have a common fixed point of
three nonexpansive mappings.

x0 ∈ C chosen arbitrarily,
yn = βnxn + (1 − βn)Txn,

zn = γnxn + (1 − γn)Sxn,

xn+1 = αnyn + (1 − αn)Rzn, n ≥ 0,

where βn ∈ (0, 1), γn ∈ (0, 1), αn ∈ (0, 1).
Motivated and inspired by the above works and the research going on in these direction, the purpose

here is to find a solution of the SCFP involved in nonexpansive mappings by proposed the following
algorithm:

yn = xn + γδA∗(S − I)Axn,

zn = (1 − βn)yn + βnTyn,

wn = (1 − γn)yn + γnRyn,

xn+1 = (1 − αn)zn + αnUwn, n ≥ 0,

(5)

The weak convergence result of the algorithm will be established. Our results improve and develop
previously discussed feasibility problem and related algorithm.

On the other hand, we also suggest the following Halpern-type iterative algorithm to solve the SCFP
(3). Define {xn} in the following iteration process: yn = Txn + (1 − βn)δA∗(S − I)ATxn,

xn+1 = αnu + (1 − αn)yn, n ≥ 0,
(6)

where u is an arbitrary fixed element in H1. We prove, under certain appropriate assumptions on the
sequences {αn} and {βn} that {xn} defined by (6) converges to a split common fixed point x∗ of Γ0. Strong
convergence theorem will be proven.
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2. Preliminaries

In this section, we collect definitions and lemmas which will be used in the sequel.
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Assume that C be a

nonempty and closed convex subset of H. Denote F(T) the set of fixed points of a mapping T : C→ C, that is,
Fix(T) = {x ∈ C : x = Tx}. We shall use the following notation: 1. xn → x stands for the strong convergence
of {xn} to x; 2. xn ⇀ x stands for the weak convergence of {xn} to x; 3. ωw(xn) = {x : ∃xni → x weakly} denote
the weak w-limit set of {xn}.

Definition 2.1. T : C→ C is said to be nonexpansive mapping if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C.

It is well known that in real Hilbert space H, the following statements hold

‖tx + (1 − t)y‖2 = t‖x‖2 + (1 − t)‖y‖2 − t(1 − t)‖x − y‖2, (7)

for all x, y ∈ H and t ∈ [0, 1], and identical equation

‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2, (8)

for all x, y ∈ H. It follows that

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉. (9)

for all x, y ∈ H.

Definition 2.2. A mapping T is said to be demiclosed if for any sequence {xn} which converges weakly to x, and if
the sequence {Txn} converges strongly to z, then Tx=z.

In what follows, only the particular case of demiclosedness at zero will be used, which is the particular case
when z = 0. It is true that if T be a nonexpansive mapping, then I − T is demiclosed.

Lemma 2.3 ([30]). Let H be a Hilbert space and {xn} be a sequence in H such that there exists a nonempty setW ∈ H
satisfying:
(1) for every w ∈W, limn→∞ ‖xn − w‖ exists; (2) each weak-cluster point of the sequence {xn} is inW.
Then there exists w∗ ∈W such that {xn} weakly converges to w∗.

Lemma 2.4 ([31]). Let {an} be a sequence of nonnegative real numbers satisfying the property

an+1 ≤ (1 − γn)an + σn, n ≥ 0,

where {γn} ⊂ (0,1) and {σn} are such that
(1)
∑
∞

n=0 γn = ∞; (2) either lim supn→∞
σn
γn
≤ 0 or

∑
∞

n=0 |σn| < ∞.
Then {an} converges to zero.

To attain strong convergence result, we need to use the following lemma.

Lemma 2.5 ([29]). Let {un} be a sequence of real numbers. Assume {un} does not decrease at infinity, that is, there
exists at least a subsequence {unk } of {un} such that unk ≤ unk+1 for all k ≥ 0. For every n ≥ N0, define an {τ(n)} as

τ(n) = max{i ≤ n : uni < uni+1}.

Then τ(n)→∞ as n→∞ and for all n ≥ N0,

max{uτ(n),un} ≤ uτ(n)+1.
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3. Weak convergence to split common fixed point of nonexpansive mappings

In this part, we will focus our attention on the following four-operator SCFP:

Find x∗ ∈ Fix(T) ∩ Fix(R) ∩ Fix(U) such that Ax∗ ∈ Fix(S), (10)

to solve (10), we suggested algorithm (5). We use Γ to denote the set of the solutions of (10).
Now, we are in a position to prove our convergence results.

