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Abstract. In this paper, we introduce and study some new generalizations of second submodules via
a function ϕ on the set of all submodules of a module. Let R be a ring with non-zero identity, M be an
R-module and ϕ : S(M) −→ S(M) be a function where S(M) is the set of all submodules of M. A non-zero
submodule N of M is said to be a ϕ-second submodule if, for any element a of R and a submodule K of M,
aN ⊆ K and aϕ(N) * K imply either N ⊆ K or a ∈ annR(N). Let n ≥ 2 be an integer and ϕn : S(M) −→ S(M)
be the function defined by ϕn(L) = (L :M annR(L)n−1) for every L ∈ S(M). Then a ϕn-second submodule of
M is said to be an n-almost second submodule of M. We determine various algebraic properties of these
submodules and investigate their relationships with other known submodule classes such as second, prime
and semisimple submodules. We study the structure of n-almost second submodules of modules over
ZPI-rings and Dedekind domains. We also give some characterizations of modules and submodules by
using n-almost second submodules.

1. Introduction

In commutative ring theory, it is an important matter whether all proper ideals of a ring can be written
as a product (or intersection) of some special ideals. This is because the structure of an ideal can be more
easily determined by using favorable properties of the ideals in the product (or intersection). The most
basic tools used in research on this subject are prime ideals and their various generalizations. For example,
Dedekind domains are the integral domains in which every proper ideal is a product of prime ideals and
this ring class is a fundamental tool for many studies in algebraic geometry and algebraic number theory.
As another example, Laskerian rings are the rings in which every proper ideal is a finite intersection of
primary ideals and they have an important role in commutative algebra since they generalize Noetherian
rings. Therefore, in order to expand the scope of prime ideals and to study with larger ring classes, many
different generalizations of prime ideals have been introduced and the rings in which all proper ideals
are a product (or intersection) of these generalized prime ideals have been tried to be characterized (see
[2], [3], [12], [19], [21]). In this paper we use the concept of φ-prime ideal which was defined in [2]. This
concept generalizes prime ideals by the following way. Let I(R) denote the set of all ideals of R and
φ : I(R) −→ I(R) ∪ {∅} be a function. A proper ideal I of R is called a φ-prime ideal of R if, for x, y ∈ R,
xy ∈ I\φ(I) implies x ∈ I or y ∈ I [2]. Let φn : I(R) −→ I(R) be the function defined by φn(I) = In for an
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integer n > 1. Any φn-ideal of R is called an n-almost prime ideal of R [2]. In particular, for n = 2, a 2-almost
prime ideal of R is called an almost prime ideal of R [12].

Prime submodules are the module theoretic versions of prime ideals. The class of prime submodules
has an important role in commutative ring theory as it gives characterizations of important ring classes
such as Dedekind domains, Prüfer domains, arithmetical rings. The concept of prime submodule was first
introduced in 1965 by E. H. Feller and E. W. Swokowski [23]. Let R be a commutative ring with non-zero
identity. A proper submodule P of M is called a prime submodule if whenever rm ∈ P, where r ∈ R, m ∈M,
we have either r ∈ (P :R M) or m ∈ P. If P is a prime submodule of M, then p = (P :R M) is a prime ideal of R
and in this case P is called a p–prime submodule [27]. If (0) is a prime submodule of M, then M is called a
prime module. It can be easily seen that M is a prime module if and only if annR(N) = annR(M) for every
non-zero submodule N of M [27].

Besides the prime submodules, module theoretic versions of generalizations of prime ideals have been
investigated since the begining of 2000s (see for example [11], [20], [25], [28], [29], [32]). In [32], the author
introduced the concept of ϕ-prime submodule as follows. Let R be a commutative ring with non-zero
identity, M be an R-module, S(M) be the set of all submodules of M, and ϕ : S(M) → S(M) ∪ {∅} be a
function. A proper submodule P of M is called a ϕ-prime submodule if a ∈ R and x ∈ M with ax ∈ P\ϕ(P)
implies that a ∈ (P :R M) or x ∈ P. Let n ≥ 2 be an integer and ϕn : S(M) −→ S(M) ∪ {∅} be the function
defined by ϕn(N) = (N :R M)n−1N for every N ∈ S(M). Then a ϕn-prime submodule of M is said to be an
n-almost prime submodule of M. In particular, for n = 2, a 2-almost prime submodule of M is called an almost
prime submodule of M. In this article we introduce and study the dual notion of these submodule classes.

Second submodules of modules over commutative rings were introduced in [31] as the dual notion of
prime submodules. According to this definition a non-zero submodule N of an R-module M is said to
be a second submodule if for all r ∈ R, either rN = 0 or rN = N. If N is a second submodule of M, then
p = annR(N) is a prime ideal of R. In this case, N is called a p-second submodule of M [31]. In recent
years, second submodules have attracted the attention of many researchers and it has been understood
that this submodule class has an important role in determining characterizations of modules and rings (see
for example [9], [13], [14], [15]). Along with the increased work on the second submodules, generalization
of these submodules has begun to be investigated and it has been seen that these generalized second
submodules also have interesting and important algebraic properties (see for example [7], [16], [17], [18],
[22]).

