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Ricci Curvature on Warped Product Submanifolds of
Sasakian-Space-Forms
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Abstract. The paper deals with the study of Ricci curvature on warped product pointwise bi-slant
submanifolds of Sasakian-space-form. We obtained some inequalities for such submanifold involving
intrinsic invariant, namely the Ricci curvature invariant and extrinsic invariant, namely the squared mean

curvature invariant. Some relations of Hamiltonian, Lagrangian and Hessian tensor of warping function
are studied here.

1. Introduction

As a generalization of Riemannian product manifold Bishop and O’Neill [5] defined and studied warped
product manifolds and in the context of submanifold, such warped product initiated by Chen ([10], [11]).
Then many authors studied warped product submanifolds of different ambient manifold ([1], [2], [13], [15],
[21]).

On the other hand, Cabrerizo et al. [7] studied bi-slant and semi-slant submanifolds of an almost contact
metric manifold and in particular, of Sasakian manifold. Then Khan and Khan [18] studied contact version
of pseudo-slant submanifolds. Also then Mihai and Uddin studied warped product pointwise semi-slant
submanifolds of Sasakian manifolds [20]. Recently, Chen and Uddin [14] studied warped product pointwise
bi-slant submanifolds of Kaehler manifolds. Then Hui et al. [17] studied such submanifolds of Kenmotsu
manifolds.

In 1999, Chen [9] established a new relation between intrinsic invariant (the Ricci curvature invariant) and
extrinsic invariant (the squared mean curvature invariant) on submanifolds of real space forms. Thereafter,
Tripathi [23] studied this inequality on Kaehlerian slant and C-totally real submanifolds in 2m-dimensional
complex space forms and Sasakian-space-forms respectively. Many author studied Ricci curvature on
submanifolds in different space forms such as Kenmotsu-space-form [4], cosymplectic-space-form [24],
Sasakian-space-form [19] and generalized Sasakian-space-form [16].

Recently Ali et al. [3] studied Ricci curvature on warped product pointwise bi-slant submanifolds of
complex space forms and obtain several inequalities between intrinsic invariant and extrinsic invariant.

Motivated by the above studies, here we have studied on warped product pointwise bi-slant submanifolds

of Sasakian-space-form. The paper is organized as follows. Section 2 is concerned with some preliminaries.
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In Section 3 we have obtained some interesting inequalities between intrinsic and extrinsic invariant on
warped product pointwise bi-slant submanifolds of Sasakian-space-form. In section 4, we have obtained
some relations on Lagrangian, Hamiltonian and Hessian tensor of warping function with Ricci curvature
on pointwise bi-slant submanifolds of Sasakian-space forms.

2. Preliminaries

In an almost contact metric manifold M(¢, &, 1, g), we have [6]

P*(X) = =X +(X), ¢p& =0, 1)

n€) =1, 9(X, & =nX), n¢X)=0, 2)

9(pX, ¢Y) = g(X, Y) = n(X)n(Y), 3)

9(@X,Y) = —g(X, pY). 4)
M(¢, &, 1, 9) is said to be a Sasakian manifolds if it satisfies

(Vx@)Y = g(X, V) = n(Y)X, 5)

Vxé& = —pX. (6)

A Sasakian manifold with constant ¢-sectional curvature c is called Sasakian-space-form, it is denoted by
M?1(c). In M?*1(c), we have

RX,V)Z = %{g(lﬁ 2)X - g(X, 2)Y} + %{g(x, PZ)PY - g(¥, $Z)PX +29(X, pY)HZ) @)
+ %{TZ(Z)T}(X)Y = NZNM)X + 9(X, Zn(V)E - g(¥, Z)n(X)E}.

Let M"*! be a submanifold of M?**!(c), where m is even. If V and V+* are the induced connections on
[(TM) and I'(T+M) respectively, then the Gauss and Weingarten formulas are given by [25]

VxY = VxY +0(X,Y), VxV = —AyX + ViV (8)

for all X, Y € T(TM) and V € I'(T*M), where ¢ and Ay are second fundamental form and shape operator
respectively such that [25] g(c(X, Y), V) = g(AvX, Y).
From (8) we have

