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Abstract

There is proposed1 a representation of the Drazin inverse of a given
polynomial square matrix, based on the extension of the Leverrier-Fadde-
ev algorithm. Also, an algorithm for symbolic computation of the Drazin
inverse of polynomial matrix is established. This algorithm represents an
extension of the papers [5], [7] and a continuation of the papers [8], [9], [10].
The implementation is developed in the symbolic package MATHEMATICA.

1 Introduction

Let C be the set of complex numbers and Cm×n be the set of m × n complex
matrices. As usual, C[s] denotes the polynomials with complex coefficients in
the indeterminate s. The m × n matrices with elements in C[s] are denoted
by C[s]m×n. By Ir we denote the identity matrix of the order r, and by O is
denoted an appropriate null matrix. Also, by Tr(A) is denoted the trace of A.

Various methods are used for computing the usual inverse of a constant reg-
ular matrix A ∈ Cm×n by means of the Leverrier-Faddeev algorithm (also called
Souriau-Frame algorithm) are presented in [4], [3], [1] and [11]. A more general
algorithm for computing the Moore-Penrose generalized inverses of a given rect-
angular or singular constant matrix A ∈ Cm×n, based on the Leverrier-Faddeev
algorithm, is originated in [2].

Also, in [1], a new derivation of the Leverrier-Faddeev algorithm is utilized to
produce corresponding computational scheme for the inverse of the polynomial
matrix s2In − sA1 − A2 of power 2. In [11] it is introduced a new extension
of Leverrier’s algorithm for computing the inverse of a matrix polynomial of
arbitrary degree. In [9] it is derived a representation and an algorithm for
computation of the Moore-Penrose inverse of a nonregular polynomial matrix
of an arbitrary degree. In [8] it is described an algorithm for computing the
Moore-Penrose inverse of a singular rational matrix and its implementation in
the symbolic computational language MAPLE.

Let us mention that in the literature it is known a number of applications
of the Moore-Penrose inverse of polynomial and rational matrices [8], [10].
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A modification of the Leverrier-Faddeev algorithm for computation of the
Drazin inverse is discovered in [5] by Grevile. Hartwig in [6] continues investi-
gation of this algorithm. An alternative finite algorithm for computation of the
Drazin inverse is introduced in [7].

Hence, we observe the absence of algorithms for computation of the Drazin
inverse of polynomial and rational matrices. In the second section we restate
well-known modification of the Leverrier-Faddeev algorithm for computation of
the Drazin inverse, introduced in [5] and alternatively verified in [7]. In the
third section it is presented an extension of the Grevile’s modification of the
Leverrier-Faddeev algorithm, to the set of one-variable nonregular rational ma-
trices. We also propose an algorithm for computation of the Drazin inverse for
one-variable polynomial matrix in terms of its coefficient matrices. There pro-
posed results can be considered as a continuation of the papers [8], [9], [10] and
a generalization of the results from [5] and [7]. In the fourth section we describe
implementation details of the algorithm and give an illustrative example.

2 Preliminaries

In this section we consider a constant singular square complex matrix A ∈ Cn×n.
In [5] is introduced the following representation of the Drazin inverse.

Theorem 2.1 [5], [7]. Consider a singular square matrix A ∈ Cn×n. Assume
that

a(z) = det [zIn −A]
= a0z

n + a1z
n−1 + · · ·+ an−1z + an, a0 = 1, z∈C

is the characteristic polynomial of A. Also, consider the following sequence of
n× n constant matrices defined by coefficients ai and powers of A:

Bj = a0A
j + a1A

j−1 + · · ·+ aj−1A + ajIn, a0 = 1, j = 0, . . . , n

Let r denote the smallest integer such that Br = O, let t denote the largest
integer satisfying at 6= 0, and let k = r − t. Then, the Drazin pseudoinverse of
A is given by

AD = (−1)k+1a−k−1
t AkBk+1

t−1 . (1)

Also, in [5] is proposed the following algorithm for computation of the Drazin
inverse of A, which avoids explicit matrix powering.

Algorithm 2.1 Consider A ∈ Cn×n.

S1. Construct the sequence of complex numbers {a0, a1, . . . , an} and the se-
quence of n× n matrices {B0, B1, . . . , Bn} in the following way:

A0 = O, a0 = 1, B0 = In

A1 = AB0, a1 = −Tr(A1)
1 , B1 = A1 + a1In

. . . . . . . . .

An = ABn−1, an = −Tr(An)
n , Bn = An + anIn

(2)
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S2. Let t = max{l : al 6= 0}, r = min{l : Bl = O}, k = r − t. Then the
Drazin inverse AD is given by (2.1).

3 Drazin inverse of a polynomial matrix

Now, we assume that A(s) ∈ C[s]n×n is a polynomial matrix of the form

A(s)={aij(s)}=Aqs
q + Aq−1s

q−1 + · · ·A1s + A0 ∈ C[s]n×n, (3)

where aij(s) ∈ C[s], Ai ∈ Cn×n, i = 0, . . . , q are constant complex matrices,
and s is an unknown variable. The proof of the following statement is similar
with the corresponding one from [5]. This statement is valid also for rational
matrices.

Lemma 3.1 Consider a nonregular one-variable polynomial matrix A(s) of the
form (3). Assume that

a(z, s) =det [zIn−A(s)]=a0(s)zn + a1(s)zn−1 + · · · an−1(s)z + an(s),
a0(s) ≡ 1, ai(s) ∈ C[s], z∈C

is the characteristic polynomial of A(s). Also, consider the following sequence
of n× n polynomial matrices

Bj(s) = a0(s)A(s)j + a1(s)A(s)j−1 + · · · aj−1(s)A(s) + aj(s)In, (4)
a0(s) = 1, j = 0, . . . , n

Let

an(s) ≡ 0, . . . , at+1(s) ≡ 0, at(s) 6= 0,

n(s) ≡ O, . . . , Br(s) ≡ O, Br−1(s) 6= O.

