Antipodal graphs of small diameter

Dragan Stevanović

Abstract

A proper metric space $X=(X, d)$ is called antipodal if-with $[x, y]=$ $\{z \in X: d(x, y)=d(x, z)+d(z, y)\}$-for every $x \in X$ there exists some $y \in X$ such that $[x, y]=X$. A connected undirected finite graph G is called antipodal if its associated graph metric is antipodal.

Here we characterize antipodal graphs of diameter 3 and show that almost every graph is an induced subgraph of some antipodal graph of diameter 3^{1}.

1 Introduction

A proper metric space $X=(X, d)$ is called antipodal if-with $[x, y]=\{z \in$ $X: d(x, y)=d(x, z)+d(z, y)\}$-for every $x \in X$ there exists some $y \in X$ such that $[x, y]=X$. A connected undirected finite graph G is called antipodal if its associated graph metric is antipodal.

The only antipodal graphs of diameter 2 are Cocktail-party graphs. Namely, if G is an antipodal graph of diameter 2 with a mapping $*: V(G) \mapsto V(G)$ such that $\left[u, u^{*}\right]=V(G)$ for each $u \in V(G)$, then each vertex of G is adjacent to both u and u^{*}, while u and u^{*} are not adjacent. Since $\left(u^{*}\right)^{*}=u$, the vertices of G are partitioned into pairs $\left(u, u^{*}\right)$ such that the vertices from different pairs are adjacent, while the vertices from the same pair are not adjacent. This shows that G is a Cocktail-party graph.

In [1] it is shown that a locally connected antipodal graph of diameter 3 is either the Johnson graph $J(6,3)$, the halved 6 -cube or the Gosset graph.

Our goal here is to give a full characterization of antipodal graphs of dimaeter 3. In order to do this, we first devise a new unary graph operation $P(G)$ and then show that each antipodal graph of diameter 3 is isomorphic to $P(G)$ for some graph G. Since this operation is defined in such a way that G is an induced subgraph of $P(G)$, we will then show that almost every graph is an induced subgraph of an antipodal graph of diameter 3.

[^0]
2 Antipodal graphs of diameter 3

For an arbitrary vertex u of a graph G, the set of vertices of G adjacent to u is called the open neighborhood of u and denoted $N_{G}(u)$. The set $N_{G}[u]=$ $\{u\} \cup N_{G}(u)$ is the closed neighborhood of u in G. If there are no conflicts, we omit the index G and write $N(u)$ for $N_{G}(u)$ and $N[u]$ for $N_{G}[u]$. The graph G is semi-cannonical if for each vertex u of G it holds that $N[u] \neq V(G)$ and for each pair of vertices u and v of G it holds that $N[u] \neq N[v]$.

We first prove a handy lemma.
Lemma 1 Let G be an antipodal graph with the mapping $*: V(G) \mapsto V(G)$ such that $\left[u, u^{*}\right]=V(G)$ for each $u \in V(G)$. The mapping $*$ is the isomorphism of G.

Proof. We first prove that $*$ is the bijection of G. Suppose first that for some $u \in V(G)$ there exist vertices u^{\prime} and $u^{\prime \prime}$ such that $\left[u, u^{\prime}\right]=\left[u, u^{\prime \prime}\right]=V(G)$. Then we have that

$$
\begin{aligned}
d\left(u, u^{\prime}\right) & =d\left(u, u^{\prime \prime}\right)+d\left(u^{\prime \prime}, u^{\prime}\right) \\
d\left(u, u^{\prime \prime}\right) & =d\left(u, u^{\prime}\right)+d\left(u^{\prime}, u^{\prime \prime}\right)
\end{aligned}
$$

from which follows that $d\left(u^{\prime}, u^{\prime \prime}\right)=0$, showing that $u^{\prime}=u^{\prime \prime}$. Therefore, the mapping $*$ is one-to-one. Next, it must be onto, since $\left(u^{*}\right)^{*}=u$, and we conclude that $*$ is the bijection of G.

Let D be the diameter of G, and let $v, w \in V(G)$ be such that $d(v, w)=D$. Then from $D \geq d\left(v, v^{*}\right)=d(v, w)+d\left(w, v^{*}\right)$, we conclude that $w=v^{*}$. Next, for an arbitrary vertex $u \in V(G)$ we have that

$$
\begin{aligned}
2 d\left(u, u^{*}\right) & =\left(d(u, v)+d\left(v, u^{*}\right)\right)+\left(d\left(u, v^{*}\right)+d\left(v^{*}, u^{*}\right)\right) \\
& =\left(d(v, u)+d\left(u, v^{*}\right)\right)+\left(d\left(v, u^{*}\right)+d\left(u^{*}, v^{*}\right)\right)=2 d\left(v, v^{*}\right)=2 D .
\end{aligned}
$$

Therefore, for each $u \in V(G)$ the distance between u and u^{*} is equal to D.
It remains only to prove that the mapping $*$ preserves adjacency of vertices. For arbitrary vertices u, v of G, from $u \in\left[v, v^{*}\right]$ and $v^{*} \in\left[u, u^{*}\right]$, it follows that

$$
d(v, u)+d\left(u, v^{*}\right)=D=d\left(u, v^{*}\right)+d\left(v^{*}, u^{*}\right)
$$

From here we see that $d\left(u^{*}, v^{*}\right)=D-d\left(u, v^{*}\right)=d(u, v)$. Therefore, vertices u and v are adjacent if and only if vertices u^{*} and v^{*} are adjacent.