R(X,Y,Z, W) =R(X,Y,Z,W) = g(0(X, W),0(Y, 2)) + 9(6(X, Z), 5(Y, W)) ©)

where X, Y, Z, W € x(M).
For any X € I'(TM) we can write

X = PX + QX (10)

where PX and QX are tangential and normal component of $X. M is said to be totally geodesic, totally
umbilical and minimal according as o(X,Y) =0, 0(X,Y) = g¢(X, Y)H and H = 0 where X, Y € ['(TM) and H is
mean curvature. Here the related null space of ¢ is defined by

N, = (X € T,M| o(X,Y) =0, forall Y € T,M}. (11)

Definition 2.1. [22] An immersion ¢ : M — M?'*1(c) is called pointwise slant if, any point p € M, the Wirtinger
angle O(X) between ¢pX and T,M is independent of the choice of non-zero tangent vector X € T,M which is linearly
independent of £. The function 6 on M is called the slant function. A pointwise slant submanifold is called pointwise
proper slant if it contains no points p € M such that cos 6 = 0 at p.
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In a pointwise slant submanifolds we have the following relations [22]

P? = cos? O[-1 +n®&] (12)
g(PU, PV) = cos? 0 g(U, V) (13)
g(FU,FV) = sin* 0 g(U, V) (14)

for U,V € x(M).
Definition 2.2. [14] A submanifold M of M?"+1(c) is said to be pointwise bi-slant if there exist two distribution D
and D%, at any point p € M satisfying the following conditions:
(i) DO and D% are orthogonal,
(i) TM = D @ D%,
(iii) ¢D% L DO and D% 1 ¢pD%,
(iv) The distributions D% and D are pointwise slant with slant functions 61 and 60, from TM to R.
Remark 2.3.  (a) If 01 and 0, from TM to R are constant functions, then M is called bi-slant submanifold,
(b) If one of 01 and 0, is 5, then M is called pointwise pseudo-slant submanifold,
(c) If one of 01 and O is O, then M is called pointwise semi-slant submanifold,
(d) If 01 =0and 6, = 5 or 61 = J and 0, = 0, then M is called CR submanifold.
If M is a pointwise bi-slant submanifold of M?***1(c), then for any X € I'(TM) we have
X =T1X+TX (15)

where Ty, T, are projections from TM onto DO Do respectively. Using P; = T7 o P and P, = T5 o P in (10)
we get

PX = P1X + P,X + QX (16)
VY X € T(TM). From (12) we have
P2X = cos? i - X + (X)), X e T(TM), i =1,2. (17)

Letp € Mand {ey," -+ ,emn,ems1 = &} be an orthonormal basis of T,M. Then the mean curvature vector
H(p) is define as

m+1

1
Hp) = —— Z; olei ).
Also we define
m+1
ol = )" glotes, ), olei ). (18)
i,j=1

The gradient of a smooth function f on M is denoted by V f and defined by

g(Vf, X) = Xf. (19)
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Also we get
m+1
VAR =Y (e (20)
=1
Thus, from the above equation, the Hamiltonian in a local orthonormal frame is defined by
1 m+1 1 m+1 1
_ 4 2t (A2 _ 1 2
HLP) = 5 ), dfe) = 5 ), e = 3V @1)
Also the Laplacian Af of f is given by
m+1
Af = Y {(Veedf - ede ) (22)
i=1
m+1
= Z g(Ve,grad f,e;).
i=1
Similarly the Hessian tensor of f is defined by
m+1
Af = =Trace Hf = - Z Hf(ei, e, (23)

i=1

where H/ is the Hessian function of f. Moreover the Lagrangian for f is defined as

L= SIVAP. )
The Euler-Lagrange equation for the Lagrangian (24) is given by [8]

Af =0. (25)

The warped product of two smooth manifolds N; and N, with Riemannian metric g1, g» is denoted by
Njp Xs Np and defined by another Riemannian manifold Ny Xy N> = (N1 X Ny, g), where g = g1 + f2g2 and
f : Ni — RR* is a smooth function. If f is constant then the warped product is said to be trivial warped
product.
In M = N; X¢ N, we have [5]

VxZ =VzX = (XInf)Z, (26)

for any X € I'(TN;) and Z € T(TNy).
Let L be a k-plane section of T,M and X is a unit vector in L. We choose an orthonormal basis {e1, €2, , e}
of L such that X =e4 € {eg, ez, -+, ex}. The Ricci curvature, denoted by Ric (X) is defined by

k
Ric (X) = ) Kia, 27)
oy

where Kj; denotes the sectional curvature of the 2-plane section spanned by f{e;,¢;}. Such a curvature is
called k-Ricci curvature.
The scalar curvature of the k-plane section L is given by