Theorem 3.1. Let H1 and H2 be two real Hilbert spaces. Let A : H1 → H2 be a bounded linear operator. Let
S : H2 → H2 and T, R, U: H1 → H1 are four nonexpansive mappings. Assume that Γ , ∅. Given {αn}, {βn}, {γn} ⊂

(0,1) and constants γ, δ satisfying the following conditions:
(i) lim infn→∞ βn(1 − αn)(1 − βn) > 0; lim infn→∞ αnγn(1 − γn) > 0; lim infn→∞ αn(1 − αn) > 0;
(ii) 0 < γ < 1 and 0 < δ < 1

γλ , with λ being the spectral radius of the operator AA∗.
Define a sequence {xn} by the algorithm (5), then {xn} converges weakly to a p ∈ Γ.

Proof. First, we observe that {xn} is bounded, if we take an arbitrary fixed point x∗ of Γ. Then we get
Ax∗ ∈ Fix(S) and x∗ ∈Fix(T)∩Fix(R)∩Fix(U), noting that S is nonexpansive mapping and using (8), we have

‖yn − x∗‖2 = ‖xn − x∗‖2 + 2γδ〈Axn − Ax∗, (S − I)Axn〉

+ γ2δ2
〈AA∗(S − I)Axn, (S − I)Axn〉

≤ ‖xn − x∗‖2 + 2γδ〈Axn − Ax∗, (S − I)Axn〉 + γ
2δ2λ‖(S − I)Axn‖

2

= ‖xn − x∗‖2 + γ2δ2λ‖SAxn − Axn‖
2

+ γδ(‖SAxn − Ax∗‖2 − ‖Axn − Ax∗‖2 − ‖SAxn − Axn‖
2)

≤ ‖xn − x∗‖2 − γδ(1 − γδλ)‖SAxn − Axn‖
2.

(11)

From (5), (7) and (11), we obtain that

‖xn+1 − x∗‖2 = (1 − αn)‖zn − x∗‖2 + αn‖Uwn − x∗‖2 − αn(1 − αn)‖Uwn − zn‖
2

≤ (1 − αn)‖(1 − βn)(yn − x∗) + βn(Tyn − x∗)‖2

+ αn‖(1 − γn)(yn − x∗) + γn(Ryn − x∗)‖2 − αn(1 − αn)‖Uwn − zn‖
2

≤ αn(1 − γn)‖yn − x∗‖2 + αnγn‖yn − x∗‖2 − αnγn(1 − γn)‖Ryn − yn‖
2

+ (1 − αn)(1 − βn)‖yn − x∗‖2 + (1 − αn)βn‖yn − x∗‖2

− βn(1 − αn)(1 − βn)‖Tyn − yn‖
2
− αn(1 − αn)‖Uwn − zn‖

2

= ‖yn − x∗‖2 − βn(1 − αn)(1 − βn)‖Tyn − yn‖
2
− αnγn(1 − γn)‖Ryn − yn‖

2

− αn(1 − αn)‖Uwn − zn‖
2

≤ ‖xn − x∗‖2 − γδ(1 − γδλ)‖SAxn − Axn‖
2
− βn(1 − αn)(1 − βn)‖Tyn − yn‖

2

− αnγn(1 − γn)‖Ryn − yn‖
2
− αn(1 − αn)‖Uwn − zn‖

2.

(12)

We deduce immediately by conditions (i) and (ii) that

‖xn+1 − x∗‖ ≤ ‖xn − x∗‖,

for every x∗ ∈ Γ, and for all n ≥ 0. Thus, {xn} generated by algorithm (5) is the Féjer-monotone with respect
to Γ. So, we obtain limn→∞ ‖xn − x∗‖ exists immediately, this implies that {xn} is bounded, the sequence
{‖xn − x∗‖} is monotonically decreasing. From (12), we have

lim
n→∞
‖SAxn − Axn‖ = 0. (13)
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Since {xn} is bounded, ωw(xn) , ∅. Denoting by p a weak-cluster point of {xn}, we have w − limi→∞ xni = p.
Noting that demiclosedness of I − S at 0, from (13), we obtain

SAp = Ap, (14)

from which it follows that Ap ∈ Fix(S). By setting yn = xn +γδA∗(S− I)Axn, it follows that w− limi→∞ yni = p.
Again, from (12), we have

lim
n→∞
‖Tyn − yn‖ = 0 and lim

n→∞
‖Ryn − yn‖ = 0, (15)

by the demiclosedness of I − T, I − R at 0 and the weak convergence of {yni } to p yields

Tp = p and Rp = p. (16)

Next, we prove that limn→∞ ‖Uwn − wn‖ = 0.
From (12), we deduce

lim
n→∞
‖Uwn − zn‖ = 0. (17)

By (15), we obtain that limn→∞ ‖zn − yn‖ = 0 and limn→∞ ‖wn − yn‖ = 0. Thus, we get

lim
n→∞
‖wn − zn‖ = 0. (18)

By (17) and (18), we get limn→∞ ‖Uwn − wn‖ = 0. The key limit above combined with limn→∞ ‖wn − yn‖ = 0,
the demiclosedness of I − U at 0 and the weak convergence of {yni } to p yield Up = p, combined with (14)
and (16) we get p ∈ Γ. Since there is no more than one weak-cluster point, the weak convergence of the
whole sequence {xn} follows by applying Lemma 2.3 withW = Γ. This completes the proof.

