

# Sequentially Cohen-Macaulay Matroidal Ideals 

Madineh Jafari ${ }^{\text {a }}$, Amir Mafia ${ }^{\text {a }}$, Hero Saremi ${ }^{\text {b }}$<br>${ }^{a}$ Department of Mathematics, University of Kurdistan, P.O. Box: 416, Sanandaj, Iran.<br>${ }^{b}$ Department of Mathematics, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.


#### Abstract

Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in $n$ variables over a field $K$ and let $I$ be a matroidal ideal of degree $d$ in $R$. Our main focus is determining when matroidal ideals are sequentially CohenMacaulay. In particular, all sequentially Cohen-Macaulay matroidal ideals of degree 2 are classified. Furthermore, we give a classification of sequentially Cohen-Macaulay matroidal ideals of degree $d \geq 3$ in some special cases.


## Introduction

Our goal is to classify the sequentially Cohen-Macaulay matroidal ideals. While for the Cohen-Macaulay property of matroidal ideals, a complete classification was given by Herzog and Hibi [10], the classification of the sequentially Cohen-Macaulay matroidal ideals seems to be much harder. In the present paper partial answers to this problem are given. Herzog and Hibi [9] were the first to give a systematic treatment of polymatroidal ideals and they studied some combinatoric and algebraic properties related to it. They defined the polymatroidal ideal, a monomial ideal having the exchange property. A square-free polymatroidal ideal is called a matroidal ideal. Herzog and Takayama [13] proved that all polymatroidal ideals have linear quotients which implies that they have linear resolutions. Herzog and Hibi [10] proved that a polymatroidal ideal $I$ is Cohen-Macaulay (i.e. CM) if and only if $I$ is a principal ideal, a Veronese ideal, or a square-free Veronese ideal.

Let $R=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in $n$ indeterminate over a field $K$ and $I \subset R$ be a homogeneous ideal. For a positive integer $i$, let $\left(I_{i}\right)$ be the ideal generated by all forms in $I$ of degree $i$. We say that I is componentwise linear if for each positive integer $i,\left(I_{i}\right)$ has a linear resolution. Componentwise linear ideals were first introduced by Herzog and Hibi [8] to generalize Eagon and Reiner's result that the StanleyReisner ideal $I_{\Delta}$ of simplicial complex $\Delta$ has a linear resolution if and only if the Alexander dual $\Delta^{\vee}$ is C.M [5]. In particular, Herzog and Hibi [8] and Herzog, Reiner, and Welker [12] showed that the Stanley-Reisner ideal $I_{\Delta}$ is componentwise linear if and only if $\Delta^{\vee}$ is sequentially Cohen-Macaulay(i.e. SCM).

It is of interest to understand the SCM matroidal ideals, and this paper may be considered as a first attempt to characterize such ideals for matroidal ideals in low degree or in a small number of variables. The remainder of this paper is organized as follows. Section 1 and 2 recall some definitions and results of componentwise linear ideals, simplicial complexes, and polymatroidal ideals. Section 3 classifies all SCM

[^0]matroidal ideals of degree 2 . Section 4 studies SCM matroidal ideals of degree $d \geq 3$ over polynomial rings of small dimensional.

For any unexplained notion or terminology, we refer the reader to [11] and [21]. Several explicit examples were performed with help of the computer algebra systems Macaulay2 [7].

## 1. Preliminaries

In this section, we recall some definitions and results used throughout the paper. As in the introduction, let $K$ be a field and $R=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in $n$ variables over $K$ with each $\operatorname{deg} x_{i}=1$. Let $I \subset R$ be a monomial ideal and $G(I)$ be its unique minimal set of monomial generators of $I$.

We say that a monomial ideal $I$ with $G(I)=\left\{u_{1}, \ldots, u_{r}\right\}$ has linear quotients if there is an ordering $\operatorname{deg}\left(u_{1}\right) \leq$ $\operatorname{deg}\left(u_{2}\right) \leq \ldots \leq \operatorname{deg}\left(u_{r}\right)$ such that for each $2 \leq i \leq r$ the colon ideal $\left(u_{1}, \ldots, u_{i-1}\right): u_{i}$ is generated by a subset $\left\{x_{1}, \ldots, x_{n}\right\}$ It is known that if a monomial ideal $I$ generated in single degree has linear quotients, then $I$ has a linear resolution (see [3, Lemma 4.1]). In particular, a monomial ideal I generated in degree $d$ has a linear resolution if and only if the Castelnuovo-Mumford regularity of $I$ is $\operatorname{reg}(I)=d$ (see [20, Lemma 49]).

Lemma 1.1. [4, Corollary 20.19] If $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ is a short exact sequence of graded finitely generated $R$-modules, then
(a) $\operatorname{reg} A \leq \max (\operatorname{reg} B, \operatorname{reg} C+1)$.
(b) $\operatorname{reg} B \leq \max (\operatorname{reg} A, \operatorname{reg} C)$,
(c) $\operatorname{reg} C \leq \max (\operatorname{reg} A-1, \operatorname{reg} B)$.
(d) If $A$ has a finite length, set $s(A)=\max \left\{s: A_{s} \neq 0\right\}$, then $\operatorname{reg}(A)=s(A)$ and the equality holds in $(b)$.

One of the important classes of monomial ideals with linear quotients is the class of polymatroid ideals.
Let $I \subset R$ be a monomial ideal generated in one degree. We say that $I$ is polymatroidal if the following "exchange condition" is satisfied: For any two monomials $u=x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}}$ and $v=x_{1}^{b_{1}} x_{2}^{b_{2}} \ldots x_{n}^{b_{n}}$ belong to $G(I)$ such that $\operatorname{deg}_{x_{i}}(v)<\operatorname{deg}_{x_{i}}(u)$, there exists an index $j$ with $\operatorname{deg}_{x_{j}}(u)<\operatorname{deg}_{x_{j}}(v)$ such that $x_{j}\left(u / x_{i}\right) \in G(I)$. The polymatroidal ideal $I$ is called matroidal if $I$ is generated by square-free monomials. Note that if $I$ is a matroidal ideal of degree $d$, then $\operatorname{depth}(R / I)=d-1$ (see [2]).
Theorem 1.2. [10, theorem 4.2] A polymatroidal ideal I is CM if and only if I is a principal ideal, a Veronese ideal, or a square-free Veronese ideal.

## 2. review on componentwise linear ideals

For a homogeneous ideal $I$, we write $\left(I_{i}\right)$ to denote the ideal generated by the degree $i$ elements of $I$. Note that $\left(I_{i}\right)$ is different from $I_{i}$, the vector space of all degree $i$ elements of $I$. Herzog and Hibi introduced the following definition in [8].

Definition 2.1. A monomial ideal I is componentwise linear if $\left(I_{i}\right)$ has a linear resolution for all $i$.
A number of familiar classes of ideals are componentwise linear. For example, all ideals with linear resolutions, all stable ideals, all square-free strongly stable ideals are componentwise linear (see [11]).

Proposition 2.2. [6, Proposition 2.6] If Iis a homogeneous ideal with linear quotients, then I is componentwise linear.
If $I$ is generated by square-free monomials, then we denote by $I_{[i]}$ the ideal generated by the square-free monomials of degree $i$ of $I$.

Theorem 2.3. [8, Proposition 1.5] Let I be a monomial ideal generated by square-free monomials. Then I is componentwise linear if and only if $I_{[i]}$ has a linear resolution for all $i$.

The notion of componentwise linearity is intimately related to the concept of sequential CohenMacaulayness.

Definition 2.4. [18] A graded $R$-module $M$ is called sequentially Cohen-Macaulay (SCM) if there exists a finite filtration of graded $R$-modules $0=M_{0} \subset M_{1} \subset \ldots \subset M_{r}=M$ such that each $M_{i} / M_{i-1}$ is Cohen-Macaulay, and the Krull dimensions of the quotients are increasing:

$$
\operatorname{dim}\left(M_{1} / M_{0}\right)<\operatorname{dim}\left(M_{2} / M_{1}\right)<\ldots<\operatorname{dim}\left(M_{r} / M_{r-1}\right) .
$$

The theorem connecting sequentially Cohen-Macaulayness to componentwise linearity is based on the idea of Alexander duality. We recall the definition of Alexander duality for square-free monomial ideals and then state the fundamental result of Herzog and Hibi [8] and Herzog, Reiner, and Welker [12].

Let $\Delta$ be a simplicial complex on the vertex set $V=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, i.e., $\Delta$ is a collection of subsets $V$ such that (1) $\left\{x_{i}\right\} \in \Delta$ for each $i=1,2, \ldots, n$ and (2) if $F \in \Delta$ and $G \subseteq F$, then $G \in \Delta$. Let $\Delta^{\vee}$ denote the dual simplicial complex of $\Delta$, that is to say, $\Delta^{\vee}=\{V \backslash F \mid F \notin \Delta\}$.

If $I$ is a square-free monomial ideal, then the square-free Alexander dual of $I=\left(x_{1,1} \ldots x_{1, n_{1}}, \ldots, x_{t, 1} \ldots x_{t, n_{t}}\right)$ is the ideal $I^{\vee}=\left(x_{1,1}, \ldots, x_{1, n_{1}}\right) \cap \ldots \cap\left(x_{t, 1}, \ldots, x_{t, n_{t}}\right)$.

We quote the following results which are proved in [5], [8], [19] and [15].
Theorem 2.5. Let I be a square-free monomial ideal of $R$. Then the following conditions hold:
(a) $R / I$ is CM if and only if the Alexander dual $I^{\vee}$ has a linear resolution.
(b) $R / I$ is SCM if and only if the Alexander dual $I^{\vee}$ is componentwise linear.
(c) $\operatorname{proj} \operatorname{dim}(R / I)=\operatorname{reg}\left(I^{\vee}\right)$.
(d) If $y_{1}, \ldots, y_{r}$ is an $R$-sequence with $\operatorname{deg}\left(y_{i}\right)=d_{i}$ and $I=\left(y_{1}, \ldots, y_{r}\right)$, then $\operatorname{reg}(I)=d_{1}+\ldots+d_{r}-r+1$.