(L) = Z Kij. (28)
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Let M = Mg, X My, be a warped product pointwise bi-slant submanifold of M2**!(c) such that & € T(D%).
Kjj and Kj; are the sectional curvatures of the plane sections in M"™*! and M*"*!(c) respectively. Let dim
Mp, = 2n1 + 1 and dim My, = 2n; such that dim M = m + 1 = 2n; + 2n, + 1. Then from Gauss equation we
get

2n+1
Z Kij = Z Kij + Z Z 00~ 11)2} (29)
1<i<j<m+1 1<i<j<m+1 r=m+2 1<i<j<m+1
From (28) and (29), we have

2n+1

o(TyMo,) = H(TyMo) + Y Y. {oho; = @), (30)
r=m+2 1<i<j<2ny+1
2n+1

w(TMg,) = 2(T,Mo) + Y Y. oo — @)} (31)

r=m+2 2n+2<i<j<m+1
Since M™*! is a warped product submanifold we have [12]

A
Y Ky = 2ma(A(n )~ [VIn f?) = 2220

, (32)
1<i<j<m+1 f

where A(f) is the Laplacian of the warping function f.

3. Main Results

Theorem 3.1. Let i : M™! = My, Xy Mg, — M>"*1(c) be a D% -minimal isometric immersion of a (m + 1)-
dimensional warped product pointwise bi-slant submanifold M+ into M*'*1(c), where My, , M, are pointwise slant
submanifolds with distinct slant functions 01, 0, respectively and & € [(D%). Then we have

Ric(X)+ 2m(Alnf) < O Z D 12 + 2mfv(in e + & Z 3) 311y + 51z + dmna) (33)
+ (CTTD(L% cos? 01 —2),
if X e (DY),
Ric(X) +2my(Aln f) < M||H||2 + 21| [V(In f)|* + %(Snl + 31y + 4nymy) (34)
P 1)(3cos 6, - 2),

if X € T(D%).

Proof. Let X € T,M be a unit tangent vector at p € M. Consider a local orthonormal frame {e1, e, - , e2,,,
€1 = &, Coma2, * , Com 42yl = Cal, Cma2, -+, €one1} Of MP1(c) such that {e1, €2, -+ , €2ny, €20,41 = &, €242,

© €y 12m+1 = Em+1) 1S tangent to M.
Assume that {e;,e; = secO1P1e1,e3,e4 = secO1P1e3, -+, an,-1, €20, = s€CO1P1624,-1, 20,41 = &} is an orthog-
onal frame of DY, the distribution corresponding to Mg, and {e,,+2, €21,43 = s€C 02P2€24,42, €21y +4, €2y 45 =
sec 02P2eon, 14, * 4 €21y 421y €2y 4241 = S€C O2P2€2p, 101, } i an orthonormal frame of D% the distribution cor-
responding to Mo, .
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Set X =ea €{e1, €2, ", €y, €241 = &, €42, Com+2mp+1 = Cur1}-
Now from Gauss equation we have
(m + 1?|H|* = 22(T,M) + |lo|* — 22(T,M).
We expand (35) for our constructed frame as follows

2n+1

(m+ PP = 20(TM)+ Y {05+ + 0 g = 00) + (000}
r=m+2
2n+1 2n+1
2
- 2) ), ad-amM2 Y Y (@)
r=m+2 1<i<j<m+1, r=m+2 1<i<j<m+1
i j#A
From (36) we get
2n+1 By
(m+12HIP = 2t(T,M)+ 5 Z (@) + -+ + O i) + {2074 = (@5 + -+ 0y )] |
r=m+2
2n+1 2n+1
2
+ 2 Z Z (0})? -2 Z Z oo, = 22(T,M).
r=m+2 1<i<j<m+1 r=m+2 1<i<j<m+1,
ij#A
Using the D% -minimality of M"*! in (37) we get
1 2n+1
(m+DHHIP = 2t(T,M) + (m + 1D?|HIP + > Z [ 2044 = (O 42 2ms2 7 T O m+1)} ]
r=m+2
2n+1 m+1

3922

(35)

(36)

(37)

(38)