Chen et. al. [9], proposed a sequence {xn} generate by the following iterative method:
yn = βnxn + (1 − βn)Txn,

zn = γnxn + (1 − γn)Sxn,

xn+1 = αnyn + (1 − αn)zn, n ≥ 0,

where T, S are nonexpansive mappings, {αn}, {βn} are sequences in (0,1).
Inspired by above algorithm, we suggest and analyze the corollary 3.2 as below. We denote Γ1 = {x∗ :

x∗ ∈ Fix(T) ∩ Fix(R),Ax∗ ∈ Fix(S)}.
By the careful analysis of the proof of Theorem 3.1, we can obtain the following result. Because its proof

is much simpler than that of Theorem 3.1, we omit its proof.

Corollary 3.2. Let H1 and H2 be two real Hilbert spaces. Let A : H1 → H2 be a bounded linear operator. Let
S : H2 → H2 and T, R: H1 → H1 are three nonexpansive mappings. Assume that Γ1 , ∅. Given {αn}, {βn} ⊂ (0,1)
and constants γ, δ satisfying the following conditions:

(1) lim infn→∞ βn(1 − αn)(1 − βn) > 0; lim infn→∞ αnγn(1 − γn) > 0;
(2) 0 < γ < 1 and 0 < δ < 1

γλ , with λ being the spectral radius of the operator AA∗.
Define a sequence {xn} by the following algorithm:

yn = xn + γδA∗(S − I)Axn,

zn = (1 − βn)yn + βnTyn,

wn = (1 − γn)yn + γnRyn,

xn+1 = (1 − αn)zn + αnwn, n ≥ 0,

then {xn} converges weakly to a split common fixed point p ∈ Γ1.
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Next, applying Theorem 3.1, we get the result as below.

Corollary 3.3. Let H1 and H2 be two real Hilbert spaces. Let A : H1 → H2 be a bounded linear operator. Let
S : H2 → H2 and T, R: H1 → H1 are three nonexpansive mappings. Assume that Γ1 , ∅. Given {αn}, {βn} ⊂ (0,1)
and constants γ, δ satisfying the following conditions:

(1) lim infn→∞ αnβn(1 − βn) > 0; lim infn→∞ αn(1 − αn) > 0;
(2) 0 < γ < 1 and 0 < δ < 1

γλ , with λ being the spectral radius of the operator AA∗.
Define a sequence {xn} by the following algorithm:

yn = xn + γδA∗(S − I)Axn,

zn = (1 − βn)yn + βnTyn,

xn+1 = (1 − αn)yn + αnRzn, n ≥ 0,

then {xn} converges weakly to a split common fixed point p ∈ Γ1.

Now, we suggest a new split common fixed point problem, that is, finding a point x∗ with the property

x∗ ∈ Fix(R) and Ax∗ ∈ Fix(T) ∩ Fix(S). (19)

We use Γ2 to denote the set of the solutions of (19).

Theorem 3.4. Let H1 and H2 be two real Hilbert spaces. Let A : H1 → H2 be a bounded linear operator. Let S,
T : H2 → H2 and R: H1 → H1 are three nonexpansive mappings. Assume that Γ2 , ∅. The following conditions
hold for the sequence {αn}⊂(0,1) and constants γ, δ:

(i) lim infn→∞ αn(1 − αn) > 0;
(ii) 0 < γ, δ < 1

λ , with λ being the spectral radius of the operator AA∗.
Then a sequence {xn} by the following algorithm:

yn = xn + γA∗(T − I)Axn,

zn = xn + δA∗(S − I)Axn,

xn+1 = (1 − αn)yn + αnRzn, n ≥ 0,
(20)

converges weakly to a split common fixed point p ∈ Γ2.