In the following if $G(I)=\left\{u_{1}, \ldots, u_{t}\right\}$, then we set $\operatorname{supp}(I)=\cup_{i=1}^{t} \operatorname{supp}\left(u_{i}\right)$, where $\operatorname{supp}(u)=\left\{x_{i}: u=\right.$ $\left.x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}, a_{i} \neq 0\right\}$. Also we set $\operatorname{gcd}(I)=\operatorname{gcd}\left(u_{1}, \ldots, u_{m}\right)$ and $\operatorname{deg}(I)=\max \left\{\operatorname{deg}\left(u_{1}\right), \ldots, \operatorname{deg}\left(u_{m}\right)\right\}$.

Throughout this paper we assume that all matroidal ideals are full supported, that is, $\operatorname{supp}(I)=\left\{x_{1}, \ldots, x_{n}\right\}$.
Corollary 2.6. [6, Corollary 6.6] Let $\Delta$ be a simplicial complex on $n$ vertices, and let $I_{\Delta}$ be it's Stanley-Reisner ideal, minimally generated by square-free monomials $m_{1}, \ldots, m_{s}$. If $s \leq 3$, so that $\Delta$ has at most three minimal nonfaces, or if $\operatorname{Supp}\left(m_{i}\right) \cup \operatorname{Supp}\left(m_{j}\right)=\left\{x_{1}, \ldots, x_{n}\right\}$ for all $i \neq j$, then $\Delta$ is SCM.

Definition 2.7. Let I be a monomial ideal of $R$. Then the big height of I, denoted by bight $(I)$, is max\{height $(\mathfrak{p}) \mid \mathfrak{p} \in$ $\operatorname{Ass}(R / I)\}$.

Note that, if $I$ is a matroidal ideal of degree $d$, then by Auslander-Buchasbum formula $\operatorname{bight}(I) \leq n-d+1$.
Proposition 2.8. [21, Corollary 6.4.20]. Let I be a monomial ideal of $R$ such that $R / I$ is $S C M$. Then $\operatorname{proj} \operatorname{dim}(R / I)=$ bight(I).

The following examples say that the converse of Proposition 2.8 is not true even if $I$ is matroidal with $\operatorname{gcd}(I)=1$.

Example 2.9. Let $n=5$ and $I=\left(x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}, x_{1} x_{5}, x_{2} x_{3}, x_{2} x_{4}, x_{3} x_{5}, x_{4} x_{5}\right)$ be an ideal of $R$. Then $I$ is a matroidal ideal of $R$ with proj $\operatorname{dim}(R / I)=\operatorname{bight}(I)$ but $I$ is not $S C M$.

Proof. It is clear that $I$ is a matroidal ideal and

$$
\operatorname{Ass}(R / I)=\left\{\left(x_{1}, x_{3}, x_{4}\right),\left(x_{1}, x_{2}, x_{5}\right),\left(x_{2}, x_{3}, x_{4}, x_{5}\right)\right\} .
$$

Thus $I_{[3]}^{\vee}=\left(x_{1} x_{3} x_{4}, x_{1} x_{2} x_{5}\right)$ and so $\operatorname{reg}\left(I_{[3]}^{\vee}\right)=4$. Hence $I^{\vee}$ is not componentwise linear resolution. Therefore $I$ is not SCM but proj $\operatorname{dim}(R / I)=4=\operatorname{bight}(I)$.

## 3. SCM matroidal ideals of degree 2

In this section, we classify all SCM matroid ideals of degree 2.
Lemma 3.1. Let $n=3$ and $I$ be a matroidal ideal in $R$ generated in degree $d$. Then $I$ is a SCM ideal.
Proof. Let $n=3$, then every matroidal ideal in $R$ generated by at most three square-free monomials and so by Corollary 2.6 we have the result.

Lemma 3.2. Let I be a monomial ideal of $R$ such that $I=\left(u_{1}, \ldots, u_{d}\right)$ and $\operatorname{deg}\left(u_{i}\right) \leq \operatorname{deg}\left(u_{d}\right)=d$ for all $i$. If reg $(I)=d$, then $\operatorname{reg}\left(I_{i}\right)=i$ for all $i>d$.

Proof. Consider the following exact sequence for $i>d$,

$$
0 \longrightarrow \frac{I}{\left(I_{i}\right)} \longrightarrow \frac{R}{\left(I_{i}\right)} \longrightarrow \frac{R}{I} \longrightarrow 0
$$

$l\left(\frac{I}{\left(I_{i}\right)}\right)<\infty$, so by Lemma $1.1(\mathrm{~d}) \operatorname{reg}\left(\frac{I}{\left(I_{i}\right)}\right)=i-1$ and

$$
\operatorname{reg}\left(\frac{R}{\left(I_{i}\right)}\right)=\max \left\{\operatorname{reg}\left(\frac{R}{I}\right), \operatorname{reg}\left(\frac{I}{\left(I_{i}\right)}\right)\right\}=\max \{d-1, i-1\}=i-1 .
$$

On the other hand $\operatorname{reg}\left(I_{i}\right)=\operatorname{reg}\left(\frac{R}{\left(I_{i}\right)}\right)+1$, that is, $\operatorname{reg}\left(I_{i}\right)=i$ for all $i>d$.
Proposition 3.3. Let I be monomial ideal which is componentwise linear in $R$. Then $J=\left(x_{n+1}, I\right)$ is componentwise linear in $R^{\prime}=K\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]$.

Proof. Suppose that $I=\left(u_{1}, \ldots, u_{m}\right)$, where $\operatorname{deg}\left(u_{i}\right)=d_{i}$ and $d_{i-1} \leq d_{i}$ for $i=2, \ldots, m$. We induct on $m$, the number of minimal generators of $I$. If $m=1$, then $I=\left(x_{n+1}, u_{1}\right)$. Set $J^{\prime}=x_{n+1} R^{\prime}$. Note that $\left(J_{j}\right)=\left(J_{j}^{\prime}\right)$ for all $j<d_{1}$ and so $\left(J_{j}\right)$ has a linear resolution for all $j<d_{1}$. By theorem 2.5, $\operatorname{reg}(J)=d_{1}$. Thus $\left(J_{d_{1}}\right)$ has a linear resolution and also $\left(J_{j}\right)$ has a linear resolution for all $j>d_{1}$, by using Lemma 3.2.

Now, let $m>1$ and assume that the ideal $L=\left(x_{n+1}, u_{1}, \ldots, u_{m-1}\right)$ is componentwise linear. Set $J=\left(L, u_{m}\right)=$ $\left(I, x_{n+1}\right)$. Note that $\left(J_{j}\right)=\left(L_{j}\right)$ for all $j<d_{m}$ and so $\left(J_{j}\right)$ has a linear resolution for all $j<d_{m}$. Hence by using [14, Lemma 3.2] we have $\operatorname{reg}(J)=\operatorname{reg}(I)=d_{m}$. Therefore $\left(J_{d_{m}}\right)$ has a linear resolution. Again, by using Lemma 3.2, we have $\left(J_{j}\right)$ has a linear resolution for all $j>d_{m}$. This completes the proof.

Corollary 3.4. Let I be a SCM matroidal ideal in $R$ and let $J=x_{n+1} I$ be a monomial ideal in $R^{\prime}=K\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]$. Then $J$ is a SCM matroidal ideal in $R^{\prime}=k\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]$.

Proof. The Alexander dual of $J$ is $J^{\vee}=\left(x_{n+1}, I^{\vee}\right)$ and by our hypothesis on $I$, $I^{\vee}$ is componentwise linear resolution. Thus by Proposition 3.3, $J^{\vee}$ is componentwise linear resolution. Thus $J$ is a SCM matroidal ideal of $R^{\prime}$.

One of the most distinguished polymatroidal ideals is the ideal of Veronese type. Consider the fixed positive integers $d$ and $1 \leq a_{1} \leq \ldots \leq a_{n} \leq d$. The ideal of Veronese type of $R$ indexed by $d$ and $\left(a_{1}, \ldots, a_{n}\right)$ is the ideal $I_{\left(d ; a_{1}, \ldots, a_{n}\right)}$ which is generated by those monomials $u=x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}$ of $R$ of degree $d$ with $i_{j} \leq a_{j}$ for each $1 \leq j \leq n$.

Remark 3.5. Let $I$ be a SCM matroidal ideal in $R$ and let $J=x_{n+1} \ldots x_{m} I$ be a monomial ideal in $R^{\prime}=$ $K\left[x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{m}\right]$. Then, by induction on $m$, $J$ is a SCM matroidal ideal in $R^{\prime}=K\left[x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{m}\right]$. Hence for a SCM matroidal ideal $J$, we can assume that $\operatorname{gcd}(J)=1$. By using [16, Lemma 2.16] all fully supported matroid ideals of degree $n-1(n \geq 2)$ are Veronese type ideals and then by theorem 1.2, all matroidal ideals generated in degrees $d=1, n-1, n$ are SCM.

Definition 3.6. Let I be a square-free Veronese ideal of degree d. We say that $J$ is an almost square-free Veronese ideal of degree d when $J \neq 0, G(J) \subseteq G(I)$ and
$|G(J)| \geq|G(I)|-1$. Note that every square-free Veronese ideal is an almost quare-free Veronese ideal. Also, if J is an almost square-free Veronese ideal of degree $n$, then $J$ is a square-free Veronese ideal.