Z [ Z (03)" - Z Vi ]]+Z(G‘A)2 Z (03)° - Z i ]]] 20T, M).
lrﬁA

r=m+2  1<i<j<m+1 1<i<j<m+1, 1<i<j<m+1 1<i<j<m+1,
ij#A ij#A i,j#A
By virtue of (29) in (38) we get
1 1 2n+1
2 2 _ 7 r r
S+ DHP = 20(T,M) - 28(T,M) + 5 Z (@0 A = sz sz *+ + Tt )
r=m+2
m+1
2 r\2 rost
f L Kem ), Kgr)eurs ), @F- ), o)
1<i<j<m+1, 1<i<jsm+1, 1<i<j<m+1 1<i<j<m+l,
i,j#A i,j#A 1¢A i,j#A

Using (30), (31) and (32) in (39), we have

A
Ric(X) + (T,Mg,) + ©(T,Mg,) — 27(T,M) + 2n2—f

S+ DPHIP -

2n+1
v Y Ryr [ ), o
1<i<j<m+1 r=m+2  1<i<j<2m+1
ij#A
m+1 2n+1
2
* Z Tii ]] (a”) +Z(0A) Z (20744
2n1+25i<]§m+1 r m+2
z#A
r r\2 ror
(O 2 2me2 T F Ty m+1)} Z (03)" = Z Oiiajj]'
1<i<j<m+1 1<i<j<m+1,

i,j#A

(39)

(40)
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e, is tangent to Mg, , i.e., e4 € {e1,€2,+ -+, €24,41). We choose ¢4 = ¢; = X. Then from (40), we get
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A
%(m +1HIF = Ric(X)+ 2(T,Mp,) + T(TyMp,) — 21(T,M) + 2n2—f +

m+1 2n+1
7 \2 ror ro_r
c S LT e ¥
i=2 r=m+2 1<i<j<2ni+1 21 +2<i<j<m+1
2n+1

2<i<j<m+1

A DM D M O M

r=m+2 1<i<j<2m+1 2m +2<i<j<m+1 1<i<j<m+1
2n+1
+ E 207, — (o), +--+0 )2
2 11 21142 2n14+2 m+1 m+1 .
r=m+2

Now, from (7), we get

c+3

)y

2<i<j<m+1

7]

Z Reei,ej ej,6) = Tm(m +1)+ %{ —2m+3 Z 7 (e, q‘)e]-)}.

1<i<j<m+1 1<i<j<m+1

For our constructed frame field, we obtained

g e, pej) = {

cos? 61, forl<i,j<2n,
cos? 6y, for1<i,j<2n,.

Therefore

Z 92((3,', (Pe]') = 2(?11 COS2 01 +ny COS2 62).

1<i<j<m+1

Thus we obtain

2(T,Mg,) + T(T,Mp,) + Z Kij - 22(T,M)
2<i<j<m+1

+ -1
= " 3 3y + 51y + drymy) + CT(z ~3c0s20)).

Also, we calculate

2n+1
ror ror ror

Z [ Z %% * Z 9ii%jj ~ Z o7
r=m+2  1<i<j<2m+1 211 +2<i<j<m+1 2<i<j<m+1

2n+1  2m+1 2m+1  m+1
—_ r ro_ r _r
= 2 [ ohi- ) ) o)

r=m+2  j=2 =2 j=2m+2

Since M is D'-minimal, we have

2n1+1

ro_ _ 1
ij— 0191~

=2

r -r
%ii%jj

3923

(41)

(42)

(43)

(44)

(45)

(46)
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Therefore, from (45) and (46), we get

2n+1
YL Y o Y G- Y o] @

r=m+2  1<i<j<2m+1 2n1 +2<i<j<m+1 2<i<j<m+1

2n+1 2n+1  m+l

2
E (01" + Z E ana
r=m+2 r=m+2 j=2n1+2
Again we find
2n+1
r\2 72 72

LI Y e ) @i ) @] )
r=m+2  1<i<j<2m+1 2n1+2<i<j<m+1 1<i<j<m+1

2n+1 2m+1  m+1

== ) )L Wyt

r=m+2 i=1 j=2n+2

Also,
2n+1
Z {207 = (0312 amsa " F Ops o)) (49)
r=m+2
2n+1 2n+1  m+1
=4 Z (07 )% -4 Z Z oy 0% + (m + D HIP.
r=m+2 r=m+2 j=2ny+2
Thus, using (44), (47), (48) and (49) in (41) we get
1 . A +3 -1
E(m + 1D HI?P = Rice(X)+ 27’127f - (c 1 )(3n1 + 5ny + 4nyny) + CT(Z —3cos? 61) (50)
m+1 2n+1  m+1 2n+1 2m+1  m+1 2n+1
2 2 2
DN NP WL AP NP NP NCHEP LA
r=m+2 j=2n1+2 r=m+2 i=1 j=2n;+2 r=m+2