In this paper, we study some generalizations of second submodules via a function ϕ on the set of all
submodules of a module. We investigate ϕ-second and n-almost second submodules which were defined
in [22]. We determine various algebraic properties of these submodules and give some characterizations
of modules and submodules by using these submodule classes (see Theorems 3.2, 3.5, 3.8, 3.14). We
characterize ϕ-second submodules of a comultiplication module (see Proposition 2.6). We investigate the
relationships of ϕ-second and n-almost second submodules with other known submodule classes such
as second, prime and semisimple submodules (see Theorems 2.3, 3.3 and Proposition 3.1). We study the
structure of n-almost second submodules of modules over ZPI-rings and Dedekind domains (see Theorem
3.13). We introduce the notion of almost second radical of a submodule as a generalization of the second
radical of a submodule which was defined in [14]. We also define the concept of almost m∗-system and we
give a characterization of almost second radical of a module via almost m∗-systems (see Theorem 3.19).

Throughout this paper all rings will be commutative with non-zero identity and all modules will be
unital left modules. Unless otherwise stated R will denote a ring.

2. ϕ-Second Submodules

In this section we study ϕ-second submodules where ϕ is a function on the set of all submodules of
a module. In the rest of the paper S(M) will denote the set of all submodules of an R-module M and
ϕ : S(M)→ S(M) will be a function.

Definition 2.1. [22, Definition 2.1] Let M be an R-module and N be a non-zero submodule of M. If, for any element
a of R and a submodule K of M, aN ⊆ K and aϕ(N) * K imply either N ⊆ K or a ∈ annR(N), then N is said to be a
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ϕ-second submodule of M.
Let ϕM : S(M) −→ S(M) be the function defıned by ϕM(L) = M for every L ∈ S(M). Then a ϕM-second

submodule of M is said to be a weak second submodule of M.
Let n ≥ 2 be an integer and ϕn : S(M) −→ S(M) be the function defined by ϕn(L) = (L :M annR(L)n−1) for every

L ∈ S(M). Then a ϕn-second submodule of M is said to be an n-almost second submodule of M. In particular, for
n = 2, a 2-almost second submodule of M is called an almost second submodule of M.

Let M be an R-module and N be a submodule of M. Since ϕ(N)\N = (ϕ(N) ∪ N)\N, without loss of
generality, throughout this paper we will assume that N ⊆ ϕ(N).

It is clear from the definition that every R-module M is a ϕ-second submodule of itself for any function
ϕ : S(M) −→ S(M). But not every R-module is a second submodule of itself. For example, Z is not a second
Z-submodule of itself but Z is ϕ-second Z-submodule of itself.

Theorem 2.2. [22, Theorem 2.16] Let M be an R-module and Q be a non-zero submodule of M. Then the following
are equivalent.

(1) Q is a ϕ-second submodule of M.
(2) (X :R Q) = annR(Q) ∪ (X :R ϕ(Q)) for every submodule X of M with Q * X.
(3) (X :R Q) = annR(Q) or (X :R Q) = (X :R ϕ(Q)) for every submodule X of M with Q * X.
(4) For any ideal I of R and any submodule L of M, IQ ⊆ L and Iϕ(Q) * L imply either I ⊆ annR(Q) or N ⊆ L.
(5) IQ = Q or IQ = Iϕ(Q) for every ideal I of R with I * annR(Q).

Theorem 2.3. Let N be a ϕ-second submodule of M such that N = M1 + ... + Mk where M1,...,Mk are submodules
of M such that annR(Mi) is a maximal ideal of R for each i (1 ≤ i ≤ k). Then either N is second or N = ϕ(N).

Proof. Without loss of generality we may assume that N *
∑k

j=1
j,i

M j for any i (1 ≤ i ≤ k). By Theorem 2.2,

(
∑k

j=1
j,i

M j :R N) = annR(N) or (
∑k

j=1
j,i

M j :R N) = (
∑k

j=1
j,i

M j :R ϕ(N)). If the first case holds for some i (1 ≤ i ≤ k),

then annR(Mi) ⊆ (
∑k

j=1
j,i

M j :R N) = annR(N) and so annR(Mi) = annR(N). This implies that N is a second

submodule as annR(N) is a maximal ideal of R.
Now suppose that for each i (1 ≤ i ≤ k), (

∑k
j=1
j,i

M j :R N) , annR(N). So we have (
∑k

j=1
j,i

M j :R N) =

(
∑k

j=1
j,i

M j :R ϕ(N)) for each i (1 ≤ i ≤ k). If annR(M1) ⊆ annR(N), then annR(N) is a maximal ideal and so N is

a second submodule. So we may assume that annR(M1) * annR(N). Take an element r ∈ annR(M1)\annR(N).
Then r < annR(Mi) for some i (2 ≤ i ≤ k). Since annR(Mi) is a maximal ideal, Rr + annR(Mi) = R. On
the other hand we have r ∈ annR(M1) ⊆ (

∑k
j=2 M j :R N) = (

∑k
j=2 M j : ϕ(N)). Therefore, R = (

∑k
j=2 M j :R

ϕ(N)) + annR(Mi). It follows that ϕ(N) ⊆
∑k

j=2 M j + annR(Mi)ϕ(N) ⊆
∑k

j=2 M j + (
∑k

j=1
j,i

M j :R N)ϕ(N). Since

(
∑k

j=1
j,i

M j :R N) * annR(N) and (
∑k

j=1
j,i

M j :R N)N , N, Theorem 2.2 implies that (
∑k

j=1
j,i

M j :R N)ϕ(N) =

(
∑k

j=1
j,i

M j :R N)N. It follows that ϕ(N) ⊆
∑k

j=2 M j + (
∑k

j=1
j,i

M j :R N)N ⊆
∑k

j=2 M j +
∑k

j=1
j,i

M j = M1 + ...+ Mk = N.