Lemma 3.7. Let J be an almost square-free Veronese ideal of degree $d<n$. Then $J$ is a SCM matroidal ideal of $R$.
Proof. Suppose that $y_{1}, \ldots, y_{n}$ is an arbitrary permutation of the variables of $R$ such that $\left\{y_{1}, \ldots, y_{n}\right\}=\left\{x_{1}, \ldots, x_{n}\right\}$ and let $I$ be a square-free Veronese ideal of degree $d$. We may assume that $I=J+\left(y_{n-d+1} y_{n-d+2} \ldots y_{n}\right)$. Then we have $J=\left(y_{1}, \ldots, y_{n-d}\right) \cap I$ and so $J$ is a matroidal ideal. Therefore $J^{\vee}=\left(y_{1} \ldots y_{n-d}, I^{\vee}\right)$. Set $J^{\prime}=\left(y_{1} \ldots y_{n-d}\right)$. Then, for all $i \leq n-d, J^{\vee}{ }_{[i]}=J_{[i]}^{\prime}$ and so it is componentwise linear. For all $i \geq n-d+1, J_{[i]}^{\vee}$ is a square-free Veronese ideal and so $J^{\vee}$ is a componentwise linear ideal. Hence $J$ is a SCM matroidal ideal, as required.

From now on, we will let $y_{1}, \ldots, y_{n}$ be an arbitrary permutation variables of $R$ such that $\left\{x_{1}, \ldots, x_{n}\right\}=$ $\left\{y_{1}, \ldots, y_{n}\right\}$.

Theorem 3.8. Let $J$ be a matroidal ideal of $R$ with $\operatorname{deg}(J)=2$ and $\operatorname{gcd}(J)=1$. Then $J$ is SCM if and only if there exists a permutation of variables such that the following hold:
(a) $J=y_{1} \mathfrak{p}+J^{\prime}$, where $\mathfrak{p}$ is a monomial prime ideal with $y_{1} \notin \mathfrak{p}$, height $(\mathfrak{p})=n-1$ and $J^{\prime}$ is a SCM matroidal ideal with $\operatorname{Supp}\left(J^{\prime}\right)=\left\{y_{2}, \ldots, y_{n}\right\}$ and $\operatorname{gcd}\left(J^{\prime}\right)=1$, or
(b) $J=y_{1} \mathfrak{p}+y_{2} \mathfrak{q}$, where $\mathfrak{p}$ and $\mathfrak{q}$ are monomial prime ideals with $y_{1} \notin \mathfrak{p}$ and $y_{1}, y_{2} \notin \mathfrak{q}$ such that $\operatorname{height}(\mathfrak{p})=n-1$, $\operatorname{height}(\mathfrak{q})=n-2$.

Proof. $(\Longleftarrow)$. Consider the case (a). We have $J=\mathfrak{p} \cap\left(y_{1}, J^{\prime}\right)$, then $J^{\vee}=\left(\mathfrak{p}^{\vee}, y_{1} J^{\prime \vee}\right)$ and $\mathfrak{p}^{\vee} \in(u)$ for all $u \in J^{\prime \vee}$. Since $J^{\vee}{ }_{[i]}=y_{1} J^{\prime \vee}{ }_{[i-1]}$ for all $i \leq n-2$, and $J^{\prime \vee}{ }_{[i-1]}$ is componentwise linear, it follows that $J^{\vee}{ }_{[i]}$ is componentwise linear for all $i \leq n-2$. now consider the exact sequence

$$
0 \longrightarrow R /\left(y_{1} J^{\prime \vee}: \mathfrak{p}^{\vee}\right)(-n+1) \xrightarrow{y_{2} y_{3} \ldots y_{n}} R / y_{1} J^{\vee} \longrightarrow R /\left(\mathfrak{p}^{\vee}, y_{1} J^{\prime \vee}\right) \longrightarrow 0 .
$$

From $\left(y_{1} J^{\vee}: \mathfrak{p}^{\vee}\right)=\left(y_{1}\right)$, we have $\operatorname{reg}\left(R /\left(y_{1} J^{\prime \vee}: \mathfrak{p}^{\vee}\right)\right)=0$. Since $\operatorname{deg}\left(\mathfrak{p}^{\vee}\right)=n-1$, we have $\operatorname{reg}\left(R /\left(\mathfrak{p}^{\vee}, y_{1} J^{\prime \vee}\right)\right) \geq$ $n-2$. Since $y_{1} J^{\prime \vee}$ is componentwise linear and $\operatorname{deg}(u) \leq n-2$ for all $u \in J^{\prime \vee}$, by [11, Corollary 8.2.14] we have $\operatorname{reg}\left(R / y_{1} J^{\prime \vee}\right) \leq n-2$. By using Lemma 1.1,

$$
\begin{aligned}
\operatorname{reg}\left(R /\left(\mathfrak{p}^{\vee}, y_{1} J^{\vee \vee}\right)\right) & \leq \max \left\{\operatorname{reg}\left(R /\left(y_{1} J^{\prime \vee}: \mathfrak{p}^{\vee}\right)(-n+1)\right)-1, \operatorname{reg}\left(R / y_{1} J^{\prime \vee}\right)\right\} \\
& =\max \left\{n-2, \operatorname{reg}\left(R / y_{1} J^{\prime \vee}\right)\right\} .
\end{aligned}
$$

It therefore follows $\operatorname{reg}\left(R /\left(\mathfrak{p}^{\vee}, y_{1} J^{\vee}\right)\right)=n-2$. Thus $J^{\vee}{ }_{[n-1]}$ has a linear resolution and so $J$ is a SCM ideal.
Let us consider the case (b). $J=\left(y_{1}, y_{2}\right) \cap\left(y_{1}, \mathfrak{q}\right) \cap \mathfrak{p}$ and so $J^{\vee}=\left(y_{1} y_{2}, y_{1} q^{\vee}, \mathfrak{p}^{\vee}\right)$. It is clear that $J^{\vee}$ is a monomial ideal with linear quotients. Thus, by Proposition $2.2, J^{\vee}$ is componentwise linear and so $J$ is a SCM ideal.
$(\Longrightarrow)$. Let $J$ be a SCM ideal. Then there exists $\mathfrak{p} \in \operatorname{Ass}(R / J)$ such that height $(\mathfrak{p})=\operatorname{proj} \operatorname{dim}(R / J)=n-1$. Since $J=\cap_{i=1}^{n}\left(J: y_{i}\right)$ and $\operatorname{deg}(J)=2$, we can consider $\mathfrak{p}=\left(J: y_{1}\right)$ and $\mathfrak{p}=\left(y_{2}, \ldots, y_{n}\right)$. Hence $J=y_{1} \mathfrak{p}+J^{\prime}$, where $J^{\prime}$ is a matroidal ideal of degree 2 in $K\left[y_{2}, \ldots, y_{n}\right]$. We claim that $\operatorname{Supp}\left(J^{\prime}\right)=\left\{y_{2}, \ldots, y_{n}\right\}$. Let $y_{l} \notin \operatorname{Supp}\left(J^{\prime}\right)$, where $l \geq 2$. Thus $y_{1} y_{l}, y_{j} y_{k} \in J$, where $j, k \geq 2$. Since $J$ is a matroidal ideal, it follows $y_{l} y_{k}$ or $y_{l} y_{j} \in J$. Hence $y_{l} y_{k}$ or $y_{l} y_{j} \in J^{\prime}$ and this is a contradiction. Therefore $\operatorname{Supp}\left(J^{\prime}\right)=\left\{y_{2}, \ldots, y_{n}\right\} . J=\mathfrak{p} \cap\left(J^{\prime}, y_{1}\right)$, it follows that $J^{\vee}=\left(\mathfrak{p}^{\vee}, y_{1} J^{\vee}\right)$. For all $i \leq n-2$, we have $J^{\vee}{ }_{[i]}=y_{1} J^{\prime \vee}{ }_{[i-1]}$ and so $J^{\prime \vee}{ }_{[i-1]}$ has a linear resolution for all $i \leq n-2$. Since $J^{\vee}{ }_{[n-1]}=y_{1} J^{\prime \vee}{ }_{[n-2]}+\left(\mathfrak{p}^{\vee}\right)$ and $\operatorname{reg}\left(J^{\vee}{ }_{[n-1]}\right)=n-1$, it follows that reg $\left(J^{\prime \vee}{ }_{[n-2]}\right) \leq n-2$. Therefore $J^{\prime \vee}{ }_{[n-2]}$ has a linear resolution and so $J^{\prime v}$ is componentwise linear. That is $J^{\prime}$ is a SCM matroidal ideal of degree 2. If $\operatorname{gcd}\left(J^{\prime}\right)=1$, then $J$ satisfy in the case $(a)$. If $\operatorname{gcd}\left(J^{\prime}\right) \neq 1$, then we have the case $(b)$. This completes the proof.

## 4. SCM matroidal ideals over polynomial rings of small dimensional

We start this section by the following fundamental lemma.
Lemma 4.1. Let $n \geq 5$ and $J$ be a matroidal ideal of degree $d$ in $R$ and $\operatorname{gcd}(J)=1$. If $J$ is $S C M$, then

$$
\begin{aligned}
J= & y_{1} y_{2} \ldots y_{d-1} \mathfrak{p}+y_{1} y_{2} \ldots y_{d-2} J_{1}+y_{1} y_{2} \ldots y_{d-3} y_{d-1} J_{2}+\ldots+ \\
& y_{1} y_{3} \ldots y_{d-1} J_{d-2}+y_{2} y_{3} \ldots y_{d-1} J_{d-1}+J_{d},
\end{aligned}
$$

where $\mathfrak{p}=\left(y_{d}, \ldots, y_{n}\right)$ is a monomial prime ideal, $J_{i}$ is a SCM matroidal ideal of degree 2 with $\operatorname{Supp}\left(J_{i}\right)=$ $\left\{y_{d}, y_{d+1}, \ldots, y_{n}\right\}$ for $i=1, \ldots, d-1$ and $J_{d} \subseteq \cap_{i=1}^{d-1} J_{i}$.

