
Antipodal graphs of small diameter

Dragan Stevanović

Abstract

A proper metric space X = (X, d) is called antipodal if—with [x, y] =
{z ∈ X : d(x, y) = d(x, z) + d(z, y)}—for every x ∈ X there exists some
y ∈ X such that [x, y] = X. A connected undirected finite graph G is
called antipodal if its associated graph metric is antipodal.

Here we characterize antipodal graphs of diameter 3 and show that
almost every graph is an induced subgraph of some antipodal graph of
diameter 31.

1 Introduction

A proper metric space X = (X, d) is called antipodal if—with [x, y] = {z ∈
X : d(x, y) = d(x, z) + d(z, y)}—for every x ∈ X there exists some y ∈ X such
that [x, y] = X. A connected undirected finite graph G is called antipodal if its
associated graph metric is antipodal.

The only antipodal graphs of diameter 2 are Cocktail-party graphs. Namely,
if G is an antipodal graph of diameter 2 with a mapping ∗: V (G) �→ V (G) such
that [u, u∗] = V (G) for each u ∈ V (G), then each vertex of G is adjacent to
both u and u∗, while u and u∗ are not adjacent. Since (u∗)∗ = u, the vertices
of G are partitioned into pairs (u, u∗) such that the vertices from different pairs
are adjacent, while the vertices from the same pair are not adjacent. This shows
that G is a Cocktail-party graph.

In [1] it is shown that a locally connected antipodal graph of diameter 3 is
either the Johnson graph J(6, 3), the halved 6-cube or the Gosset graph.

Our goal here is to give a full characterization of antipodal graphs of di-
maeter 3. In order to do this, we first devise a new unary graph operation P (G)
and then show that each antipodal graph of diameter 3 is isomorphic to P (G)
for some graph G. Since this operation is defined in such a way that G is an
induced subgraph of P (G), we will then show that almost every graph is an
induced subgraph of an antipodal graph of diameter 3.
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2 Antipodal graphs of diameter 3

For an arbitrary vertex u of a graph G, the set of vertices of G adjacent to u
is called the open neighborhood of u and denoted NG(u). The set NG[u] =
{u} ∪ NG(u) is the closed neighborhood of u in G. If there are no conflicts, we
omit the index G and write N(u) for NG(u) and N [u] for NG[u]. The graph G
is semi-cannonical if for each vertex u of G it holds that N [u] �= V (G) and for
each pair of vertices u and v of G it holds that N [u] �= N [v].

We first prove a handy lemma.

Lemma 1 Let G be an antipodal graph with the mapping ∗: V (G) �→ V (G) such
that [u, u∗] = V (G) for each u ∈ V (G). The mapping ∗ is the isomorphism of G.

Proof. We first prove that ∗ is the bijection of G. Suppose first that for some
u ∈ V (G) there exist vertices u′ and u′′ such that [u, u′] = [u, u′′] = V (G). Then
we have that

d(u, u′) = d(u, u′′) + d(u′′, u′),
d(u, u′′) = d(u, u′) + d(u′, u′′),

from which follows that d(u′, u′′) = 0, showing that u′ = u′′. Therefore, the
mapping ∗ is one-to-one. Next, it must be onto, since (u∗)∗ = u, and we
conclude that ∗ is the bijection of G.

Let D be the diameter of G, and let v, w ∈ V (G) be such that d(v, w) = D.
Then from D ≥ d(v, v∗) = d(v, w) + d(w, v∗), we conclude that w = v∗. Next,
for an arbitrary vertex u ∈ V (G) we have that

2d(u, u∗) = (d(u, v) + d(v, u∗)) + (d(u, v∗) + d(v∗, u∗))
= (d(v, u) + d(u, v∗)) + (d(v, u∗) + d(u∗, v∗)) = 2d(v, v∗) = 2D.

Therefore, for each u ∈ V (G) the distance between u and u∗ is equal to D.
It remains only to prove that the mapping ∗ preserves adjacency of vertices.

For arbitrary vertices u, v of G, from u ∈ [v, v∗] and v∗ ∈ [u, u∗], it follows that

d(v, u) + d(u, v∗) = D = d(u, v∗) + d(v∗, u∗).

From here we see that d(u∗, v∗) = D − d(u, v∗) = d(u, v). Therefore, vertices u
and v are adjacent if and only if vertices u∗ and v∗ are adjacent.

Next we describe new unary graph operation P (G). Let G be an arbitrary
graph and let G∗ be isomorphic to G. Further for each u ∈ V (G) let u∗ be the
corresponding vertex of G∗ under some fixed isomorphism between G and G∗,
and let a and a∗ be two new vertices which do not belong to either G or G∗.
The graph P (G) is then constructed in the following way:

V (P (G)) = V (G) ∪ V (G∗) ∪ {a, a∗},
E(P (G)) = E(G) ∪ E(G∗)

∪{(a, u) |u ∈ V (G)} ∪ {(a∗, u∗) |u∗ ∈ V (G∗)}
∪ {(u, v∗) |u ∈ V (G), v∗ ∈ V (G∗), (u, v) /∈ E(G), u �= v}.
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Figure 1: The construction of P (C4) for cycle C4.

We illustrate this construction in Fig. 1 on cycle C4.
Our main goal is to prove the following theorem.

Theorem 2 The graph H is antipodal with diameter 3 if and only if there exists
semi-cannonical graph G such that H ∼= P (G).

The proof of this theorem directly follows from the following two theorems.

Theorem 3 If G is semi-cannonical, then P (G) is an antipodal graph with
diameter 3.