Thus we get that N = ϕ(N).

Recall that an R-module M is called co-semisimple if each proper submodule of M is an intersection of
maximal submodules [30].

Corollary 2.4. Let M be an R-module and N be a ϕ-second submodule of M. If one of the following holds, then either
N is second or N = ϕ(N).

(1) M is a finitely generated semisimple R-module.
(2) M is a finitely cogenerated co-semisimple R-module.
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Proof. (1) This follows from the fact that annR(S) is a maximal ideal of R for every simple submodule S of
M.

(2) A finitely cogenerated co-semisimple module M is semisimple by [30, 23.1]. M is also finitely
generated by [1, Proposition 10.6]. So the result follows from part (1).

Recall from [4] that an R-module M is said to be a comultiplication module if for every submodule N of M
there exists an ideal I of R such that N = (0 :M I). It also follows that M is a comultiplication module if and
only if N = (0 :M annR(N)) for every submodule N of M [4].

In [22], the authors gave a characterization of ϕ-second submodules of a comultiplication module as
follows.

Proposition 2.5. [22, Theorem 2.9] Let ψ : I(R) −→ I(R)∪ {∅} be a function and N be a non-zero submodule of an
R-module M.

(1) If annR(ϕ(N)) ⊆ ψ(annR(N)) and N is a ϕ-second submodule of M, then annR(N) is a ψ-prime ideal of R.
(2) Let annR(ϕ(N)) = ψ(annR(N)) and M be a comultiplication R-module. Then N is a ϕ-second submodule of

M if and only if annR(N) is a ψ-prime ideal of R.

Let M be an R-module and N, K be submodules of M. The coproduct of N and K is defined by
(0 :M annR(N)annR(K)) and it is denoted by C(NK).

In the following proposition we give a characterization of ϕ-second submodules of a comultiplication
module via coproduct.

Proposition 2.6. Let M be a comultiplication R-module and N be a non-zero submodule of M. Then the following
are equivalent.

(1) N is a ϕ-second submodule of M.
(2) If K and L are two submodules of M such that N ⊆ C(KL) and ϕ(N) * C(KL), then N ⊆ K or N ⊆ L.

Proof. (1) =⇒ (2) Let N ⊆ C(KL) = (0 :M annR(K)annR(L)) and ϕ(N) * C(KL). Then annR(L)N ⊆ (0 :M
annR(K)) = K and annR(L)ϕ(N) * (0 :M annR(K)) = K. Since N is ϕ-second, annR(L) ⊆ annR(N) or N ⊆ K.
Thus N = (0 :M annR(N)) ⊆ (0 :M annR(L) = L or N ⊆ K, as desired.

(2) =⇒ (1) Let I be an ideal of R and K be a submodule of M such that IN ⊆ K and Iϕ(N) * K. Since
M is comultiplication, K = (0 :M J) for some ideal J of R. Then JIN = 0 and JIϕ(N) , 0. It follows that
N ⊆ (0 :M IJ) = C((0 :M I)K) and ϕ(N) * C((0 :M I)K). By (2), we have either N ⊆ K or N ⊆ (0 :M I). Thus
N ⊆ K or I ⊆ annR(N) as needed.

Proposition 2.7. Let M be an R-module and K be a submodule of M. Let ϕK : S(K) −→ S(K) be the function defined
by ϕK(L) = ϕ(L) ∩ K for every L ∈ S(K). Then the following hold for a submodule N of K.

(1) If N is a ϕ-second submodule of M, then N is a ϕK-second submodule of K.
(2) Let ϕ(N) ⊆ K. Then N is a ϕK-second submodule of K if and only if N is a ϕ-second submodule of M.
(3) If K ⊆ ϕ(N) and N is a ϕ-second submodule of M, then N is a weak second submodule of K.
(4) If ϕ(N) ⊆ ϕ(K), K is a ϕ-second submodule of M and N is a weak second submodule of K, then N is a ϕ-second

submodule of M.

Proof. (1) Let aN ⊆ L and aϕK(N) * L for a ∈ R and a submodule L of K. Then a(ϕ(N) ∩ K) * L and so
aϕ(N) * L. Thus a ∈ annR(N) or N ⊆ L, as needed.

(2) If ϕ(N) ⊆ K, then ϕK(N) = ϕ(N) and the result follows.
(3) If K ⊆ ϕ(N), then ϕK(N) = K and the result follows.
(4) Let aN ⊆ L and aϕ(N) * L for an ideal I of R and a submodule L of M. Then aϕ(K) * L by the

hypothesis. If aK ⊆ L, then a ∈ annR(K) ⊆ annR(N) or N ⊆ K ⊆ L and we are done. If aK * L, then
aK = aϕK(N) * L ∩ K and aN ⊆ L ∩ K imply that a ∈ annR(N) or N ⊆ L as needed.

Let Ri be a ring and Mi be an Ri-module for i = 1, ...,n. Denote R := R1 × ... × Rn and M := M1 × ... ×Mn.
Then M is an R-module and it is well-known that each R-submodule N of M is of the form N = N1 × ...×Nn
for some submodules Ni of Mi (1 ≤ i ≤ n).
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Proposition 2.8. Let Ri be a ring and Mi be an Ri-module for i = 1, 2. Denote R = R1 × R2 and M = M1 ×M2.
Suppose that N1 is a weak second submodule of M1 such that ϕ(N1 × {0}) ⊆ M1 × {0}. Then N1 × {0} is a ϕ-second
submodule of M.