Proof. J is a SCM matroidal ideal, then there is a prime ideal $\mathfrak{p} \in \operatorname{Ass}(R / J)$ such that height $(\mathfrak{p})=\operatorname{proj} \operatorname{dim}(R / J)$. Since $\operatorname{depth}(R / J)=d-1$, it follows that $\operatorname{height}(\mathfrak{p})=n-d+1$. For every square-free monomial ideal in $R$, we have $J=\cap_{i=1}^{n}\left(J: y_{i}\right)$. It follows that $\mathfrak{p}=\left(J: y_{1} y_{2} \ldots y_{d-1}\right)$ and we can write $J=y_{1} \ldots y_{d-1} \mathfrak{p}+J^{\prime}$, where $J^{\prime}$ is a square-free monomial ideal of degree $d$. It is clear that $J^{\prime}$ has a presentation

$$
J^{\prime}=y_{1} y_{2} \ldots y_{d-2} J_{1}+y_{1} y_{2} \ldots y_{d-3} y_{d-1} J_{2}+\ldots+y_{1} y_{3} \ldots y_{d-1} J_{d-2}+y_{2} y_{3} \ldots y_{d-1} J_{d-1}+J_{d}
$$

and $J_{d} \subseteq \cap_{i=1}^{d-1} J_{i}$. Note that $\operatorname{gcd}(J)=1$ and

$$
\left(J: y_{1} y_{2} \ldots y_{d-i-1} y_{d-i+1} \cdots y_{d-1}\right)=y_{d-i} p+J_{i}
$$

we have height $(J) \geq 2$ and so $J_{i} \neq 0$ for $i=1, \ldots, d-1$. It is known that the localization of every SCM ideal is SCM and so

$$
\left(J: y_{1} y_{2} \ldots y_{d-i-1} y_{d-i+1} \ldots y_{d-1}\right)=y_{d-i} \mathfrak{p}+J_{i}
$$

is a SCM matroidal ideal of degree 2 for $i=1, \ldots, d-1$. By using the proof of theorem $3.8, J_{i}$ is a SCM matroidal ideal with $\operatorname{Supp}\left(J_{i}\right)=\left\{y_{d}, y_{d+1}, \ldots, y_{n}\right\}$ for $i=1, \ldots, d-1$.

It is known that the localization of each SCM matroidal ideal is a SCM matroidal ideal. The following example shows that the converse is not true.

Example 4.2. Let $n=4$ and $J=\left(x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{3}, x_{2} x_{4}\right)$. Then $J$ is a matroidal ideal and $\left(J: x_{i}\right)$ is SCM matroidal for $i=1,2,3,4$; but $J$ is not SCM.

Proof. It is clear that $J$ is matroidal and $\left(J: x_{i}\right)$ is SCM matroidal for $i=1,2,3,4$. Since $J^{\vee}=\left(x_{1} x_{2}, x_{3} x_{4}\right)$, it follows that $\operatorname{reg}\left(J^{\vee}\right)=3$. Therefore $J$ is not SCM.

From now on, as Lemma 4.1, for a SCM matroidal ideal $J$ of degree $d$ and $\operatorname{gcd}(J)=1$ in $R$ with $n \geq 5$, we can write

$$
J=y_{1} \ldots y_{d-1} \mathfrak{p}+y_{1} y_{2} \ldots y_{d-2} J_{1}+y_{1} y_{2} \ldots y_{d-3} y_{d-1} J_{2}+\ldots+y_{2} y_{3} \ldots y_{d-1} J_{d-1}+J_{d}
$$

where $\mathfrak{p}=\left(y_{d}, \ldots, y_{n}\right)$ is a monomial prime ideal, $J_{i}$ is a SCM matroidal ideal of degree 2 with $\operatorname{Supp}\left(J_{i}\right)=$ $\left\{y_{d}, y_{d+1}, \ldots, y_{n}\right\}$ for $i=1, \ldots, d-1$ and $J_{d} \subseteq \cap_{i=1}^{d-1} J_{i}$.

Note that if for instance $\operatorname{gcd}\left(J_{1}\right)=y_{d}$, then we have

$$
J=y_{1} \ldots y_{d-1} \mathfrak{p}+y_{1} y_{2} \ldots y_{d-2} y_{d} \mathfrak{q}+y_{1} y_{2} \ldots y_{d-3} y_{d-1} J_{2}+\ldots+y_{1} y_{3} \ldots y_{d-2} J_{d-2}+y_{2} y_{3} \ldots y_{d-1} J_{d-1}+J_{d},
$$

where $\mathfrak{q}=\left(y_{d+1}, \ldots, y_{n}\right)$.
Bandari and Herzog in [1, Proposition 2.7] proved that if $n=3$ and $J$ is a matroidal ideal with $\operatorname{gcd}(J)=1$, then $J$ is a square-free Veronese ideal and so by theorem 1.2, it is CM (see also [17, Proposition 1.5]). In the following proposition we prove this result in the case $n=4$ for SCM ideals.

Proposition 4.3. Let $n=4$ and $J$ be a matroidal ideal of $R$ of degree $d$ and $\operatorname{gcd}(J)=1$. Then $J$ is a $S C M$ ideal if and only if $J$ is
(a) a square-free Veronese ideal, or
(b) an almost square-free Veronese ideal.

Proof. ( $\Longleftarrow$ ) is clear by theorem 1.2 and Lemma 3.7.
$(\Longrightarrow)$. If $d=1,3,4$, then by theorem 1.2 and [16, Lemma 2.16] $J$ is a square-free Veronese ideal. If $d=2$, then by theorem $3.8, J=y_{1} \mathfrak{p}+J^{\prime}$, where $\mathfrak{p}$ is a monomial prime ideal with $y_{1} \notin \mathfrak{p}$, $\operatorname{height}(\mathfrak{p})=3$ and $J^{\prime}$ is a SCM matroidal ideal with $\operatorname{Supp}\left(J^{\prime}\right)=\left\{y_{2}, y_{3}, y_{4}\right\}$. If $\operatorname{gcd}\left(J^{\prime}\right)=1$, then $J^{\prime}$ is a square-free Veronese ideal and so is $J$. If $\operatorname{gcd}\left(J^{\prime}\right) \neq 1$, then $J^{\prime}$ is an almost square-free Veronese ideal.

Proposition 4.4. Let $n=4$ and $J$ be a matroidal ideal of $R$ of degree $d$. Then $J$ is a SCM ideal if and only if $\operatorname{proj} \operatorname{dim}(R / J)=\operatorname{bight}(J)$.

Proof. $(\Longrightarrow)$. It follows by Proposition 2.8.
$(\Longleftarrow)$. If $d=1,3,4$, then by Remark $3.5 J$ is SCM. Let $d=2$. By our hypothesis, there exists $\mathfrak{p} \in \operatorname{Ass}(R / J)$ such that $\mathfrak{p}=\left(J: y_{1}\right)$. Thus $J=y_{1} \mathfrak{p}+J^{\prime}$, where $J^{\prime}$ is matroidal ideal of degree 2 in $K\left[y_{2}, y_{3}, y_{4}\right]$. Hence $J^{\prime}$ is a square-free Veronese ideal or an almost square-free Veronese ideal. Therefore by Proposition 4.3, J is SCM.

Lemma 4.5. Let $n \geq 5$ and $J$ be a matroidal ideal of degree 3 in $R$ such that $J=y_{1} y_{2} \mathfrak{p}+y_{1} y_{3} \mathfrak{q}+y_{2} y_{3} \mathfrak{q}$, where $\mathfrak{p}$ and $\mathfrak{q}$ are monomial prime ideals with $y_{1}, y_{2} \notin \mathfrak{p}$ and $y_{1}, y_{2}, y_{3} \notin \mathfrak{q}$ such that height $(\mathfrak{p})=n-2$, $\operatorname{height}(\mathfrak{q})=n-3$. Then $J$ is SCM.

Proof. Since $J=\mathfrak{p} \cap\left(y_{1} y_{2}, y_{1} y_{3} \mathfrak{q}, y_{2} y_{3} \mathfrak{q}\right)$, it follows that $J=\mathfrak{p} \cap\left(y_{1}, y_{2}\right) \cap\left(y_{1}, y_{3}\right) \cap\left(y_{2}, y_{3}\right) \cap\left(y_{1}, \mathfrak{q}\right) \cap\left(y_{2}, \mathfrak{q}\right)$. Therefore $J^{\vee}=\left(y_{1} y_{2}, y_{1} y_{3}, y_{2} y_{3}, y_{1} q^{\vee}, y_{2} q^{\vee}, p^{\vee}\right)$. It is clear that $J^{\vee}$ is a monomial ideal with linear quotients and so by Proposition 2.2, $J^{\vee}$ is componentwise linear. Thus $J$ is SCM.

Lemma 4.6. Let $n \geq 5$ and $J$ be a matroidal ideal of degree 3 such that

$$
J=y_{1} y_{2} \mathfrak{p}+y_{1} y_{3} \mathfrak{q}_{1}+y_{2} y_{4} \mathfrak{q}_{2}+J_{1}
$$

where $\mathfrak{p}, \mathfrak{q}_{1}$ and $\mathfrak{q}_{2}$ are monomial prime ideals with $y_{1}, y_{2} \notin \mathfrak{p}, y_{1}, y_{2}, y_{3} \notin \mathfrak{q}_{1}$ and $y_{1}, y_{2}, y_{4} \notin \mathfrak{q}_{2}$ such that $\operatorname{height}(\mathfrak{p})=n-2$, $\operatorname{height}\left(q_{1}\right)=n-3=\operatorname{height}\left(q_{2}\right)$ and $J_{1}$ is a matroidal ideal in $R^{\prime}=K\left[y_{3}, \ldots, y_{n}\right]$. Then $G\left(J_{1}\right)=\left\{y_{3} y_{4} y_{i} \mid i=5,6, \ldots, n\right\}$. In particular, $J$ is not SCM.