Proof. As proved in Theorem 3.1, only a sketch of the proof is given here.
First, we observe that {xn} is bounded, taking x∗ of Γ2, i.e., Ax∗ ∈ Fix(T) ∩ Fix(S) and x∗ ∈ Fix(R), noting

that T is nonexpansive mapping and (8), using the same argument in Theorem 3.1, we have

‖yn − x∗‖2 ≤ ‖xn − x∗‖2 − γ(1 − γλ)‖TAxn − Axn‖
2. (21)

Similarly, we get

‖zn − x∗‖2 ≤ ‖xn − x∗‖2 − δ(1 − δλ)‖SAxn − Axn‖
2. (22)

From (20), (7), (21) and (22), we obtain that

‖xn+1 − x∗‖2 ≤ (1 − αn)‖yn − x∗‖2 + αn‖zn − x∗‖2 − αn(1 − αn)‖Rzn − yn‖
2

≤ (1 − αn)(‖xn − x∗‖2 − γ(1 − γλ)‖TAxn − Axn‖
2)

+ αn(‖xn − x∗‖2 − δ(1 − δλ)‖SAxn − Axn‖
2) − αn(1 − αn)‖Rzn − yn‖

2

≤ ‖xn − x∗‖2 − (1 − αn)γ(1 − γλ)‖TAxn − Axn‖
2
− αn(1 − αn)‖Rzn − yn‖

2

− αnδ(1 − δλ)‖SAxn − Axn‖
2.

(23)

We deduce immediately by conditions (i) and (ii) that ‖xn+1 − x∗‖ ≤ ‖xn − x∗‖, for every x∗ ∈ Γ2, and for
all n ∈ N. Thus, {xn} generated by algorithm (3.11) is the Féjer-monotone with respect to Γ2. So, we
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obtain limn→∞ ‖xn − x∗‖ exists immediately, this implies that {xn} is bounded, the sequence {‖xn − x∗‖} is
monotonically decreasing.

From (23), we have

lim
n→∞
‖SAxn − Axn‖ = 0 and lim

n→∞
‖TAxn − Axn‖ = 0.

On the lines similar to Theorem 3.1, we get p ∈ Γ. Since there is no more than one weak-cluster point, the
weak convergence of the whole sequence {xn} follows by applying Lemma 2.3 withW = Γ2. This completes
the proof.

We suggest an algorithm in the following Corollary to solve (3).

Corollary 3.5. Let H1 and H2 be two real Hilbert spaces. Let A : H1 → H2 be a bounded linear operator. Let
S : H2 → H2 and T: H1 → H1 are two nonexpansive mappings. Assume that Γ0 , ∅. The following conditions hold
for the sequences {αn}⊂(0,1) and constant γ:

(1) lim infn→∞ αn(1 − αn) > 0;
(2) 0 < γ < 1

λ , with λ being the spectral radius of the operator AA∗.
Then a sequence {xn} by the following algorithm: yn = xn + γA∗(S − I)Axn,

xn+1 = (1 − αn)xn + αnTyn, n ≥ 0,

converges weakly to a split common fixed point p ∈ Γ0.

Finally, we propose the following split common fixed point problem, that is, finding a point x∗ with the
property

x∗ ∈ H1 and Ax∗ ∈ Fix(T) ∩ Fix(S). (24)

We use Γ3 to denote the set of the solutions of (24).
We introduce the following algorithm, which is take R = I in the algorithm (20) in Theorem 3.4.

Corollary 3.6. Let H1 and H2 be two real Hilbert spaces. Let A : H1 → H2 be a bounded linear operator. Let T,
S : H2 → H2 are two nonexpansive mappings. Assume that Γ3 , ∅. Given {αn} be sequence in (0,1) and constants γ,
δ satisfying 0 < γ, δ < 1

λ , with λ being the spectral radius of the operator AA∗.
Then a sequence {xn} by the following algorithm:

yn = xn + γA∗(T − I)Axn,

zn = xn + δA∗(S − I)Axn,

xn+1 = (1 − αn)yn + αnzn, n ≥ 0,

converges weakly to a split common fixed point p ∈ Γ3.

Proof. Take x∗ ∈ Γ3, i.e., Ax∗ ∈ Fix(T)∩Fix(S), using the same argument in Theorem 3.4, we have the bounded
of {xn}, ωw(xn) , ∅, such that w− limi→∞ xni = p. By setting {yn}, {zn} and combined with the demiclosedness
of I − T, I − S at 0, all the conditions in this corollary are satisfied, the conclusion of Corollary 3.6 can be
obtained from Theorem 3.4 immediately.

We denote Γ4 = {x∗ : x∗ ∈ H1,Ax∗ ∈ Fix(S)}.