Proof. Clearly, N1 × {0} , {0M}. Let (r1, r2) ∈ R and K1 × K2 be a submodule of M such that (r1, r2)(N1 ×

{0}) ⊆ K1 × K2 and (r1, r2)ϕ(N1 × {0}) * K1 × K2. Then (r1, r2)(M1 × {0}) * K1 × K2 and so r1M1 * K1.
Since N1 is a weak second submodule of M1, we have r1 ∈ annR1 (N1) or N1 ⊆ K1. This implies that
(r1, r2) ∈ annR1 (N1) × R2 = annR(N1 × {0}) or N1 × {0} ⊆ K1 × K2 as desired.

Let M be an R-module. We define the function ϕω : S(M) −→ S(M) as ϕω(L) =
∑

i∈Z+ (L :M annR(L)i) for
every L ∈ S(M).

Let M be an R-module, ϕ : S(M) −→ S(M) and ψ : S(M) −→ S(M) be two functions. If ϕ(N) ⊆ ψ(N) for
every N ∈ S(M), the we will write ϕ ≤ ψ.

Corollary 2.9. Let Ri be a ring, Mi be an Ri-module for i = 1, 2. Denote R = R1 × R2 and M = M1 ×M2. Suppose
that ϕ : S(M) −→ S(M) is a function with ϕ ≤ ϕω. Then, N1 × {0} is a ϕ-second submodule of M for any weak
second submodule of N1 of M1.

Proof. ϕ(N1 × {0}) ⊆ ϕω(N1 × {0}) =
∑

i∈Z+ (N1 × {0} :M annR(N1 × {0})i) =
∑

i∈Z+ (N1 :M1 annR1 (N1)i) × (0 :M2

R2) =
∑

i∈Z+ (N1 :M1 annR1 (N1)i) × {0} ⊆M1 × {0}. Thus the result follows from Proposition 2.8.

3. n-Almost Second Submodules and Almost Second Radical of a Module

In this section we investigate n-almost second submodules and we give a generalization of the second
radical of a submodule which was defined in [14].

Proposition 3.1. Let M be a prime R-module and N be a proper almost second submodule of M. Then N is a prime
submodule of M.

Proof. Let r ∈ R, m ∈M and rm ∈ N. Since M is a prime R-module, annR(N) = annR(M). If r ∈ annR(N), then
r ∈ (N :R M) and we are done. So we may assume that r < annR(N). Then, by Theorem 2.2, we have either
rN = N or rN = (N :M annR(N)) = (N :M annR(M)) = M. If rN = N, then rm = rn for some n ∈ N. It follows
that r(m − n) = 0. Since M is a prime R-module and r < annR(M), we have m = n ∈ N. If rN = M, then
rm ∈ rN. This implies that m ∈ N as in the previous case. Thus N is a prime submodule of M.

Theorem 3.2. Let M be an R-module. If there exist maximal ideals P1, ...,Pn of R such that P1 ∩ ...∩Pn ⊆ annR(M),
then for any ideal I of R, (0 :M I) = 0 or (0 :M I) is an almost second submodule of M.

Proof. Suppose that (0 :M I) , 0. First we show that (0 :M I) = (0 :M I2). Clearly, (0 :M I) ⊆ (0 :M I2). Let
m ∈ (0 :M I2) and a ∈ I. Without loss of generality, we may assume that there exists t (0 ≤ t ≤ n) such that
a ∈ P1 ∩ ... ∩ Pt and a < Pt+1 ∪ ... ∪ Pn. Now, for any t + 1 ≤ i ≤ n, R = Pi + Ra and so 1 = xi +

∑ni
l=1 rila where

xi ∈ Pi and ril ∈ R. Thus there exists b ∈ I such that 1 = xt+1...xn + b and hence a = axt+1...xn + ab. Since
axt+1...xn ∈ annR(M) and abm = 0, we have am = 0. Thus Im = 0 and so m ∈ (0 :M I). Hence (0 :M I) = (0 :M I2).

Now, clearly, (0 :M I) ⊆ ((0 :M I) :M annR(0 :M I)). On the other hand, ((0 :M I) :M annR(0 :M I)) ⊆ (0 :M
I2) = (0 :M I). Thus (0 :M I) = ((0 :M I) :M annR(0 :M I)) and so (0 :M I) is an almost second submodule of
M.

Theorem 3.3. Let M be an R-module, a ∈ R, (0 :M a) , (0) and (0 :M a) = aM. Then (0 :M a) is an almost second
submodule of M if and only if it is a second submodule of M.

Proof. If (0 :M a) is a second submodule, then clearly it is an almost second submodule. Suppose that
(0 :M a) is an almost second submodule of M. Let b(0 :M a) ⊆ K for b ∈ R and a submodule K of M.
If b((0 :M a) :M annR(0 :M a)) = bM * K, then we are done. So we may assume that bM ⊆ K. Now,
(b + a)(0 :M a) ⊆ K. If (b + a)M * K, then we have (0 :M a) ⊆ K or b ∈ annR(0 :M a) as (0 :M a) is almost second.
So assume that (b + a)M ⊆ K. bM ⊆ K gives that aM ⊆ K. Since (0 :M a) ⊆ aM, we have (0 :M a) ⊆ K which
shows that (0 :M a) is a second submodule of M.
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Recall from [8] that an R-module M is said to be fully coidempotent if N = C(N2) for every submodule
N of M.

Lemma 3.4. An R-module M is fully coidempotent if and only if N = (N :M annR(N)m) for every submodule N of
M and positive integer m.