Proof. We consider two cases:
Case (a) $J_{1}=0$, then we have $y_{1} y_{3} y_{5}, y_{2} y_{3} y_{4} \in J$ but $y_{2} y_{3} y_{5}$ or $y_{3} y_{4} y_{5}$ are not elements of $J$. Thus $J$ is not a matroidal ideal and this is a contradiction.

Case (b) $J_{1} \neq 0$.

1) For $n=5, J_{1}=\left(y_{3} y_{4} y_{5}\right)$ and

$$
J=\left(y_{1}, y_{4}\right) \cap\left(y_{2}, y_{3}\right) \cap\left(y_{1}, y_{2}, J_{1}\right) \cap\left(y_{2}, y_{3}, J_{1}\right) \cap\left(y_{1}, \mathfrak{q}_{2}\right) \cap\left(y_{2}, \mathfrak{q}_{1}\right) \cap \mathfrak{p} .
$$

Therefore $\operatorname{reg}\left(J_{[2]}^{\vee}\right)=3$ and so $J$ is not SCM.
2) Suppose that $n \geq 6$. Then $\left(J: y_{3}\right)=\left(y_{1} y_{2}, y_{2} y_{4}, y_{1} \mathfrak{q}_{1},\left(J_{1}: y_{3}\right)\right)$. If $y_{i} y_{j} \in\left(J: y_{3}\right)$ for $5 \leq i \neq j \leq n$, then $y_{2} y_{i} \in\left(J: y_{3}\right)$ for $i \geq 5$, since $y_{2} y_{4} \in\left(J: y_{3}\right)$. But this is a contradiction. Therefore $y_{3} y_{i} y_{j} \notin J$ for all $5 \leq i \neq j \leq n$. Consider $\left(J: y_{4}\right)$, we have $y_{4} y_{i} y_{j} \notin J$ for all $5 \leq i \neq j \leq n$. Also, if $y_{i} y_{j} y_{t} \in J$ for different numbers $i, j, t$ with $5 \leq i, j, t \leq n$, then since $y_{1} y_{3} y_{i} \in J$, we have $y_{3} y_{i} y_{j} \in J$ or $y_{3} y_{i} y_{t} \in J$ and this is a contradiction. Thus $G\left(J_{1}\right) \subseteq\left\{y_{3} y_{4} y_{i} \mid i=5,6, \ldots, n\right\}$. On the other hand, since $y_{2} y_{4} y_{i}$ and $y_{1} y_{3} y_{i}$ are elements in $J$ for $i \geq 5$ we have $y_{3} y_{4} y_{i} \in J$ for $i \geq 5$. Hence $G\left(J_{1}\right)=\left\{y_{3} y_{4} y_{i} \mid i=5,6, \ldots, n\right\}$. Therefore

$$
J=\left(y_{1}, y_{4}\right) \cap\left(y_{2}, y_{3}\right) \cap\left(y_{1}, y_{2}, J_{1}\right) \cap\left(y_{1}, \mathfrak{q}_{2}\right) \cap\left(y_{2}, \mathfrak{q}_{1}\right) \cap \mathfrak{p}
$$

and so $J^{\vee}=\left(y_{1} y_{4}, y_{2} y_{3}, y_{1} y_{2} J_{1}^{\vee}, y_{1} \mathfrak{q}_{2}^{\vee}, y_{2} \mathfrak{q}_{1}^{\vee}, \mathfrak{p}^{\vee}\right)$. Thus $\operatorname{reg}\left(J_{[2]}^{\vee}\right)=3$ and so $J$ is not SCM.

Lemma 4.7. Let $n \geq 6$ and $J$ be a matroidal ideal of degree 3 such that $J=y_{1} y_{2} \mathfrak{p}+y_{1} y_{3} \mathfrak{q}+y_{2} J_{1}$, where $\mathfrak{p}$ and $\mathfrak{q}$ are monomial prime ideals with $y_{1}, y_{2} \notin \mathfrak{p}, y_{1}, y_{2}, y_{3} \notin \mathfrak{q}$ such that $\operatorname{height}(\mathfrak{p})=n-2$, height $(\mathfrak{q})=n-3$ and $J_{1}$ is a matroidal ideal in $R^{\prime}=K\left[y_{3}, \ldots, y_{n}\right]$ with $\operatorname{gcd}\left(J_{1}\right)=1$. Then $J$ is not SCM matroidal.

Proof. By contrary, we assume that $J$ is SCM matroidal. Then $\left(J: y_{2}\right)=y_{1} \mathfrak{p}+J_{1}$ is SCM matroidal and so by theorem $3.8 J_{1}$ is SCM matroidal of degree 2 . From $\operatorname{gcd}\left(J_{1}\right)=1$, we have $J_{1}=y_{i} \mathfrak{q}_{1}+J_{2}$, where $\mathfrak{q}_{1}$ and $J_{2}$ are a monomial prime ideal of height $n-3$ and a matroidal ideal respectively in $R^{\prime}=K\left[y_{3}, \ldots, y_{i-1}, y_{i+1}, \ldots, y_{n}\right]$. There are two main cases to consider.
a) $i=3$, then $\left(J: y_{j}\right)=\left(y_{1} y_{2}, y_{1} y_{3}, y_{2} y_{3}, y_{2}\left(J_{2}: y_{j}\right)\right)$ when $j \neq 1,2,3$. Since $y_{t} \in\left(J_{2}: y_{j}\right)$ for $t \neq 1,2,3, j$, we have $y_{2} y_{t}$ and $y_{1} y_{3}$ are elements of $\left(J: y_{j}\right)$ but $y_{1} y_{t}$ or $y_{3} y_{t}$ are not elements of $\left(J: y_{j}\right)$. This is a contradiction.
b) $i \neq 3$, then $\left(J: y_{i}\right)=\left(y_{1} y_{2}, y_{1} y_{3}, y_{2} q_{1}\right)$. Thus $y_{2} y_{t}$ and $y_{1} y_{3}$ for $t \neq 3$ are elements of $\left(J: y_{i}\right)$ but $y_{1} y_{t}$ or $y_{3} y_{t}$ are not elements of $\left(J: y_{i}\right)$ and this is a contradiction. Thus $J$ is not SCM matroidal.

Lemma 4.8. Let $n \geq 6$ and $J$ be a matroidal ideal of degree 3 such that $J=y_{1} y_{2} \mathfrak{p}+y_{1} y_{3} q+y_{2} J_{1}+J_{2}$ or $J=$ $y_{1} y_{2} \mathfrak{p}+y_{1} y_{3} \mathfrak{q}+y_{2} y_{3} \mathfrak{q}+J_{2}$, where $\mathfrak{p}$ and $\mathfrak{q}$ are monomial prime ideals with $y_{1}, y_{2} \notin \mathfrak{p}, y_{1}, y_{2}, y_{3} \notin \mathfrak{q}$ such that $\operatorname{height}(\mathfrak{p})=n-2, \operatorname{height}(\mathfrak{q})=n-3$ and $J_{1}$ is a nonzero matroidal ideal in $R^{\prime}=K\left[y_{3}, \ldots, y_{n}\right]$ with $\operatorname{gcd}\left(J_{1}\right)=1$. Then $G\left(J_{2}\right) \subseteq\left\{y_{3} y_{i} y_{j} \mid 4 \leq i \neq j \leq n\right\}$ and if $J_{2} \neq 0$, then $\operatorname{Supp}\left(J_{2}\right)=\left\{y_{3}, y_{4}, \ldots, y_{n}\right\}$. In particular, if $J=$ $y_{1} y_{2} \mathfrak{p}+y_{1} y_{3} \mathfrak{q}+y_{2} y_{3} \mathfrak{q}+J_{2}$, then $J_{2}=0$.
Proof. Let us consider $J=y_{1} y_{2} \mathfrak{p}+y_{1} y_{3} \mathfrak{q}+y_{2} J_{1}+J_{2}$. Then we have $\left(J: y_{t}\right)=\left(y_{1} y_{2}, y_{1} y_{3}, y_{2}\left(J_{1}: y_{t}\right),\left(J_{2}: y_{t}\right)\right)$ for some $t \geq 4$. If $y_{i} y_{j} y_{t} \in J$ for some different numbers $4 \leq i, j, t \leq n$, then $y_{i} y_{j} \in\left(J: y_{t}\right)$. Since $y_{1} y_{3} \in\left(J: y_{t}\right)$, it follows that $y_{1} y_{i} \in\left(J: y_{t}\right)$ for some $i \geq 4$ and this is a contradiction. It therefore follows that $G\left(J_{2}\right) \subseteq\left\{y_{3} y_{i} y_{j} \mid 4 \leq i \neq j \leq n\right\}$. Also, $\left(J: y_{3}\right)=\left(y_{1} y_{2}, y_{1} q, y_{2}\left(J_{1}: y_{3}\right),\left(J_{2}: y_{3}\right)\right)$. If $y_{i} y_{j} \in\left(J: y_{3}\right)$ for some $4 \leq i \neq j \leq n$, then $y_{i} y_{t} \in\left(J: y_{3}\right)$ for all $t$ with $4 \leq i \neq t \leq n$ since $y_{1} y_{t} \in\left(J: y_{3}\right)$. Hence $\operatorname{Supp}\left(J_{2}\right)=\left\{y_{3}, y_{4}, \ldots, y_{n}\right\}$. The proof for the case $J=y_{1} y_{2} \mathfrak{p}+y_{1} y_{3} q+y_{2} y_{3} q+J_{2}$ is similar to the above argument. In particular, if $y_{3} y_{i} y_{j} \in J_{2}$ for some $4 \leq i \neq j \leq n$ then from $y_{1} y_{2} y_{t} \in J$ for some $4 \leq i \neq t \neq j \leq n$ we have $y_{i} y_{j} y_{t} \in J$. This is a contradiction. Thus $J_{2}=0$.