Corollary 3.7. Let H1 and H2 be two real Hilbert spaces. Let A : H1 → H2 be a bounded linear operator. Let
S : H2 → H2 be a nonexpansive mapping. Assume that Γ4 , ∅. Given {αn} be sequence in (0,1) and constants γ,
satisfying 0 < γ < 1

λ , with λ being the spectral radius of the operator AA∗.
Then a sequence {xn} by the following algorithm: yn = xn + γA∗(S − I)Axn,

xn+1 = (1 − αn)xn + αnyn, n ≥ 0,

converges weakly to a split common fixed point p ∈ Γ4.
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4. Strong convergence to split common fixed point of nonexpansive mappings

In this section, we suggest a Halpern-type iterative algorithm to solve the SCFP (3) involved in nonex-
pansive mappings, and prove its strong convergence.

Theorem 4.1. Let H1 and H2 be two real Hilbert spaces. Let A : H1 → H2 be a bounded linear operator. Let
S : H2 → H2 and T : H1 → H1 are two nonexpansive mappings. Assume that Γ0 , ∅. Given {αn}, {βn} ⊂ (0,1) and
constant δ satisfying the following conditions:

(i) limn→∞ αn = 0,
∑
∞

n=0 αn = ∞;
(ii)
∑
∞

n=0 |αn − αn−1| < ∞,
∑
∞

n=0 |βn − βn−1| < ∞,
(iii) 0 < βn < b < 1, 0 < δ < 1−b

λ , with λ being the spectral radius of the operator AA∗.
For fixed u, x0 ∈ H1 arbitrarily, define a sequence {xn} by algorithm (6), then {xn} converges strongly to x∗, given

by x∗ = PΓ0 (u).

Proof. First, we observe that {xn} is bounded, if we take an arbitrary fixed point x∗ of Γ0. Then we get
Ax∗ ∈ Fix(S) and x∗ ∈ Fix(T), noting that S is nonexpansive mapping, using (8) and condition (iii), we have

‖yn − x∗‖2 ≤ ‖Txn − x∗‖2 + 2(1 − βn)δ〈Txn − Tx∗,A∗(S − I)ATxn〉 + δ
2
‖A∗(S − I)ATxn‖

2

≤ ‖xn − x∗‖2 + 2(1 − βn)δ〈ATxn − ATx∗, (S − I)ATxn〉 + λδ
2
‖(S − I)ATxn‖

2

= ‖xn − x∗‖2 + λδ2
‖SATxn − ATxn‖

2

+ (1 − βn)δ(‖SATxn − ATx∗‖2 − ‖ATxn − ATx∗‖2 − ‖SATxn − ATxn‖
2)

= ‖xn − x∗‖2 − δ((1 − βn) − λδ)‖SATxn − ATxn‖
2

≤ ‖xn − x∗‖2.

(25)

From (6) and (25), we obtain that

‖xn+1 − x∗‖ ≤ αn‖u − x∗‖ + (1 − αn)‖yn − x∗‖
≤ αn‖u − x∗‖ + (1 − αn)‖xn − x∗‖
≤ max{‖u − x∗‖, ‖xn − x∗‖}.

The boundedness of the sequence {xn} yields by the induction. So are {yn} and {Txn}. These boundedness
play a prominent role in proving the strong convergence theorem.

From (6), (7) and (25), we have

‖xn+1 − x∗‖2 ≤ αn‖u − x∗‖2 + (1 − αn)‖yn − x∗‖2

≤ αn‖u − x∗‖2 + ‖xn − x∗‖2 − δ((1 − b) − λδ)‖SATxn − ATxn‖
2.

It follows that

δ(1 − b − λδ)‖SATxn − ATxn‖
2
≤ αn‖u − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2. (26)

Next, we consider two possible cases.
Case 1. Assume there exists some integer m > 0 such that {‖xn − x∗‖} is decreasing for all n > m, in this

case, we know that limn→∞ ‖xn − x∗‖ exists. From (26) and condition (i), (iii), we deduce

lim
n→∞
‖SATxn − ATxn‖ = 0. (27)

As a result, by setting yn = Txn + (1 − βn)δA∗(S − I)ATxn, we obtain that

lim
n→∞
‖yn − Txn‖ = 0. (28)

Since {yn} is bounded, from (6) and condition (i), we have

lim
n→∞
‖xn+1 − yn‖ = 0. (29)
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We next show that

lim
n→∞
‖xn − Txn‖ = 0. (30)