2n+1  m+l 1

_ ror - 2 2

2 E E 01407 + 2(m+ D7|H]|J".
r=m+2 j=2n1+2

2n+1 2m+1  m+1

Neglecting the positive terms ): (0] )2 and Y, Y. (o )2 from the right hand side of (50), we get

r=m+2 i=1 j=2n;+2

A 3 -1

Rie(X) + 2n27f < 3 a4 5yt dnymy) + ; ) 3cos? 0, - 2) (51)

2n+1 2n+1  m+1

- Z (0] + Z Z 1107
r=m+2 r=m+2 j=2n1+2
Using (32) in (51) we get
-1

Ric(X) + 2npA(In f) < 2my||V lnfll2 + @(3;11 + 51y + 4nmyny) + (c 1 )(3 cos? 01 —2) (52)

2n+1 1 m+1 (m+1)
- Y -5 Y, are IH.

r=m+2 j=2n1+2
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2n+1 m+1
Neglecting the term ). {0/, — % Y, 0"} from (52), we get the required equation (33).

r=m+2 j=2n1+2
Case-2.
ey is tangent to My, i.e., ea € {en 42, -+ , em+1}. We choose e4 = ey1 = X. Then from (40), we get

1 , ) _ _ o,
Sm+ AIHP Ric(X) + 7(T,Me,) + T(TyMg,) — 27(T,M) + Z Kij + Z(ai 1)
1

1<i<j<m i=
Af 2n+1
r __r r _r r _r
Tt ) D DR R R I
r=m+2  1<i<j<2m+1 2n1+2<i<j<m+1 1<i<j<m
2n+1
X {(20" —(d} +o 4o W
2 m+1 m+1 21142 2n142 m+1 m+1
r=m+2
2n+1
r\2 r\2 r\2
DM D MG WO WG
r=m+2 1<i<j<2ni+1 2m +2<i<j<m+1 1<i<j<m+1

Now we calculate

2(T,Mo,) + (T,Mp,) — 27(T,M) + Z K;j
1<i<j<m

3 -1
= —(CZ )(5n1 + 3ny + 4niny) — %(3 cos? 0, —2).

Again we find

2n+1
ror ror ror

Y0 dee ) d- ) dd)
r=m+2  1<i<j<2m+1 2n1+2<i<j<m+1 1<i<j<m

2n+1 2n+1  m+l
- _ r 2 r r
- z |(0m+1 m+1) + z / Z O+ m+1ajj‘

r=m+2 r=m+2 j=2n1+2

Also we obtain

2n+1
r r r 2
Z {20;n+1 m+l (02n1+2 2n+2 +ooe Gm+1 m+1)}
r=m+2
2n+1
=4 Y (@i Y Ot ] + O+ DAHI
m+1 m+1 m+1 m+1% jj '
r=m+2 211 +2<i<j<m+1

Using (48), (54), (55) and (56) in (53) we get

%(m +1)?H|I? = Ric(X)+ 2”;“ _L Z 3) (5mq + 3ny + dnyny) — (6:1—1)(3 cos® 6, —2)
2n+1 m 2n+1 2n+1 m+1
+ Z Z(G;m+1)2_ Z (G:n+1 m+1)2+ Z [ Z Grm*'l m+1g§f+ Z (o
r=m+2 i=1 r=m+2 r=m+2  j=2n;+2 1<i<j<m+1
m+1
b2 =2 Y Ty ]+ 3O+ IR

j=2m+2

3925

(53)

(54)

(55)

(56)

(57)
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2n+1 m 2n+1
Neglecting the positive terms Z(al prand X Y. (0})* from the right hand side of (57), we
r=m+2i=1 r=m+2 1<i<j<m+1 /
get
21y A 3 -1
Ric(X) + ”jc f oo (CZ ) 51ty + 311y + dmyg) + ; ) 3cos? 0, — 2) (58)
2n+1 2n+1  m+1
- Z (i)’ + Z Z Tt 19
r=m+2 r=m+2 j=2n,+2
Using (32) in (58) we get
) 5 (c+3) (c-1) 5
Ric(X) +2mA(In f) < 2my||VIn f|I° + T(Sm + 31y + dmyny) + 1 (3cos” 6, —2) (59)
2n+1 m+1
. 1 (m + 1)
- Z {Gm+1m+l - E Z 0]]} + ”HHZ
r=m+2 j=2n1+2
2n+1 m+1
Neglecting the term Y. {o’ ., ., — % Y, o .)* from (59), we get (34).
r=m+2 j=2n1+2

For equality case:

(1) If H(p) = 0, then a unit vector X € T,M orthogonal to ¢ satisfies the equality case of (33) or (34) if and
only if X € N,, the relative null space at p.