Proof. First, we prove that [a, a∗] = V (P (G)). The distance between a and a∗

is at least 3, since they are not adjacent and have no common neighbor.
Since G is semi-cannonical, for each vertex u of G there exists vertex v of

G that is not adjacent to u in G. Then u and v∗ are adjacent in P (G), and
a, u, v∗, a∗ is the path of length 3 in P (G). Also u∗ and v are adjacent in
P (G), and a, v, u∗, a∗ is another path of length 3 in P (G). This shows that
u, u∗ ∈ [a, a∗] and we conclude that [a, a∗] = V (P (G)).

Now we show that for each u ∈ V (G), it holds that [u, u∗] = V (P (G)). The
distance between u and u∗ is at least 3, since they are not adjacent and have
no common neighbor.

Let v be an arbitrary vertex of G. If u and v are not adjacent in G, then
u, a, v, u∗ and u, v∗, a∗, u∗ are paths of length 3 in P (G) showing that v, v∗ ∈
[u, u∗]. If u and v are adjacent in G, then N [u] �= N [v]. If N [u] \ N [v] �= ∅,
then there exists vertex w of G adjacent to u and not adjacent to v. The paths
u, v, w∗, u∗ and u, w, v∗, u∗ have length 3 in P (G). If N [v] \ N [u] �= ∅, then
there exists vertex w of G adjacent to v and not adjacent to u. In this case, the
paths u, v, w, u∗ and u, w∗, v∗, u∗ have length 3 in P (G). In any case, we see
that v, v∗ ∈ [u, u∗].



82 Dragan Stevanović

From above we see that the distance between a and a∗, and between u and
u∗ for each vertex u of G is equal to 3, thus showing that P (G) is an antipodal
graph with diameter 3.

Theorem 4 Let H be an antipodal graph with diameter 3. Then there exists
semi-cannonical graph G such that H ∼= P (G).

Proof. Let ∗ : V (H) �→ V (H) be the mapping such that for each u ∈ V (H) it
holds that [u, u∗] = V (H). Fix the vertex a of H and let N(a) denote also a
subgraph of H induced by an open neighborhood of a in H. It will be obvious
from the context whether N(a) denotes the open neighborhood or the graph
induced by it. We show that H ∼= P (N(a)).

Since H has diameter 3, each vertex u of H is adjacent either to a or a∗.
Let u and v be arbitrary vertices adjacent to a. Then u∗ and v∗ are adjacent

to a∗. Since the mapping ∗ is isomorphism of H, vertices u and v are adjacent
if and only if u∗ and v∗ are adjacent. This shows that N(a) and N(a∗) are
isomorphic graphs.

Further, u is adjacent to exactly one of v and v∗, which finally shows that
H ∼= P (N(a)).

It remains to show that N(a) is semi-cannonical. Let u be an arbitrary
vertex of N(a). Since H is antipodal with diameter 3, we have that u ∈ [a, a∗]
and there exists a vertex w in H such that a, u, w, a∗ is a path of length 3 in H.
The vertex w is adjacent to u and not adjacent to a. Then w∗ is not adjacent
to u and it is adjacent to a, showing that NN(a)[u] �= N(a).

Let u, v be a pair of adjacent vertices in N(a) (and also in H). Since H is
antipodal with diameter 3, we have that v ∈ [u, u∗] and there exists a vertex w
in H such that u, v, w, u∗ is a path of length 3 in H. The vertex w is not equal
to either a or a∗. If w belongs to N(a), then w ∈ NN(a)[v] and w /∈ NN(a)[u].
If w belongs to N(a∗), then w∗ ∈ NN(a)[u] and w∗ /∈ NN(a)[v]. In any case,
NN(a)[u] �= NN(a)[v], showing that N(a) is semi-cannonical.

3 Induced subgraphs of antipodal graphs

In this section we show that almost every graph is semi-cannonical. Since every
graph G is an induced subgraph of P (G), in view of Theorem 2 this means
that almost every graph G is an induced subgraph of an antipodal graph of
diameter 3—namely, of P (G).

Theorem 5 Almost every graph is semi-cannonical.

Proof. Let Un denote the number of all nonisomorphic unlabelled graphs on
n vertices, and let Sn denote the number of all nonisomorphic unlabelled semi-
cannonical graphs on n vertices. The number of all nonisomorphic unlabelled
graphs that are not semi-cannonical is then equal to Un − Sn.

Let G be an arbitrary graph on n − 1 vertices and construct n graphs G′

and Gu for each u ∈ V (G) in the following way:
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• the graph G′ is obtained by adding a new vertex adjacent to all vertices
of G;

• for each u ∈ V (G) the graph Gu is obtained by adding a new vertex
adjacent to vertices of NG[u].

If a graph H on n vertices is not semi-cannonical, then either there exists a
vertex u such that NH [u] = V (H) (and then H ∼= (H − u)′) or there exist two
vertices u and v such that NH [u] = NH [v] (and then H ∼= (H−v)u). Since some
graphs on n vertices that are not semi-cannonical may be obtained more than
once in this way from a graph with n−1 vertices, we have that Un−Sn ≤ nUn−1.

Therefore we have that

Sn

Un
≥ 1 − nUn−1

Un
,

and since it holds that (e.g. see [2])

Un = (1 + o(n))
2(n

2)

n!
, (1)

we easily get that

lim
n→∞

Sn

Un
= 1.

Corollary 6 Almost every graph is an induced subgraph of an antipodal graph
of diameter 3.

Proof. Almost every graph G is semi-cannonical, and for such G graph P (G)
is antipodal graph of diameter 3 and contains G as an induced subgraph (as a
matter of fact, P (G) contains two copies of G as induced subgraphs).
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