As a matter of fact ‖xn − Txn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − yn‖ + ‖yn − Txn‖, so, it suffices to show that

lim
n→∞
‖xn − xn+1‖ = 0, (31)

if (31) holds, then (30) holds from (28) and (29).
Before calculate xn − xn+1, letting zn = Txn + δA∗(S − I)ATxn, on the lines similar to (11), we get the

boundedness of the sequence {zn}.
For every integer n ≥ 1, we have

‖zn − zn−1‖
2 = ‖Txn − Txn−1‖

2 + δ2
‖A∗(S − I)ATxn − A∗(S − I)ATxn−1‖

2

+ 2δ〈Txn − Txn−1,A∗(S − I)ATxn − A∗(S − I)ATxn−1〉

≤ ‖xn − xn−1‖
2 + λδ2

‖(S − I)ATxn − (S − I)ATxn−1‖
2

+ 2δ〈ATxn − ATxn−1, (S − I)ATxn − (S − I)ATxn−1〉

= ‖xn − xn−1‖
2 + λδ2

‖(S − I)ATxn − (S − I)ATxn−1‖
2

+ δ(‖SATxn − SATxn−1‖
2
− ‖ATxn − ATxn−1‖

2
− ‖(S − I)ATxn − (S − I)ATxn−1‖

2)

≤ ‖xn − xn−1‖
2
− δ(1 − λδ)‖(S − I)ATxn − (S − I)ATxn−1‖

2

≤ ‖xn − xn−1‖
2.

(32)

In order to prove (30), we now calculate xn+1 − xn for every integer n ≥ 1,

xn+1 − xn = (αnu + (1 − αn)((1 − βn)zn + βnTxn)) − (αn−1u + (1 − αn−1)((1 − βn−1)zn−1 + βn−1Txn−1))
= (αn − αn−1)u + (1 − αn)(1 − βn)(zn − zn−1) + (1 − αn)(1 − βn)zn−1 − (1 − αn−1)βn−1Txn−1

+ (1 − αn)βn(Txn − Txn−1) + (1 − αn)βnTxn−1 − (1 − αn−1)(1 − βn−1)zn−1

= (αn − αn−1)u + (1 − αn)(1 − βn)(zn − zn−1) + (1 − αn)(1 − βn)Txn−1

+ (1 − αn)(1 − βn)(zn−1 − Txn−1) − (1 − αn−1)(1 − βn−1)(zn−1 − Txn−1) + (1 − αn)βnTxn−1

− (1 − αn−1)(1 − βn−1)Txn−1 + (1 − αn)βn(Txn − Txn−1) − (1 − αn−1)βn−1Txn−1

= (αn − αn−1)u + (1 − αn)Txn−1 − (1 − αn−1)Txn−1 + (1 − αn)(1 − βn)(zn − zn−1)
+ ((1 − αn)(1 − βn) − (1 − αn−1)(1 − βn−1))(zn−1 − Txn−1) + (1 − αn)βn(Txn − Txn−1)

= (αn − αn−1)(u − Txn−1) + (1 − αn)(1 − βn)(zn − zn−1)
+ ((βn−1 − βn)(1 − αn) + (αn−1 − αn)(1 − βn−1))(zn−1 − Txn−1) + (1 − αn)βn(Txn − Txn−1).

It follows from (32) that

‖xn+1 − xn‖ ≤ (1 − αn)βn‖Txn − Txn−1‖ + (1 − αn)(1 − βn)‖zn − zn−1‖

+ (|βn − βn−1| + |αn − αn−1|)‖zn−1 − Txn−1‖ + |αn − αn−1|‖u − Txn−1‖

≤ (1 − αn)‖xn − xn−1‖ + M(|βn − βn−1| + 2|αn − αn−1|),
(33)

where M is a constant such that M = max{‖zn−1 − Txn−1‖, ‖u − Txn−1‖} for all n ≥ 1. By assumptions (i) and
(ii), we have

∑
∞

n=0 αn = ∞ and
∑
∞

n=0(|βn − βn−1| + 2|αn − αn−1|) < ∞. Hence, Lemma 2.4 is applicable to (33)
and we obtain limn→∞ ‖xn − xn+1‖ = 0.

Since the sequence {xn} is bounded, we can choose a subsequence {xni } of {xn} such that xni ⇀ x.
Consequently, we derive from (27) and (30) that

Txni ⇀ x, ATxni ⇀ Ax.
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Applying demiclosedness principle, we deduce

x ∈ Fix(T) and Ax ∈ Fix(S).

That is to say, x ∈ Γ0.
Therefore,

lim sup
n→∞

〈u − x∗, xn+1 − x∗〉 = lim
i→∞
〈u − x∗, xni − x∗〉 = 〈u − x∗, x − x∗〉 ≤ 0. (34)

Using (9), we have

‖xn+1 − x∗‖2 ≤ (1 − αn)‖yn − x∗‖2 + 2αn〈u − x∗, xn+1 − x∗〉

≤ (1 − αn)‖xn − x∗‖2 + 2αn〈u − x∗, xn+1 − x∗〉.
(35)

Applying Lemma 2.4 and (34) and (35), we deduce xn → x∗, i.e., sequence {xn} converges strongly to a split
common fixed point x∗, given by x∗ = PΓ0 (u).