(2) The equality case of (33) holds identically for all unit vectors tangent to Mg, and orthogonal to £ at p
if and only if p is a mixed totally geodesic and D% -totally geodesic point at p.

(3) The equality case of (34) holds identically for all unit vectors tangent to My, at p if and only if p is
a mixed totally geodesic point and either D%-totally geodesic or D%-totally umbilical point with
Ny = 1.

For (1) we assume that H(p) = 0. Then for any unit tangent vector es € {e1, €2, , €2n,41,€2n,42, - =+ ,€m+1}, the
equality of (33) and (34) holds if and only if the following conditions hold

2n+1  m+1 5 5
@ X X (d;)°=0,(b) Z (G,A) =
i=1 j=2m+2
#A
m+1
(c) 207, = Y. ojjsuchthatre{m+2,---,2n+1}.
j=2n1+2

The condition (a) implies that p is a mixed totally geodesic point. Thus using D% -minimality of M"*! and
combining the conditions of (b) and (c) it is clear that X = e4 € N, the relative null space at p. The converse
is trivial.

For (2) the equality condition of (33) holds if and only if the following conditions hold

2n+1  m+1

(@ X X (0,])2 0, (b) Z (Gm)2
i=1 j=2m+2
l;—"a
m+1
(0 200, = Y. oj,acfl,---,2m},re{m+2,---,2n+1}.
j=2m+2

By virtue of Z)Ql—minimahty of M™! and condition (c), we get 0pe = 0, @ € {1,---,2n1 + 1} and then
combining conditions (a) and (b), we get a;j =0Vi# jije(l,2,-,2n +1}. From which we get the
desired result.

For (3), the equality case of (34) holds if and only if
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2n+1  m+1 2n1+1

@ X Y (0))=0,(0b) Z (o) =

r=m+2 j=2n;+2

1¢a
m+1
() 20, = Y oj,Ae2m+2,--- ,m+1},re{m+2,---,2n+1}.
j=2n1+2

Using D% -minimality of M"*! with the condition (c) we get o/, = o’ ., " for n = 1 and o', A= =0VAe
{2n1 +2,--- ,m + 1}. Combining the conditions (a) and (b), we get ofj =0Vi#jije{2n+2,---,m+1}.

Thus we get the desired results. [

Remark 3.2. The above theorem also holds good if we take D% -minimal isometric immersion of M™*! = Mg, Xy M,
into M"*1(c).

Corollary 3.3. Let i : M"™! = My Xy M, — M*"*!(c) be a DO-minimal isometric immersion of a (m + 1)-
dimensional warped product pointwise pseudo-slant submanifold M+ into M*'*1(c), where Mg and M, are pointwise
slant submanifold with slant function O and an anti-invariant submanifold respectively and & € T(D?). Then we have

(M+ 12

Ric(X) + my(Aln f) (JFT?’)

IN

IH|* + na|IV(In )I* + (611 + 5ny + 4nyny)

+ (C4—)(3c0526—2), if X eT(DY

(m + 1)?
4
(c-1)

- 5, ifXel®Y

where dim(Mp) = 2n1 + 1 and dim(M ) = n,.

IN

(c+3)
8

Ric(X) + np(Aln f) IH|* + naIV(In £)|I* + (10m1 + 31y + 4nyny)

Proof. Substituting 01 = 0 for simplification and 6, = 7 in (33) and (34) we get the result. [J

Corollary 3.4. Let i : M™! = My Xy Mg — M*"*Y(c) be a D"-minimal isometric immersion of a (m + 1)-
dimensional warped product pointwise semi-slant submanifold M™* into M?"*1(c), where Mt and Mg are invariant
submanifold and a pointwise slant submanifold with slant function 6 respectively and & € T(DT). Then we have

Ric(X) + 2m(Aln f) < M||H||2 + 2my|IV(In f)I? + %(zml + 51y + 4nyy)
+ (chl) ifX e T(DT)
Ric(X) + 2m(Aln f) < MHHHZ + 2m,|IV(In )2 + %(5;11 + 311y + i)

+ %(3 C052 0 — 2), Zf Xe F(De)

where dim(Mr) = 2ny + 1 and dim(My) = 2n,.