Proposition 4.9. Let $n=5$ and $J$ be a matroidal ideal of degree 3 such that $\operatorname{gcd}(J)=1$. Then $J$ is a SCM ideal if and only if $J=y_{1} y_{2} \mathfrak{p}+y_{1} J_{1}+y_{2} J_{2}+J_{3}$, where $J_{1}$ and $J_{2}$ are $S C M$ ideals with $\operatorname{Supp}\left(J_{1}\right)=\operatorname{Supp}\left(J_{2}\right)=\left\{y_{3}, y_{4}, y_{5}\right\}$, $J_{3} \subseteq J_{1} \cap J_{2}$ and satisfying in the one of the following cases:
(a) $\operatorname{gcd}\left(J_{1}\right)=1, \operatorname{gcd}\left(J_{2}\right)=1$, or
(b) $\operatorname{gcd}\left(J_{1}\right)=y_{3}=\operatorname{gcd}\left(J_{2}\right)$ and $J_{3}=0$.

Proof. ( $\Longleftarrow)$. Consider (a). Then $J_{1}$ and $J_{2}$ are square-free Veronese ideal and $G\left(J_{3}\right) \subseteq\left\{y_{3} y_{4} y_{5}\right\}$. If $J_{3}=0$, then $J$ is an almost square-free Veronese ideal and so by using Lemma 3.7, $J$ is a SCM matroidal ideal. If $J_{3} \neq 0$, then $J$ is a square-free Veronese ideal and so $J$ is a SCM matroidal ideal.

If we have the case (b), then by Lemma 4.5 the result follows.
$(\Longrightarrow)$. Let $J$ be a SCM, then by Lemma 4.1, $J$ has the presentation $J=y_{1} y_{2} \mathfrak{p}+y_{1} J_{1}+y_{2} J_{2}+J_{3}$, where $J_{1}$ and $J_{2}$ are $\operatorname{SCM}$ matroidal ideals with $\operatorname{Supp}\left(J_{1}\right)=\operatorname{Supp}\left(J_{2}\right)=\left\{y_{3}, y_{4}, y_{5}\right\}$ and $J_{3} \subseteq J_{1} \cap J_{2}$.

1) If $\operatorname{gcd}\left(J_{1}\right)=y_{3}$ and $\operatorname{gcd}\left(J_{2}\right)=y_{4}$, then by Lemma 4.6 J is not a SCM matroidal ideal and we don't have this case.
2) If $\operatorname{gcd}\left(J_{1}\right)=\operatorname{gcd}\left(J_{2}\right)=y_{3}$, then $J_{3}=0$. Let contrary, then $G\left(J_{3}\right)=\left\{y_{3} y_{4} y_{5}\right\}$ and $y_{1} y_{2} y_{5}, y_{3} y_{4} y_{5} \in J$ but $y_{1} y_{4} y_{5}$ or $y_{2} y_{4} y_{5}$ are not elements of $J$. This is a contradiction.
3) If $\operatorname{gcd}\left(J_{1}\right)=y_{3}, \operatorname{gcd}\left(J_{2}\right)=1$ and $J_{3}=0$, then $y_{1} y_{3} y_{5}, y_{2} y_{4} y_{5} \in J$ but $y_{1} y_{4} y_{5}$ or $y_{3} y_{4} y_{5}$ are not elements of $J$. Therefore $J$ is not matroidal and we don't have this case.
4) If $\operatorname{gcd}\left(J_{1}\right)=y_{3}, \operatorname{gcd}\left(J_{2}\right)=1$ and $G\left(J_{3}\right)=\left\{y_{3} y_{4} y_{5}\right\}$, then by change of variables (a) follows with $J_{3}=0$.

Proposition 4.10. Let $n=6$ and let $J$ be a matroidal ideal of degree 4 such that $\operatorname{gcd}(J)=1$. Then $J$ is a SCM ideal if and only if $J=y_{1} y_{2} y_{3} \mathfrak{p}+y_{1} y_{2} J_{1}+y_{1} y_{3} J_{2}+y_{2} y_{3} J_{3}+J_{4}$ such that $J_{1}, J_{2}, J_{3}$ are SCM matroidal ideals and satisfying in one of the following conditions:
(a) for $i=1,2,3, \operatorname{gcd}\left(J_{i}\right)=1$ and $\left|G\left(J_{4}\right)\right|=3$,
(b) for $i=1,2,3, \operatorname{gcd}\left(J_{i}\right)=1$ and $\left|G\left(J_{4}\right)\right|=2$,
(c) for $i=1,2,3, \operatorname{gcd}\left(J_{i}\right)=1$ and $J_{4}=0$, or
(d) for $i=1,2,3, \operatorname{gcd}\left(J_{i}\right)=y_{4}$ and $J_{4}=0$.

Proof. $(\Longleftarrow)$. If we have $(a)$, then $J$ is a square-free Veronese ideal and so by theorem $1.2, J$ is SCM. Consider case (b), then $J$ is an almost square-free Veronese ideal and so by Lemma 3.7, J is SCM. If we consider (d), then by using the same proof of Lemma $4.5 J^{\vee}$ has linear quotients and so $J$ is SCM. Let (c), then we have $J=\mathfrak{p} \cap\left(y_{1}, y_{2}\right) \cap\left(y_{1}, y_{3}\right) \cap\left(y_{2}, y_{3}\right) \cap\left(y_{1}, J_{3}\right) \cap\left(y_{2}, J_{2}\right) \cap\left(y_{3}, J_{1}\right)$ and so $J^{\vee}=\left(y_{1} y_{2}, y_{1} y_{3}, y_{2} y_{3}, y_{1} J_{3}^{\vee}, y_{2} J_{2}^{\vee}, y_{3} J_{1}^{\vee}, \mathfrak{p}^{\vee}\right)$. That is, $J^{\vee}$ has linear quotients. Thus $J$ is SCM.
$(\Longrightarrow)$. Let $J$ be a SCM ideal. Then by Lemma 4.1, $J=y_{1} y_{2} y_{3} \mathfrak{p}+y_{1} y_{2} J_{1}+y_{1} y_{3} J_{2}+y_{2} y_{3} J_{3}+J_{4}$ and $J_{1}, J_{2}, J_{3}$ are SCM matroidal ideals. Let $\operatorname{gcd}\left(J_{1}\right)=y_{4}$. Since $\left(J: y_{1}\right)=y_{2} y_{3} \mathfrak{p}+y_{2} J_{1}+y_{3} J_{2}+\left(J_{4}: y_{1}\right), \operatorname{gcd}\left(J: y_{1}\right)=1$ and $\left(J: y_{1}\right)$ is a SCM matroidal ideal, by Proposition 4.9 it follows $\operatorname{gcd}\left(J_{2}\right)=y_{4}$ and $\left(J_{4}: y_{1}\right)=0$. Again by using $\left(J: y_{2}\right)$ and $\left(J: y_{3}\right)$, we obtain $\operatorname{gcd}\left(J_{1}\right)=\operatorname{gcd}\left(J_{3}\right)=\operatorname{gcd}\left(J_{2}\right)=y_{4}$ and $J_{4}=0$. Also, if for some $i$, $\operatorname{gcd}\left(J_{i}\right)=1$, then by Proposition 4.9 and by using $\left(J: y_{1}\right),\left(J: y_{2}\right)$ and $\left(J: y_{3}\right)$ we have $\operatorname{gcd}\left(J_{i}\right)=1$ for $i=1,2,3$. If $G\left(J_{4}\right)=\left\{y_{1} y_{4} y_{5} y_{6}\right\}$, then $J$ is not a matroidal ideal since $y_{1} y_{4} y_{5} y_{6}, y_{2} y_{3} y_{5} y_{6} \in J$, but $y_{2} y_{4} y_{5} y_{6}$ or $y_{3} y_{4} y_{5} y_{6}$ are not elements of $J$. Thus $J_{4}=0$ or $\left|G\left(J_{4}\right)\right|=2$ or $\left|G\left(J_{4}\right)\right|=3$ and this completes the proof.

Proposition 4.11. Let $n \geq 6$ and let $J$ be a matroidal ideal of degree $n-2$ such that $\operatorname{gcd}(J)=1$. Then $J$ is a SCM ideal if and only if

$$
\begin{aligned}
J= & y_{1} y_{2} \ldots y_{n-3} \mathfrak{p}+y_{1} y_{2} \ldots y_{n-4} J_{1}+y_{1} y_{2} \ldots y_{n-5} y_{n-3} J_{2}+\ldots+ \\
& y_{1} y_{3} \ldots y_{n-3} J_{n-4}+y_{2} y_{3} \ldots y_{n-3} J_{n-3}+J_{n-2}
\end{aligned}
$$

such that $J_{i}$ is SCM matroidal ideal for all $i=1, . ., n-3$ and satisfying in one of the following conditions:
(a) for $i=1, \ldots, n-3, \operatorname{gcd}\left(J_{i}\right)=1$ and $\left|G\left(J_{n-2}\right)\right|=\binom{n-3}{2}$,
(b) for $i=1, \ldots, n-3, \operatorname{gcd}\left(J_{i}\right)=1$ and $\left|G\left(J_{n-2}\right)\right|=\binom{n-3}{2}-1$,
(c) for $i=1, \ldots, n-3, \operatorname{gcd}\left(J_{i}\right)=1$ and $J_{n-2}=0$, or
(d) for $i=1, \ldots n-3, \operatorname{gcd}\left(J_{i}\right)=y_{n-2}$ and $J_{n-2}=0$.