Proof. Suppose that M is a fully coidempotent R-module. Let N be a submodule of M and m be a positive
integer. It is sufficient to show that N = (N :M annR(N)). We have N = C(N2) = (0 :M annR(N)2). Also,
N ⊆ (0 :M annR(N)) implies that (N :M annR(N)) ⊆ ((0 :M annR(N)) :M annR(N)) = (0 :M annR(N)2) = N and
so (N :M annR(N)) ⊆ N. Since the other inclusion always holds we have (N :M annR(N)) = N and hence
N = (N :M annR(N)m) for all m ≥ 1.

Conversely, suppose that N = (N :M annR(N)m) for every submodule N of M and positive integer m.
Then N = (N :M annR(N)). We have

C(N2) = (0 :M annR(N)2) ⊆ (N :M annR(N)2) = ((N :M annR(N)) :M annR(N)) = (N :M annR(N)) = N. Thus
we get that C(N2) ⊆ N and so N = C(N2).

Theorem 3.5. Let R = R1 × ... × Rm and M = M1 × ... ×Mm where Ri is a ring, 0 , Mi is an Ri-module for all
i ∈ {1, ...,m} and n,m ≥ 2. Then every non-zero submodule of M is n-almost second if and only if M is a fully
coidempotent R-module.

Proof. Suppose that every non-zero submodule of M is n-almost second. So every non-zero submodule of
M is almost second. We will show that Mi is fully coidempotent for each i ∈ {1, ...,m}, hence M will be fully
coidempotent. Suppose on the contrary that M1 is not fully coidempotent. Then there exists a non-zero
submodule N1 of M1 such that (N1 :M1 annR1 (N1)) * N1. We have (1, 0, ..., 0)(N1×M2× ...×Mm) ⊆ N1×0× ...×0
and (1, 0, ..., 0)(N1×M2× ...×Mm :M annR(N1×M2× ...×Mm)) * N1×0× ...×0. By hypothesis, N1×M2× ...×Mm
is almost second. So (1, 0, ..., 0) ∈ annR(N1 ×M2 × ... ×Mm) or N1 ×M2 × ... ×Mm ⊆ N1 × 0... × 0 which are
both contradictions. Similarly, Mi is fully coidempotent for each i ∈ {2, ...,m}. The converse is clear.

Corollary 3.6. Let R = R1 × ... × Rm and M = M1 × ... ×Mm where Ri is a ring, 0 , Mi is an Ri-module for all
i ∈ {1, ...,m} and n,m ≥ 2. Then every non-zero submodule of M is n-almost second if and only if every non-zero
submodule of M (n+1)-almost second.

Proof. Suppose that every non-zero submodule of M is n-almost second. Then M is fully coidempotent by
Theorem 3.5. Since n + 1 > 2, every non-zero submodule of M is (n+1)-almost second again by Theorem
3.5.

Lemma 3.7. Let M be an R-module, N be a submodule of M and I be an ideal of R. Suppose that (0 :M I) , (N :M I)
and (N :M I) , N. Then K := (N :M I) is an almost second submodule of M if and only if K = (K :M annR(K)).

Proof. If K = (K :M annR(K)), then clearly, K is an almost second submodule of M. Conversely, assume that K
is an almost second submodule of M. If I ⊆ annR(K), then we have (0 :M I) = (N :M I), a contradiction. Thus
I * annR(K). By Theorem 2.2, IK = K or IK = I(K :M annR(K)). If IK = K, then K = IK = I(N :M I) ⊆ N and
hence N = K, a contradiction. Therefore, IK = I(K :M annR(K)) ⊆ N and hence (K :M annR(K)) ⊆ (N :M I) = K.
Thus K = (K :M annR(K)) as desired.

Theorem 3.8. Let M be an Artinian R-module, I ⊆ Jac(R) and N be a submodule of M such that (N :R M) = 0 and
(0 :M I) , (N :M I). Then (N :M I) is not an n-almost second submodule of M for any integer n > 1.

Proof. We have (N :M I) , N, otherwise, if (N :M I) = N then, by [24, Proposition 3.5], N = M which
is a contradiction. Note that (N :M I) ⊆ (N :M annR(N :M I)). If (N :M I) is n-almost second, then it
is almost second and Lemma 3.7 implies that (N :M I) = ((N :M I) :M annR(N :M I)). It follows that
(N :M I2) = ((N :M I) :M I) ⊆ ((N :M annR(N :M I)) :M I) = ((N :M I) :M annR(N :M I)) = (N :M I). Since the other
inclusion always holds, we have (N :M I) = (N :M I2) = ((N :M I) :M I). By [24, Proposition 3.5], we get that
(N :M I) = M and so I ⊆ (N :R M) = 0. This is a contradiction since (0 :M I) , (N :M I).
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Lemma 3.9. Let I be an ideal of R and M be an R-module. Then (0 :M (annR(0 :M I))n) = (0 :M In) for every integer
n > 1. In particular, ((0 :M I) :M (annR(0 :M I))n−1) = (0 :M In).

Proof. Since I ⊆ annR(0 :M I), we have In
⊆ (annR(0 :M I))n and hence (0 :M (annR(0 :M I))n) ⊆ (0 :M In).