Proof. Substituting 6; = 0 and 6, = 6 for simplification in (33) and (34) we get the result. [
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Corollary 3.5. Let i : M™! = My X M, — M*"*(c) be a D-minimal isometric immersion of a (m + 1)-
dimensional warped product CR submanifold M™*! into M**1(c), where My and M, are invariant and anti-invariant
submanifolds respectively and & € T(DT). Then we have

Rie(X) + m(Aln f) < i IHIP + n2]IV(In FIP + @(ml + 511y + 4nyny)
G - D ifxeron
Ric(X) + m(Alnf) < @IIHHZ + o V(In I + (C+T3)(10n1 + 311y + dymy)
(c—-1)

- 5 ifXel®Y

where dim(Mr) = 2n1 + 1 and dim(M_) = n,.

Proof. Substituting 01 = 0 and 0, = 7 in (33) and (34) we get the result. O

4. Some Applications

Theorem 4.1. Suppose { : M™*! = My, X; Mg, — M*"*1(c) be a D% -minimal isometric immersion of a (m + 1)-
dimensional warped product pointwise bi-slant submanifold M+ into M*'*1(c), where My, , Mg, are pointwise slant
submanifolds with distinct slant functions 61, 0 respectively and & € T(D). Then we have the following

17, + 1 3 c-1
Liny = ‘E[RIC(X) (m +1)° |H|? - (311 + 5ny + 4nyny) — %(3 cos? 01 — 2)] on My,. (60)
and
17, + 1 3 c-1
L > ZHZ[ch(X) O+ e S s 3 4 i) %(3 cos? 0, — 2)] on Mg,. (61)

Proof. The theorem follows from (33), (34), (24) and (25). O

Theorem 4.2. Suppose { : M"™*! = Mg, X; Mg, = M*"*1(c) be a D% -minimal isometric immersion of (m + 1)-
dimensional warped product pointwise bi-slant submanifold M+ into M*'*1(c), where My, , M, are pointwise slant
submanifolds with distinct slant functions 01, 0 respectively and & € [(D%). Then we have the following

HdInf,p) > %[Rie(x)+2n2A(In - (’””) IR~ s 62)
S )(3cos 0, - 2)] on M,
and
H@dInf,p) 2 %M[Ric(xhznzmn - ﬂanz 43(5n1+3n2+4n1n2) 63)
(c=1)

- T(3 cos? 0, — 2)] on M, .

Proof. The theorem follows from (33), (34) and (21). O
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Theorem 4.3. Suppose i : M™! = Mg, Xy Mg, — M*"*1(c) be a D -minimal isometric immersion of a (m + 1)-
dimensional warped product pointwise bi-slant submanifold M"™* into M*'*1(c), where Mg, , Mg, are pointwise slant
submanifolds with distinct slant functions 61, 0 respectively and & € T(D). Then we have the following

1 2 Tr. In f
Ric(X) < m||H||2 ’7; 4+ & Z €3 3y 4 5my + dmyng) + = )(3 cos2 0, - 2), (64)
for any X € T(D%) and
2 In f -1
Ric(X) < M||H||2 A et o a4 amny) + C= D Geos 0, - 2), (65)

f 4
for any X € T(D%).

Proof. The theorem follows from (33), (34) and (23). O

Theorem 4.4. Suppose i : M™! = Mg, Xy Mg, — M*"*(c) be a D -minimal isometric immersion of a (m + 1)-
dimensional warped product pointwise bi-slant submanifold M+ into M*'*1(c), where My, , M, are pointwise slant
submanifolds with distinct slant functions 01, 0 respectively and & € T(DO). If the warping function f be harmonic,
then we have the following

-1
Ric(X) < (m +1)° IH|? + 3(3711 + 51y + dnyny) + (c )(3 cos? 01 —2), (66)
for any X € T(D%) and
1 3 -1
Ric(X) < (m D% e + S35y + 3 + i) + D (3eos? 6, - 2), (67)

for any X € T(D%).
Proof. Since f is said to harmonic, then Af = 0. Using this in (33) and (34) we get the result. [
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