Proof. ( $\Longleftarrow)$.
If case $(a)$ holds, then $J$ is a square-free Veronese ideal and so by theorem $1.2, J$ is SCM. Let $(b)$, then $J$ is an almost square-free Veronese ideal and so by Lemma 3.7, $J$ is SCM. If (d), then by using the same proof of Lemma 4.5, $J^{\vee}$ has linear quotients and so $J$ is SCM. Let (c), then we have

$$
\begin{aligned}
J= & \mathfrak{p} \cap\left(y_{1}, y_{2}\right) \cap \ldots \cap\left(y_{1}, y_{n-3}\right) \cap\left(y_{2}, y_{3}\right) \cap \ldots \cap\left(y_{2}, y_{n-3}\right) \\
& \cap \ldots \cap\left(y_{n-4}, y_{n-3}\right) \cap\left(y_{1}, J_{n-3}\right) \cap \ldots \cap\left(y_{n-3}, J_{1}\right)
\end{aligned}
$$

and so

$$
J^{\vee}=\left(y_{1} y_{2}, \ldots, y_{1} y_{n-3}, y_{2} y_{3}, \ldots, y_{2} y_{n-3}, \ldots, y_{n-4} y_{n-3}, y_{1} J_{n-3}^{\vee}, \ldots, y_{n-3} J_{1}^{\vee}, \mathfrak{p}^{\vee}\right) .
$$

Since $J_{i}$ are square-free Veronese ideals, it follows that $J^{\vee}$ has linear quotients. That is, $J$ is SCM.
$(\Longrightarrow)$. Let $J$ be a SCM ideal. Then by Lemma 4.1,

$$
\begin{aligned}
J= & y_{1} y_{2} \ldots y_{n-3} \mathfrak{p}+y_{1} y_{2} \ldots y_{n-4} J_{1}+y_{1} y_{2} \ldots y_{n-5} y_{n-3} J_{2}+\ldots+ \\
& y_{1} y_{3} \ldots y_{n-3} J_{n-4}+y_{2} y_{3} \ldots y_{n-3} J_{n-3}+J_{n-2}
\end{aligned}
$$

and $J_{i}$ are SCM matroidal ideals for all $i=1, \ldots, n-3$. We use induction on $n \geq 6$. If $n=6$, then the result follows by Proposition 4.10. Let $n>6$ and $\operatorname{gcd}\left(J_{1}\right)=y_{n-2}$.

$$
\left(J: y_{1}\right)=y_{2} y_{3} \ldots y_{n-3} \mathfrak{p}+y_{2} \ldots y_{n-4} J_{1}+y_{2} \ldots y_{n-5} y_{n-3} J_{2}+\ldots+y_{3} \ldots y_{n-3} J_{n-4}+\left(J_{n-2}: y_{1}\right),
$$

$\operatorname{gcd}\left(J: y_{1}\right)=1$ and $\left(J: y_{1}\right)$ is a SCM matroidal ideal, by induction hypothesis it follows $\operatorname{gcd}\left(J_{i}\right)=y_{n-2}$ for $i=1, \ldots, n-4$ and $\left(J_{n-2}: y_{1}\right)=0$. Again by using $\left(J: y_{i}\right)$ for $i=2, \ldots, n-3$ and by using induction hypothesis, $\operatorname{gcd}\left(J_{i}\right)=y_{n-2}$ for $i=1, \ldots n-3$ and $J_{n-2}=0$. Also, if for some $i, \operatorname{gcd}\left(J_{i}\right)=1$, then again by using $\left(J: y_{i}\right)$ for $i=1, \ldots, n-3$ and by using induction hypothesis we have $\operatorname{gcd}\left(J_{i}\right)=1$ for $i=1, \ldots, n-3$. If $\left|G\left(J_{n-2}\right)\right|<\binom{n-3}{2}-1$, then there exists $1 \leq i \leq n-3$ such that $\left|G\left(I: y_{i}\right)\right|<\binom{n-4}{2}-1$ and this is a contradiction. Thus $J_{n-2}=0$ or $\left|G\left(J_{n-2}\right)\right|=\binom{n-3}{2}$ or $\left|G\left(J_{n-2}\right)\right|=\binom{n-3}{2}-1$ and this completes the proof.
Theorem 4.12. Let $n=6$ and let $J$ be a matroidal ideal of degree 3 such that $\operatorname{gcd}(J)=1$. Then $J$ is a SCM ideal if and only if $J=y_{1} y_{2} \mathfrak{p}+y_{1} J_{1}+y_{2} J_{2}+J_{3}$ such that $J_{1}$ and $J_{2}$ are SCM matroidal ideals and satisfying in one of the following conditions:
(a) $\left|G\left(J_{3}\right)\right|=4$ and one of $J_{1}$ or $J_{2}$ is an almost square-free Veronese ideal and the other is a square-free Veronese ideal,
(b) $\left|G\left(J_{3}\right)\right|=3, J_{1}, J_{2}$ are square-free Veronese ideals,
(c) $J_{3}=0$ and $J_{1}=J_{2}$ are square-free Veronese ideals or almost square-free Veronese ideals either $J_{3}=0$ and $\operatorname{gcd}\left(J_{1}\right)=y_{3}=\operatorname{gcd}\left(J_{2}\right)$.

Proof. ( $\Longleftarrow)$. If we consider the $(a)$ or $(b)$, then $J$ is a square-free Veronese ideal or an almost square-free Veronese ideal and so $J$ is SCM. Consider (c) and suppose that $\operatorname{gcd}\left(J_{1}\right)=\operatorname{gcd}\left(J_{2}\right)=y_{3}$. Then by using Lemma 4.5, $J$ is SCM. Also, for $(c)$ if $J_{1}=J_{2}$ are square-free Veronese ideals or almost square-free Veronese ideals, we have $J^{\vee}=\left(y_{1} y_{2}, y_{1} J_{2}^{\vee}, y_{2} J_{1}^{\vee}, \mathfrak{p}^{\vee}\right)$ and so $J^{\vee}$ has linear quotients. Thus $J$ is SCM.
$(\Longrightarrow)$. Let $J$ be a SCM ideal. Then by Lemma 4.1, $J=y_{1} y_{2} \mathfrak{p}+y_{1} J_{1}+y_{2} J_{2}+J_{3}$ and $J_{1}$ and $J_{2}$ are SCM matroidal ideals and $J_{3} \subseteq J_{1} \cap J_{2}$ with $\left(J_{3}\right)=\left\{y_{3}, y_{4}, y_{5}, y_{6}\right\}$. Therefore $\left|G\left(J_{3}\right)\right| \leq 4$. We have four cases:

Case (i) Suppose that $\left|G\left(J_{3}\right)\right|=4$, then by Lemmas 4.6 and 4.8 we have $\operatorname{gcd}\left(J_{1}\right)=1=\operatorname{gcd}\left(J_{2}\right)$. By Proposition 4.3, we have the case $(a)$ if we prove $J_{1}$ and $J_{2}$ aren't almost square-free Veronese ideals in the same time. Let contrary, if $y_{1} y_{3} y_{5}, y_{2} y_{3} y_{5}$ are not elements of $J$, then $y_{1} y_{2} y_{3}, y_{3} y_{4} y_{5} \in J$. But $y_{1} y_{3} y_{5}$ or $y_{2} y_{3} y_{5}$ are not elements of $J$ and this is a contradiction.
If $y_{1} y_{3} y_{5}, y_{2} y_{3} y_{6}$ are not elements of $J$, then

$$
\begin{aligned}
\left(J: y_{3}\right) & =\left(y_{1} y_{2}, y_{1}\left(y_{4}, y_{6}\right), y_{2}\left(y_{4}, y_{5}\right), y_{4} y_{5}, y_{4} y_{6}, y_{5} y_{6}\right) \\
& =y_{4}\left(y_{1}, y_{2}, y_{5}, y_{6}\right)+\left(y_{1} y_{2}, y_{1} y_{6}, y_{2} y_{5}, y_{5} y_{6}\right) .
\end{aligned}
$$

By theorem 3.8, $\left(y_{1} y_{2}, y_{1} y_{6}, y_{2} y_{5}, y_{5} y_{6}\right)$ is not SCM and this is a contradiction.
If $y_{1} y_{3} y_{5}, y_{2} y_{4} y_{6}$ are not elements of $J$, then $\left(J_{[3]}^{\vee}\right)=\left(y_{1} y_{3} y_{5}, y_{2} y_{4} y_{6}\right)$ and so $\operatorname{reg}\left(J_{[3]}^{\vee}\right)=5$. Thus $J$ is not SCM and this is a contradiction.

Case (ii) Let $\left|G\left(J_{3}\right)\right|=3$. We consider the following cases.