Let m ∈ (0 :M In). Take an element r ∈ annR(0 :M I). Then r(0 :M I) = 0. Since In−1m ⊆ (0 :M I), we have
rIn−1m ⊆ r(0 :M I) = 0. Thus rm ∈ (0 :M In−1). Since In−2rm ⊆ (0 :M I), we have r2In−2m ⊆ r(0 :M I) = 0 and so
r2m ∈ (0 :M In−2). Repeating this process, we get that rnm ∈ (0 :M R) = 0. Thus (annR(0 :M I))nm = 0 and so
m ∈ (0 :M (annR(0 :M I))n). Therefore, (0 :M In) ⊆ (0 :M (annR(0 :M I))n). For the second part,

((0 :M I) :M (annR(0 :M I))n−1) = ((0 :M (annR(0 :M I))n−1) :M I) = ((0 :M In−1) :M I) = (0 :M In).

It is well-known that a commutative ring R is a Von Neumann regular ring if and only if I2 = I for each
ideal I of R [1, p. 176]. Lemma 3.9 implies that if M is a module over a Von Neumann regular ring R and I
is an ideal of R with (0 :M I) , 0, then (0 :M I) is an n-almost second submodule of M.

Recall from [6] that an R-module M is called a strong comultiplication module if M is a comultiplication
R-module and annR(0 :M I) = I for every ideal I of R.

Proposition 3.10. Let M be a strong comultiplication R-module and I be an ideal of R. Then, I is an n-almost prime
ideal of R if and only if (0 :M I) is an n-almost second submodule of M.

Proof. By Lemma 3.9, ϕn((0 :M I)) = ((0 :M I) :M (annR(0 :M I))n−1) = (0 :M In). Since M is strong comultipli-
cation, annR(0 :M In) = In and annR(0 :M I) = I. Thus annR(ϕn((0 :M I))) = φn(annR(0 :M I)). By Proposition
2.5-(2), I is an n-almost prime ideal of R if and only if (0 :M I) is an n-almost second submodule of M.

Example 3.11. Let R = F[[X3,X4,X5]] where F is a field, and I = RX3 + RX4. Then I is an almost prime ideal of R
which is not a 3-almost prime ideal by [2, Example 11]. Let M be a strong comultiplication R-module. By Proposition
3.10, (0 :M I) is an almost second submodule of M which is not a 3-almost second submodule of M.

Example 3.12. Let M be a co-semisimple R-module. Then [7, Theorem 4.8] and [10, Theorem 2.3] imply that
(0 :M I) = (0 :M In) for every ideal I of R and an integer n > 1. By Lemma 3.9, (0 :M I) is an n-almost second
submodule of M for each integer n > 1.

A ring R is called a ZPI-ring if every proper ideal of R can be written as a product of prime ideals of R
[26].

Theorem 3.13. Let n > 1 be an integer, M be an R-module and I be an ideal of R with (0 :M I) , 0.
(i) If R is a ZPI-ring and (0 :M I) is an n-almost second submodule of M, then (0 :M I) = (0 :M In) or

(0 :M I) = (0 :M P) for some prime ideal P of R.
(ii) If R is a Dedekind domain, then (0 :M I) is an n-almost second submodule of M if and only if (0 :M I) = (0 :M In)

or (0 :M I) is a second submodule of M.
(iii) If (R,m) is a local ZPI-ring and (0 :M I) is finitely cogenerated, then (0 :M I) is an n-almost second submodule

of M if and only if (0 :M I) = M or (0 :M I) = (0 :M m).

Proof. (i) Since R is a ZPI-ring, I = Pt1
1 ...P

tk
k for some distinct prime ideals of R and positive integers ti.

Suppose that (0 :M I) , (0 :M P) for every prime ideal P of R. We have (0 :M I) = (0 :M Pt1
1 ...P

tk
k ). Without

loss of generality we may assume that (0 :M I) , (0 :M Pt1−1
1 ...Ptk

k ) and (t1 − 1) + t2 + ... + tk > 0. Put
N := (0 :M Pt1−1

1 ...Ptk
k ) and K := (0 :M I). Then K = (N :M P1), (0 :M P1) , K and K , N. By Lemma 3.7, we

have K = (K :M annR(K)n−1), that is (0 :M I) = ((0 :M I) :M (annR(0 :M I))n−1). By Lemma 3.9, (0 :M I) = (0 :M In).
(ii) Suppose that (0 :M I) is an n-almost second submodule of M. By part (i), (0 :M I) = (0 :M In) or

(0 :M I) = (0 :M P) for some prime ideal P of R. If (0 :M I) = (0 :M P) where P is a prime ideal of R, then P = 0
or P is a maximal ideal of R. Clearly, P = 0 implies that (0 :M 0) = (0 :M I) = M and so (0 :M In) = M. If P is
a maximal ideal of R, then annR(0 :M P) = annR(0 :M I) = P since (0 :M I) , 0. This implies that (0 :M I) is a
second submodule of M.
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For the converse, suppose that (0 :M I) is a second submodule of M or (0 :M I) = (0 :M In). If (0 :M I) is a
second submodule, clearly, it is n-almost second. If (0 :M I) = (0 :M In), then the result follows from Lemma
3.9.

(iii) If (0 :M I) = (0 :M m), then (0 :M I) is a second submodule since annR(0 :M I) = m is a maximal ideal
of R. If (0 :M I) = M, then clearly it is n-almost second.