Next we describe new unary graph operation $P(G)$. Let G be an arbitrary graph and let G^{*} be isomorphic to G. Further for each $u \in V(G)$ let u^{*} be the corresponding vertex of G^{*} under some fixed isomorphism between G and G^{*}, and let a and a^{*} be two new vertices which do not belong to either G or G^{*}. The graph $P(G)$ is then constructed in the following way:

$$
\begin{aligned}
V(P(G))= & V(G) \cup V\left(G^{*}\right) \cup\left\{a, a^{*}\right\} \\
E(P(G))= & E(G) \cup E\left(G^{*}\right) \\
& \cup\{(a, u) \mid u \in V(G)\} \cup\left\{\left(a^{*}, u^{*}\right) \mid u^{*} \in V\left(G^{*}\right)\right\} \\
& \cup\left\{\left(u, v^{*}\right) \mid u \in V(G), v^{*} \in V\left(G^{*}\right),(u, v) \notin E(G), u \neq v\right\} .
\end{aligned}
$$

Figure 1: The construction of $P\left(C_{4}\right)$ for cycle C_{4}.

We illustrate this construction in Fig. 1 on cycle C_{4}.
Our main goal is to prove the following theorem.
Theorem 2 The graph H is antipodal with diameter 3 if and only if there exists semi-cannonical graph G such that $H \cong P(G)$.

The proof of this theorem directly follows from the following two theorems.
Theorem 3 If G is semi-cannonical, then $P(G)$ is an antipodal graph with diameter 3 .

Proof. First, we prove that $\left[a, a^{*}\right]=V(P(G))$. The distance between a and a^{*} is at least 3 , since they are not adjacent and have no common neighbor.

Since G is semi-cannonical, for each vertex u of G there exists vertex v of G that is not adjacent to u in G. Then u and v^{*} are adjacent in $P(G)$, and a, u, v^{*}, a^{*} is the path of length 3 in $P(G)$. Also u^{*} and v are adjacent in $P(G)$, and a, v, u^{*}, a^{*} is another path of length 3 in $P(G)$. This shows that $u, u^{*} \in\left[a, a^{*}\right]$ and we conclude that $\left[a, a^{*}\right]=V(P(G))$.

Now we show that for each $u \in V(G)$, it holds that $\left[u, u^{*}\right]=V(P(G))$. The distance between u and u^{*} is at least 3 , since they are not adjacent and have no common neighbor.

Let v be an arbitrary vertex of G. If u and v are not adjacent in G, then u, a, v, u^{*} and u, v^{*}, a^{*}, u^{*} are paths of length 3 in $P(G)$ showing that $v, v^{*} \in$ $\left[u, u^{*}\right]$. If u and v are adjacent in G, then $N[u] \neq N[v]$. If $N[u] \backslash N[v] \neq \emptyset$, then there exists vertex w of G adjacent to u and not adjacent to v. The paths u, v, w^{*}, u^{*} and u, w, v^{*}, u^{*} have length 3 in $P(G)$. If $N[v] \backslash N[u] \neq \emptyset$, then there exists vertex w of G adjacent to v and not adjacent to u. In this case, the paths u, v, w, u^{*} and u, w^{*}, v^{*}, u^{*} have length 3 in $P(G)$. In any case, we see that $v, v^{*} \in\left[u, u^{*}\right]$.

From above we see that the distance between a and a^{*}, and between u and u^{*} for each vertex u of G is equal to 3 , thus showing that $P(G)$ is an antipodal graph with diameter 3 .

Theorem 4 Let H be an antipodal graph with diameter 3. Then there exists semi-cannonical graph G such that $H \cong P(G)$.

Proof. Let $*: V(H) \mapsto V(H)$ be the mapping such that for each $u \in V(H)$ it holds that $\left[u, u^{*}\right]=V(H)$. Fix the vertex a of H and let $N(a)$ denote also a subgraph of H induced by an open neighborhood of a in H. It will be obvious from the context whether $N(a)$ denotes the open neighborhood or the graph induced by it. We show that $H \cong P(N(a))$.