1) If $\operatorname{gcd}\left(J_{1}\right)=y_{3}$ and $\operatorname{gcd}\left(J_{2}\right)=1$, then $G\left(J_{3}\right)=\left\{y_{3} y_{4} y_{5}, y_{3} y_{4} y_{6}, y_{3} y_{5} y_{6}\right\}$, by Lemma 4.8. $\operatorname{gcd}\left(J_{2}\right)=$ 1, so by Proposition 4.3, $J_{2}$ is a square-free Veronese ideal or an almost square-free Veronese ideal. If $J_{2}=\left(y_{2} y_{3} y_{4}, y_{2} y_{3} y_{5}, y_{2} y_{3} y_{6}, y_{2} y_{4} y_{5}, y_{2} y_{4} y_{6}\right)$ is an almost square-free Veronese ideal,
then $y_{3} y_{5} y_{6}, y_{1} y_{2} y_{4} \in J$ but $y_{1} y_{5} y_{6}$ or $y_{2} y_{5} y_{6}$ either $y_{4} y_{5} y_{6}$ are not elements of $J$ and this is a contradiction. So $J_{2}$ is a square-free Veronese ideal and by using a new presentation for $J$ and change of variables we get $J_{1}$ and $J_{2}$ are square-free Veronese ideals and $J_{3}=0$ and this is the case (c).
2) If $\operatorname{gcd}\left(J_{1}\right)=y_{3}$ and $\operatorname{gcd}\left(J_{2}\right)=y_{4}$, then by Lemma 4.6 we have $\left|G\left(J_{3}\right)\right|=2$ and this is a contradiction.
3) If $\operatorname{gcd}\left(J_{1}\right)=y_{3}=\operatorname{gcd}\left(J_{2}\right)$, then $y_{1} y_{2} y_{4}, y_{3} y_{4} y_{5} \in J$ but $y_{1} y_{4} y_{5}$ or $y_{2} y_{4} y_{5}$ are not elements of $J$ and this is a contradiction.
4) Let $\operatorname{gcd}\left(J_{1}\right)=1=\operatorname{gcd}\left(J_{2}\right)$. Suppose that $J_{1}$ is a square-free Veronese ideal and $J_{2}$ is an almost square-free Veronese ideal. We assume that $J_{2}=\left(y_{2} y_{3} y_{4}, y_{2} y_{3} y_{5}, y_{2} y_{3} y_{6}, y_{2} y_{4} y_{5}, y_{2} y_{4} y_{6}\right)$. Since $\left|G\left(J_{3}\right)\right|=3$, we can assume that one of the element $y_{3} y_{5} y_{6}$ or $y_{3} y_{4} y_{6}$ are not in $J$. If $y_{3} y_{5} y_{6} \notin J$, then $y_{2} y_{3} y_{5}, y_{1} y_{5} y_{6} \in J$ but $y_{2} y_{5} y_{6}$ or $y_{3} y_{5} y_{6}$ are not elements of $J$ and this is a contradiction. If $y_{3} y_{4} y_{6} \notin J$, then $\left(J: y_{6}\right)=\left(y_{1} y_{2}, y_{1}\left(y_{3}, y_{4}, y_{5}\right), y_{2}\left(y_{3}, y_{4}\right), y_{3} y_{5}, y_{4} y_{5}\right)$. Therefore by using theorem 3.8 this is not SCM. Thus we do not have this case. Also, by the same argument of the Case (i), $J_{1}$ and $J_{2}$ are not almost square-free Veronese ideals in the same time. Therefore $J_{1}, J_{2}$ are square-free Veronese ideals and we have the case (b).

Case (iii) Let $\left|G\left(J_{3}\right)\right|=2$. Then by Lemmas 4.6, 4.8, we have $\operatorname{gcd}\left(J_{1}\right)=y_{3}, \operatorname{gcd}\left(J_{2}\right)=1 \operatorname{or} \operatorname{gcd}\left(J_{1}\right)=$ $1=\operatorname{gcd}\left(J_{2}\right)$. If $\operatorname{gcd}\left(J_{1}\right)=y_{3}, \operatorname{gcd}\left(J_{2}\right)=1$, then we can assume that $G\left(J_{3}\right)=\left\{y_{3} y_{4} y_{5}, y_{3} y_{4} y_{6}\right\}$. Since $\operatorname{gcd}\left(J_{2}\right)=1$, by Proposition $4.3 J_{2}$ is square-free Veronese ideal or almost Veronese ideal. If $J_{2}$ is square-free Veronese ideal, then $y_{2} y_{5} y_{6}, y_{3} y_{4} y_{5} \in J$ but $y_{3} y_{5} y_{6}$ or $y_{4} y_{5} y_{6}$ are not elements of $J$ and this is a contradiction. Let $J_{2}$ be an almost square-free Veronese ideal and we assume that $y_{5} y_{6}$ is the only element which is not in $J_{2}$. In this case by change of variables we have $J_{3}=0$ and $J_{1}=J_{2}$ are almost square-free Veronese ideals and and this is the case (c). If $y_{4} y_{5}$ is the only element which is not in $J_{2}$, then $y_{3} y_{4} y_{5}, y_{2} y_{4} y_{6}$ are elements of $J$ but $y_{2} y_{4} y_{5}$ or $y_{4} y_{5} y_{6}$ are not elements of $J$ and this is a contradiction. Also, if $y_{4} y_{6}$ is the only element which is not in $J_{2}$, then again $J$ is not matroidal and this is a contradiction. Now we can assume that $J_{3}=0$. If $\operatorname{gcd}\left(J_{1}\right)=y_{3}$, then by Lemmas 4.6, 4.8 we have $\operatorname{gcd}\left(J_{2}\right)=1$ or $\operatorname{gcd}\left(J_{2}\right)=y_{3}$. If $\operatorname{gcd}\left(J_{2}\right)=1$, then $y_{1} y_{3} y_{5}$ and $y_{2} y_{i} y_{j}$ are elements of $J$ for some $i, j=4,5,6$, but $y_{1} y_{i} y_{j}$ or $y_{3} y_{i} y_{j}$ are not elements of $J$ and this is a contradiction. Therefore $\operatorname{gcd}\left(J_{2}\right)=y_{3}$ and this is the case $(c)$. Also, if $\operatorname{gcd}\left(J_{1}\right)=1$ then $\operatorname{gcd}\left(J_{2}\right)=1$. If $J_{1} \neq J_{2}$ are almost square-free Veronese ideals, then again by using the above argument $J$ is not matroidal and this is a contradiction. Therefore $J_{1}=J_{2}$ are square-free Veronese ideals or almost square-free Veronese ideals.

Case (iv) Let $\left|G\left(J_{3}\right)\right|=1$. Then by Lemmas 4.6, 4.8, we have $\operatorname{gcd}\left(J_{1}\right)=1=\operatorname{gcd}\left(J_{2}\right)$. Therefore by Proposition $4.3 J_{1}$ and $J_{2}$ are square-free Veronese ideals or almost Veronese ideals. By choosing one element from $J_{1}$ and the only element from $J_{3}$, we have $\left|G\left(J_{3}\right)\right| \geq 2$. This is a contradiction.

## References

[1] S. Bandari, J. Herzog, Monomial localizations and polymatroidal ideals, Eur. J. Comb 34 (2013) 752-763.
[2] H. J. Chiang-Hsieh, Some arithmetic properties of matroidal ideals, Comm. Algebra 38 (2010) 944-952.
[3] A. Conca, J. Herzog, Castelnuovo-Mumford regularity of products of ideals, Collect. Math 54 (2003) 137-152.
[4] D. Eisenbud, Commutative Algebra with a view towards Algebraic Geometry, GTM, 150, Springer, Berlin,1995.
[5] J. Eagon,V. Reiner, Resolutions of Stanley-Reisner rings and Alexander duality, J. Pure Appl. Algebra 130 (1998) 265-275
[6] C. Francisco, A. Van Tuyl, Some families of componentwise linear monomial ideals, Nagoya Math. J 187 (2007) 115-156.
[7] D. R. Grayson, M. E. Stillman, Macaulay 2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.
[8] J. Herzog,T. Hibi, Componentwise linear ideals, Nagoya Math. J 153 (1999) 141-153.
[9] J. Herzog,T. Hibi, Discrete polymatroids, J. Algebraic Combin 16 (2002) 239-268.
[10] J. Herzog,T. Hibi, Cohen-Macaulay polymatroidal ideals, Eur. J. Comb 27 (2006) 513-517.
[11] J. Herzog,T. Hibi, Monomial ideals, GTM, 260, Springer, Berlin, 2011.
[12] J. Herzog,V. Reiner, V. Welker, Componentwise linear ideals and Golod rings, Michigan Math J 46 (1999) 211-223.
[13] J. Herzog,Y.Takayama, Resolutions by mapping cones, Homology Homotopy Appl 4 (2002) 277-294.
[14] L.T. Hoa, N. D.Tam, On some invariants of a mixed product of ideals, Arch. Math 94 (2010) 327-337.
[15] L. T. Hoa N. V. Trung, On the Castelnuovo-Mumford regularity and the arithmetic degree of monomial ideals, Math. Z 229 (1998) 519-537.
[16] Sh. Karimi and A. Mafi, On stability properties of powers of polymatroidal ideals, Collect. Math 70 (2019) 357-365.
[17] A. Mafi and D. Naderi, Linear resolutions and polymatroidal ideals, to appear in Proc. Mathematical Sciences.
[18] R. P. Stanley, Combinatorics and commutative algebra,( 2nd. ed), Birkhäuser, Boston, 1996.
[19] N. Terai, Generalization of Eagon-Reiner theorem and $h$-vectors of graded rings, Preprint (2000).
[20] A. Van Tuyl, A beginner's guide to edge and cover ideals, Lecture notes in Math 2083 (2013) 63-94.
[21] R. H. Villarreal, Monomial Algebras, Monographs and Research Notes in Mathematics, Chapman and Hall/CRC, 2015.


[^0]:    2010 Mathematics Subject Classification. 13C14, 13F20, 05B35
    Keywords. Sequentially Cohen-Macaulay, monomial ideals, matroidal ideals
    Received: 03 January 2020; Accepted: 07 September 2020
    Communicated by Dijana Mosić
    Email addresses: madineh.jafari3978@gmail.com (Madineh Jafari), a.mafi@ipm.ir (Amir Mafi), hero.saremi@gmail.com (Hero Saremi)