Conversely, suppose that (0 :M I) is an n-almost second submodule of M. By [26, Theorem 9.10],
R is a Noetherian ring. If m = m2, Nakayama’s Lemma implies that m = 0 and so R is a field. Thus
(0 :M I) = (0 :M 0) = M. Now let m2 , m. Take an element a ∈ m\m2. Then m2  m2 + Ra  m. By [26,
Theorem 9.10], there are no ideals of R strictly between m2 and m. So m2 + Ra = m and by Nakayama’s
Lemmam = Ra. Now let P be a non-zero prime ideal of R and 0 , b ∈ P. By the Krull’s intersection theorem,
we have ∩∞i=1m

i = 0. Thus there is a positive integer k such that b ∈ mk and b < mk+1. Since b ∈ mk = Rak,
there exists an element u ∈ R such that b = uak and since b < mk+1, u < m. Thus u is a unit in R. Hence
ak = u−1b ∈ P and so a ∈ P, that is m = P. Thus m is the only non-zero prime ideal of R. Now by part (i),
(0 :M I) = (0 :M In) or (0 :M I) = (0 :M 0) = M or (0 :M I) = (0 :M m). If (0 :M I) = (0 :M In), then
(0 :M I)/(0 :M I) = ((0 :M I) :M In−1)/(0 :M I) = ((0 :M I) :M/(0:MI) In−1). By [24, Proposition 3.5], we have
(0 :M I) = M.

Let S be a multiplicatively closed subset of R and P be a prime ideal of R with S ∩ P = ∅. Recall from
[29] that S is called P-essential, if S ∩ J , ∅, for each ideal J with J * P.

Theorem 3.14. Let N be an n-almost second submodule of an R-module M and I = annR(N). Then S = [(R\I) ∪
annR(N :M In−1)]\P is a P-essential multiplicatively closed subset of R for each prime ideal P of R.

Proof. First, we show that S is a multiplicatively closed subset of R. Let r, s ∈ S. If r ∈ annR(N :M In−1) or
s ∈ annR(N :M In−1) then rs ∈ annR(N :M In−1)\P and so rs ∈ S. So we may assume that r, s < annR(N :M In−1).
Suppose on the contrary that rs < S. Then rs ∈ I. Also, rs < P, for if rs ∈ P, r ∈ S ∩ P or s ∈ S ∩ P, a
contradiction. Since rs < annR(N :M In−1), we have r(N :M annR(N)n−1) * (0 :M s) and rN ⊆ (0 :M s). Since N
is n-almost second, we have r ∈ I or s ∈ I, a contradiction. Thus rs ∈ S and so S is a multiplicatively closed
subset of R. Now we show that S is P-essential. Let J be an ideal of R with J * P. If I ⊆ P, then S = R\P
and clearly S is P-essential. Suppose that J ∩ S , ∅. Then one can see that J ∩ [(R\I) ∪ annR(N :M In−1)] ⊆ P
and J ⊆ I ∪ P. Therefore, J ⊆ I. On the other hand, N ⊆ (0 :M I) implies that (N :M In−1) ⊆ (0 :M In) and so
In
⊆ annR(0 :M In) ⊆ annR(N :M In−1). Hence Jn

⊆ In
∩ J ⊆ J ∩ annR(N :M In) ⊆ P and so J ⊆ P, a contradiction.

Thus J ∩ S , ∅ and hence S is P-essential.

Let M be an R-module and N be a submodule of M. The sum of all second submodules of N is called the
second radical of N and denoted by sec(N). If there is no second submodule of N, then we define sec(N) = 0
[14]. A subset S  M\{0} is called an m∗-system if, for each ideal A of R and for all submodules K,L ≤ M,
(0 :K∩L A) ∪ S , M and (K ∩ L)A ∪ S , M imply that (K ∩ L) ∪ S , M. In [14, Theorem 2.13] it was proved
that sec(N) = {x ∈ N :there is an m∗-system S such that x < S and N ∪ S = M}. As generalizations of these
concepts we define almost second radical of a submodule and almost m∗-system as follows. Then we give
a characterization of almost second radical of a submodule via almost m∗-systems.

Definition 3.15. Let M be an R-module, N be a submodule of M and
T := {Q ≤ N : Q is almost second and (N :M annR(N)) = (Q :M annR(Q))}.
Then almost second radical of N is defined as the submodule a-sec(N) :=

∑
Q∈T Q if T , ∅. If T = ∅, then a-sec(N) is

defined as (0).

Definition 3.16. Let M be an R-module and S be a proper subset of M. If, for any submodules K, L of M and any ideal
I of R, (K ∩ L) ∪ S ,M, (K ∩ (0 :M I)) ∪ S ,M and (Sc :M annR(Sc)) * (L :M I) imply that (K ∩ (L :M I)) ∪ S ,M,
then S is called an almost m∗-system.

Proposition 3.17. Let M be an R-module, Q be a non-zero submodule of M. Then, Q is an almost second submodule
of M if and only if S := M\Q is an almost m∗system.
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Proof. Let Q be an almost second submodule of M. Suppose that (K ∩ L) ∪ S , M, (K ∩ (0 :M I)) ∪ S , M
and (Sc :M annR(Sc)) * (L :M I) where K, L are submodules of M and I is an ideal of R. Assume that
(K ∩ (L :M I)) ∪ S = M. Then Q ⊆ K ∩ (L :M I). So IQ ⊆ L and Q ⊆ K. Since Q is almost second, we have
I ⊆ annR(Q) or Q ⊆ L. If I ⊆ annR(Q), then Q ⊆ (0 :M I) and so Q ⊆ K ∩ (0 :M I), this contradicts with
(K ∩ (0 :M I)) ∪ S , M. If Q ⊆ L, then Q ⊆ K ∩ L and this contradicts with (K ∩ L) ∪ S , M. Therefore,
(K ∩ (L :M I)) ∪ S ,M and so S is an almost m∗-system.