Case 2. Assume there exists an integers n0, such that

‖xn0 − x∗‖ ≤ ‖xn0+1 − x∗‖.

Set un = {‖xn − x∗‖}, then we have

un0 ≤ un0+1.

Define an integer sequence {τn} for all n ≥ n0 as follows:

τ(n) = max{l ≥ 1 : n0 ≤ l ≤ n,ul ≤ ul+1}.

It is clear that τ(n) is non-decresing sequence satisfying

lim
n→∞

τ(n) = ∞,

and

uτ(n) ≤ uτ(n)+1,

for all n ≥ n0.
By a similar argument to that of Case 1, we can obtain that

lim
n→∞
‖SATxτ(n) − ATxτ(n)‖ = 0 and lim

n→∞
‖xτ(n) − Txτ(n)‖ = 0.

This implies that

ω(xτ(n)) ⊂ Γ0.

Thus, we obtain

lim sup
n→∞

〈u − x∗, xτ(n)+1 − x∗〉 ≤ 0. (36)

Since uτ(n) ≤ uτ(n)+1, we have from (35) that

u2
τ(n) ≤ u2

τ(n)+1 ≤ (1 − ατ(n))u2
τ(n) + 2ατ(n)〈u − x∗, xτ(n)+1 − x∗〉. (37)

It follows that

u2
τ(n) ≤ 2〈u − x∗, xτ(n)+1 − x∗〉. (38)
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Combining (36) and (38), we have lim supn→∞ uτ(n) ≤ 0, and hence

lim
n→∞

uτ(n) = 0. (39)

By (37), we obtain

lim sup
n→∞

u2
τ(n)+1 ≤ lim sup

n→∞
u2
τ(n).

This together with (39) implies that

lim
n→∞

uτ(n)+1 = 0.

Applying Lemma 2.5 to get

0 ≤ un ≤ max{uτ(n),uτ(n)+1}.

therefore, un → 0. That is, xn → x∗, i.e., sequence {xn} converges strongly to a split common fixed point x∗,
given by x∗ = PΓ0 (u). This completes the proof.

If taking u = 0 in the algorithm in Theorem 4.1, we get the following corollary immediately.

Corollary 4.2. Let H1 and H2 be two real Hilbert spaces. Let A : H1 → H2 be a bounded linear operator. Let
S : H2 → H2 and T : H1 → H1 are two nonexpansive mappings. Assume that Γ0 , ∅. Given {αn}, {βn} ⊂ (0,1) and
constant δ satisfying the following conditions:

(1) limn→∞ αn = 0,
∑
∞

n=0 αn = ∞;
(2)
∑
∞

n=0 |αn − αn−1| < ∞,
∑
∞

n=0 |βn − βn−1| < ∞,
(3) 0 < βn < b < 1, 0 < δ < 1−b

λ , with λ being the spectral radius of the operator AA∗.
For fixed x0 ∈ H1 arbitrarily, define a sequence {xn} by the following algorithm, yn = Txn + (1 − βn)δA∗(S − I)ATxn,

xn+1 = (1 − αn)yn, n ≥ 0,

then {xn} converges strongly to a x∗, given by x∗ = PΓ0 (0), which is the minimum norm in Γ0.

5. Acknowledgment

This work was supported in part by Applied Basic Research Project of Sichuan Province (2018JY0169,
Chengdu Univ. Info. Tech.).

References

[1] H. Bauschke and J. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev., 38 (1996), 367–426.
[2] C. Byrne, Iterative oblique projection onto convex subsets and the split feasibility problem, Inverse Probl., 18 (2002), 441–453.
[3] C. Byrne, A unified treatment of some iterative algorithm in signal processing and image reconstruction, Inverse Probl., 20 (2004), 103–120.
[4] L. C. Ceng, A. Petrusel, J. C. Yao and Y. Yao, Hybrid viscosity extragradient method for systems of variational inequalities, fixed Points

of nonexpansive mappings, zero points of accretive operators in Banach spaces, Fixed Point Theory, 19 (2018), 487–502.
[5] L. C. Ceng, A. Petrusel, J. C. Yao and Y. Yao, Systems of variational inequalities with hierarchical variational inequality constraints for

Lipschitzian pseudocontractions, Fixed Point Theory, 20 (2019), 113–134.
[6] Y. Censor, T. Bortfeld, B. Martin and A. Trofimov, A unified approach for inversion problems in intensity modulated radiation therapy,

Phys. Med. Biol., 51 (2006), 2353–2365.
[7] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algor., 8 (1994), 221–239.
[8] Y. Censor and A. Segal, The split common fixed point problem for directed operators, J. Convex. Anal., 16 ( 2009), 587–600.
[9] J. Chen and D. Wu, A new iterative scheme for approximating common fixed points of two nonexpansive mappings in Banach space, J.