Since H has diameter 3, each vertex u of H is adjacent either to a or a^{*}.
Let u and v be arbitrary vertices adjacent to a. Then u^{*} and v^{*} are adjacent to a^{*}. Since the mapping $*$ is isomorphism of H, vertices u and v are adjacent if and only if u^{*} and v^{*} are adjacent. This shows that $N(a)$ and $N\left(a^{*}\right)$ are isomorphic graphs.

Further, u is adjacent to exactly one of v and v^{*}, which finally shows that $H \cong P(N(a))$.

It remains to show that $N(a)$ is semi-cannonical. Let u be an arbitrary vertex of $N(a)$. Since H is antipodal with diameter 3 , we have that $u \in\left[a, a^{*}\right]$ and there exists a vertex w in H such that a, u, w, a^{*} is a path of length 3 in H. The vertex w is adjacent to u and not adjacent to a. Then w^{*} is not adjacent to u and it is adjacent to a, showing that $N_{N(a)}[u] \neq N(a)$.

Let u, v be a pair of adjacent vertices in $N(a)$ (and also in H). Since H is antipodal with diameter 3 , we have that $v \in\left[u, u^{*}\right]$ and there exists a vertex w in H such that u, v, w, u^{*} is a path of length 3 in H. The vertex w is not equal to either a or a^{*}. If w belongs to $N(a)$, then $w \in N_{N(a)}[v]$ and $w \notin N_{N(a)}[u]$. If w belongs to $N\left(a^{*}\right)$, then $w^{*} \in N_{N(a)}[u]$ and $w^{*} \notin N_{N(a)}[v]$. In any case, $N_{N(a)}[u] \neq N_{N(a)}[v]$, showing that $N(a)$ is semi-cannonical.

3 Induced subgraphs of antipodal graphs

In this section we show that almost every graph is semi-cannonical. Since every graph G is an induced subgraph of $P(G)$, in view of Theorem 2 this means that almost every graph G is an induced subgraph of an antipodal graph of diameter 3-namely, of $P(G)$.

Theorem 5 Almost every graph is semi-cannonical.
Proof. Let U_{n} denote the number of all nonisomorphic unlabelled graphs on n vertices, and let S_{n} denote the number of all nonisomorphic unlabelled semicannonical graphs on n vertices. The number of all nonisomorphic unlabelled graphs that are not semi-cannonical is then equal to $U_{n}-S_{n}$.

Let G be an arbitrary graph on $n-1$ vertices and construct n graphs G^{\prime} and G^{u} for each $u \in V(G)$ in the following way:

- the graph G^{\prime} is obtained by adding a new vertex adjacent to all vertices of G;
- for each $u \in V(G)$ the graph G^{u} is obtained by adding a new vertex adjacent to vertices of $N_{G}[u]$.

If a graph H on n vertices is not semi-cannonical, then either there exists a vertex u such that $N_{H}[u]=V(H)$ (and then $H \cong(H-u)^{\prime}$) or there exist two vertices u and v such that $N_{H}[u]=N_{H}[v]$ (and then $H \cong(H-v)^{u}$). Since some graphs on n vertices that are not semi-cannonical may be obtained more than once in this way from a graph with $n-1$ vertices, we have that $U_{n}-S_{n} \leq n U_{n-1}$.

Therefore we have that

$$
\frac{S_{n}}{U_{n}} \geq 1-\frac{n U_{n-1}}{U_{n}}
$$

and since it holds that (e.g. see [2])
we easily get that

$$
\lim _{n \rightarrow \infty} \frac{S_{n}}{U_{n}}=1
$$

Corollary 6 Almost every graph is an induced subgraph of an antipodal graph of diameter 3 .

Proof. Almost every graph G is semi-cannonical, and for such G graph $P(G)$ is antipodal graph of diameter 3 and contains G as an induced subgraph (as a matter of fact, $P(G)$ contains two copies of G as induced subgraphs).

Acknowledgement The author wishes to thank Prof. Brendan McKay for pointing to the approximation result (1) on the number of unlabelled graphs with n vertices.

References

[1] J. Koolen, V. Moulton, D. Stevanović, Spherical graphs, in preparation
[2] W. Oberschelp, Kombinatorische Anzahlbestimmungen in Relationen (German), Math. Ann. 174 (1967), 53-78

DIMACS Center, Rutgers University,
Piscataway, New Jersey 08854-8018, USA ${ }^{2}$
dragance@pmf.pmf.ni.ac.yu

[^1]
[^0]: ${ }^{1}$ Presented at the IMC "Filomat 2001", Niš, August 26-30, 2001
 2000 Mathematics Subject Classification: 05C12, 05C75
 Keywords: Antipodal metric, antipodal graph

[^1]: ${ }^{2}$ On leave from Dept of Mathematics, Faculty of Science, University of Niš, Yugoslavia