Conversely, suppose that S is an almost m∗-system. Let IQ ⊆ K and I(Q :M annR(Q)) * K for an ideal I of
R and a submodule K of M. Assume that Q * K and I * annR(Q). Then K ∪ S , M and (0 :M I) ∪ S , M.
Since S is an almost m∗-system (K :M I)∪ S ,M and so Q * (K :M I) which is a contradiction. Therefore Q is
an almost second submodule of M.

Theorem 3.18. Let S be an almost m∗-system in M and Q be a non-zero submodule of M minimal with respect to the
properties that Q ∪ S = M and (Q :M annR(Q)) = (Sc :M annR(Sc)). Then Q is an almost second submodule of M.

Proof. Let IQ ⊆ L and I(Q :M annR(Q)) * L where L is a submodule of M and I is an ideal of R. Suppose that
Q * L and I * annR(Q). Since Q * L, Q ∩ L  Q. We claim that (Q ∩ L) ∪ S , M. Otherwise, Sc

⊆ Q ∩ L
and then (Q ∩ L :M annR(Q ∩ L)) ⊆ (Q :M annR(Q ∩ L)) ⊆ (Q :M annR(Q)) = (Sc :M annR(Sc)) ⊆ (Q ∩ L :M
annR(Sc)) ⊆ (Q ∩ L :M annR(Q ∩ L)). So we have (Q ∩ L :M annR(Q ∩ L)) = (Sc :M annR(Sc)), a contradiction
with the minimality of Q. Thus (Q∩L)∪S ,M. Similarly, since I * annR(Q), we have (Q∩ (0 :M I))∪S ,M.
Since S is an almost m∗-system, we have (Q ∩ (L :M I)) ∪ S , M. Since IQ ⊆ L, we have Q ⊆ (L :M I) and so
Q ∪ S ,M, a contradiction.

Theorem 3.19. Let M be an R-module and N be a submodule of M. If there exists an almost second submodule Q of
N with (N :M annR(N)) = (Q :M annR(Q)), then
a-sec(N) = {x ∈ N : x < S, N ∪ S = M and (N :M annR(N)) = (Sc :M annR(Sc)) for some almost m∗-system S in M}.

Proof. Denote a−s√N := {x ∈ N : x < S, N ∪ S = M and (N :M annR(N)) = (Sc :M annR(Sc)) for some
almost m∗-system S in M}. Take an element x ∈ a−s√N. Consider the set Ψ = {Q ⊆ N : Q ∪ S = M,
(Q :M annR(Q)) = (Sc :M annR(Sc))}. Since N ∈ Ψ, we have Ψ , ∅. Ψ is a partially ordered set with respect to
reverse inclusion. Let {Qi}i∈I be a chain in Ψ. Clearly, (∩i∈IQi) ∪ S = M. Also,
(∩i∈IQi :M annR(∩i∈IQi)) = ∩i∈I(Qi :M annR(∩i∈IQi)) ⊆ ∩i∈I(Qi :M annR(Qi)) = (Sc :M annR(Sc)) ⊆ (∩i∈IQi :M
annR(Sc)) ⊆ (∩i∈IQi :M annR(∩i∈IQi)) and so (Sc :M annR(Sc)) = (∩i∈IQi :M annR(∩i∈IQi)). Thus ∩i∈IQi ∈ Ψ
and it is an upper bound for Ψ. By Zorn’s Lemma, Ψ has a minimal element Q with respect to inclusion.
By Theorem 3.19, Q is an almost second submodule of M. Since x ∈ Q ⊆ a-sec(N), we have a−s√N ⊆ a-
sec(N). Let Q be an almost second submodule of N with (Q :M annR(Q)) = (N :M annR(Q)). By Proposition
3.17, S := M\Q is an m∗-system. Also, N ∪ S = M and x < S for every x ∈ Q. Thus Q ⊆ a−s√N and so
a-sec(N) ⊆ a−s√N.

References

[1] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules. New York: Springer-Verlag, 1974.
[2] D. D. Anderson, M. Bataineh, Generalizations of prime ideals, Comm. Algebra, (2008) 36 (2), 686–696.
[3] D. D. Anderson, E. Smith, Weakly prime ideals, Houston J. of Math, (2003) 29: 831–840.
[4] H. Ansari-Toroghy, F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math. (2007) 11 (4), 1189–1201.
[5] H. Ansari-Toroghy, F. Farshadifar, Product and dual product of submodules, Far East J. Math. Sci. (2007) 25 (3), 447–455.
[6] H. Ansari-Toroghy, F. Farshadifar, Strong comultiplication modules, CMU. J. Nat. Sci. (2009). 8 (1), 105–113.
[7] H. Ansari-Toroghy, F. Farshadifar, The dual notions of some generalizations of prime submodules, Comm. Algebra, (2011) 39 (7),

2396-2416.
[8] H. Ansari-Toroghy and F. Farshadifar, Fully idempotent and coidempotent modules, Bull. Iranian Math. Soc. 38 (2012), no. 4,

987–1005.
[9] H. Ansari-Toroghy, F. Farshadifar, On the dual notion of prime submodules, Algebra Colloq., 19 (1) (2012), 1109-1116.

[10] M. Behboodi, O. A. S. Karamzadeh, and H. Koohy, Modules Whose Certain Submodules Are Prime, Vietnam Journal of
Mathematics 32 (3), (2004) 303–317.

[11] P. Karimi Beiranvand and R. Beyranvand, Almost prime and weakly prime submodules, Journal of Algbera and Its Applications
Vol. 18, No. 07, 1950129 (2019).
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