Appl. Math. Bio., 3 (2013), 285–300.
[10] J. Chen, D. Wu and C. Zhang, A new iterative scheme of modified Mann iteration in Banach space, Abstr. Appl. Anal., 2014 (2014), Art.

ID. 264909.



D. Wu, M. Postolache / Filomat 34:13 (2020), 4375–4386 4386

[11] Y. Dang and Y. Gao, The strong convergence of a KM-CQ-like algorithm for a split feasibility problem, Inverse Probl., 27 (2011), Art. ID
015007.

[12] A. Moudafi, A note on the split common fixed-point problem for quasi-nonexpansive operators, Nonlinear. Anal., 74 (2011), 4083–4087.
[13] A. Moudafi and E. Al-Shemas, Simultaneous iterative methods for split equality problem, Trans. Math. Program. Appl., 1 (2013), 1–11.
[14] B. Qu and N. Xiu, A note on the CQ algorithm for the split feasibility problem, Inverse Probl., 21 (2005), 1655–1665.
[15] M. Sezan and H. Stark, Applications of convex projection theory to image recovery in tomography and related areas, in Image Recovery

Theory and Applications. H.Stark, Ed. pp.415-462, Academic Press, Orlando, Fla, USA, 1987.
[16] B. S. Thakur, D. Thakur and M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized

nonexpansive mappings, Appl. Math. Comput., 275 (2016), 147–155.
[17] F. Wang and H. K. Xu, Approximating curve and strong convergence of the CQ algorithm for the split feasibility problem, J. Inequal.

Appl., 2010 (2010), Article ID 102085.
[18] F. Wang and H. K. Xu, Cyclic algorithms for the split feasibility problems in Hilbert spaces, Nonlinear. Anal., 74 (2011), 4105–4111.
[19] Z. Wang, Q. Yang and Y. Yang, The relaxed inexact projection methods for the split feasibility problem, Appl. Math. Comput., 217 (2011),

5347–5359.
[20] H. K. Xu, A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem, Inverse Probl., 22 (2006), 2021–2034.
[21] H. K. Xu, Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces, Inverse Probl., 26 (2010), Art. ID 105018.
[22] Q. Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse Probl., 20 (2004), 1261–1266.
[23] Y. Yao, R. Agarwal, M. Postolache and Y. Liou, Algorithms with strong convergence for the split common solution of the feasibility

problem and fixed point problem, Fixed Point Theory Appl., 2014 (2014), Article ID 183.
[24] Y. Yao, L. Leng, M. Postolache and X. Zheng, Mann-type iteration method for solving the split common fixed point problem, J. Nonlinear

Convex Anal., 18 (2017), 875–882.
[25] Y. H. Yao, Y. C. Liou and J. C. Yao, Split common fixed point problem for two quasi-pseudocontractive operators and its algorithm

construction, Fixed Point Theory Appl., 2015 (2015), Art. No. 127.
[26] Y. Yao, Y. C. Liou and J. C. Yao, Iterative algorithms for the split variational inequality and fixed point problems under nonlinear

transformations, J. Nonlinear Sci. Appl., 10 (2017), 843–854.
[27] Y. Yao, M. Postolache and Y. C. Liou, Strong convergence of a self-adaptive method for the split feasibility problem, Fixed Point Theory

Appl., 2013 (2013), Art. ID. 201.
[28] Y. Yao, M. Postolache and J. C. Yao, An iterative algorithm for solving the generalized variational inequalities and fixed points problems,

Mathematics, 7 (2019), Art. ID. 61.
[29] Y. Yao, M. Postolache and Z. Zhu, Gradient methods with selection technique for the multiple-sets split feasibility problem, Optim., 69

(2020), 269-281.
[30] Y. Yao, J. Wu and Y.C. Liou, Regularized methods for the split feasibility problem, Abstr. Appl. Anal., 2012 (2012), Art. ID. 140679.
[31] Y. Yao, J. C. Yao, Y. C. Liou and M. Postolache, Iterative algorithms for split common fixed points of demicontractive operators without

priori knowledge of operator norms, Carpathian J. Math., 34 (2018), 459–466.
[32] J. Zhao and Q. Yang, Seveal solution methods for the split feasibility problem, Inverse Probl., 21 (2005), 1791–1799.
[33] X. P. Zhao, J. C. Yao and Y. Yao, A proximal algorithm for solving split monotone variational inclusions, U.P.B. Sci. Bull., Series A, 82(3)

(2020), 43-52.
[34] X. P. Zhao and Y. H. Yao, Modified extragradient algorithms for solving monotone variational inequalities and fixed point problems, Optim.,

in press.