The Drazin inverse of A(s) is given by

A(s)D = (−1)k+1at(s)−k−1A(s)kBt−1(s)k+1.

In view of the results of Lemma 3.1 we present the following algorithm for
computation of the Drazin inverse. This algorithm is a generalization of Algo-
rithm 2.1 and permits simultaneous computation of the polynomials ai(s) and
polynomial matrices Bi(s).

Algorithm 3.1 Input is a given polynomial matrix A(s) ∈ C[s]n×n.

S1. Construct the sequence of polynomials {a0(s), . . . , an(s)} and the sequence
of polynomial matrices {B0(s), . . . , Bn(s)} as in the following:

A0(s)=O, a0(s)=1, B0(s)=In

A1(s)=A(s)B0(s), a1(s)=−Tr(A1(s))
1 , B1(s)=A1(s)+a1(s)In

. . . . . . . . .

An(s)=A(s)Bn−1(s), an(s)=−Tr(An(s))
n , Bn(s)=An(s)+an(s)In.

(5)
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S2. Let

t = max{l : al(s) 6= 0}, r = min{l : Bl(s) = O}, k = r − t.

The Drazin inverse A(s)D is given by

A(s)D = at(s)−k−1A(s)kBt−1(s)k+1 (6)

Algorithm 3.1 is quite related to Lemma 3.1. Its implementation is practical
only in symbolic computational packages, because it deals with polynomials
and polynomial matrices. Our intent is to derive a representation of the Drazin
inverse which is independent with respect to Lemma 3.1. This is way to look
for coefficients in the polynomials ai(s) and constant coefficient matrices in
the polynomial matrices Bi(s). This approach gives us a representation of the
Drazin inverse in terms of coefficient matrices Ai, and an analogous algorithm
for computation of the Drazin inverse.

Theorem 3.1 Let the polynomial matrix A(s) is of the form (3). Consider the
polynomials {a0(s), . . . , an(s)} and the polynomial matrices {B0(s), . . . , Bn(s)}
defined as in Algorithm 3.1. Rewrite ai(s) and Bi(s) as

ai(s) =
iq∑

j=0

ai,js
j , i = 1, . . . , n, (7)

Bi(s) =
iq∑

j=0

Bi,js
j , i = 1, . . . , n, (8)

where ai,j, i = 1, . . . , n, j = 0, . . . , iq are scalars, and Bi,j, i = 1, . . . , n, j =
1, . . . , iq are constant coefficient matrices corresponding to powers sj. Then we
have

ai+1,j = − 1
i + 1

Tr(
j∑

l=0

Aj−lBi,l) (9)

Bi+1,j =
j∑

l=0

Aj−lBi,l + ai+1,jIn, (10)

for i = 0, . . . , n − 1, j = 0, . . . , (i + 1)q, where in (9) and (10) it is assumed
Ak = O, k ≥ q + 1, Bi,k = O, k ≥ iq + 1.

Proof. It is not difficult to verify from (5) that the greatest powers of Ai(s)
(and thus of Bi(s)) are equal to iq, i = 0, . . . , n − 1. Also, the degree of the
polynomial quantities ai(s), i = 1, . . . , n is at most equal to iq. Hence ai(s) and
Bi(s) can be written in the form (7) and (8), respectively. Also, from (3), (5)
and (8), we get the following

Ai+1(s)=A(s)Bi(s)=




q∑

j=0

Ajs
j




(
iq∑

l=0

Bi,ls
l

)
=

(i+1)q∑

j=0

(
j∑

l=0

Aj−lBi,l

)
sj . (11)
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Now, an application of (5) and (11) leads to

ai+1(s) = − 1
i + 1

Tr(Ai+1(s)) =
(i+1)q∑

j=0

[
− 1

i + 1
Tr(

(
j∑

l=0

Aj−lBi,l

)
)

]
sj . (12)

The identity (9) follows from (7) and (12).
On the other hand, using (5), (7) and (11), we get

Bi+1(s) = Ai+1(s) + ai+1(s)In

=
(i+1)q∑

j=0

(
j∑

l=0

Aj−lBi,l

)
sj +

(i+1)q∑

j=0

ai+1,jInsj (13)

=
(i+1)q∑

j=0

(
j∑

l=0

Aj−lBi,l + ai+1,jIn

)
sj

The identity (10) follows from (8) and (13).

Now we are in a position to state the following algorithm for computation
of the Drazin inverse A(s)D in terms of coefficient matrices Ai.

Algorithm 3.2

Initial conditions: B0,0 = In, Aj = 0, j = q + 1, . . . , nq.

Boundary conditions:

B0,j = O ∀j ∈ N

Bi,j = O, i=0, . . . , n− 1, j = iq + 1, . . . , (n− 1)q.

Recursive relations for ai(s) are defined in (9).

Recursive relations for Bi(s) are defined in (10).

Termination criteria: Compute the first t and r satisfying

at+1,j = at+2,j = · · · = an,j = 0 ∀j ∈ N,

Br,j = O, j = 0, 1, . . . , rq.

Output: Compute k = r − t and return

A(s)D = (−1)k+1




tq∑

j=0

at,js
j



−k−1 (

q∑

i=0

Ais
i

)k



(t−1)q∑

l=0

Bt−1,ls
l




k+1

.
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4 Implementation

It is well-known that all Cayley-Hamilton-theorem-based algorithms are numer-
ically unstable because it is implicitly taking powers of matrices [10]. Therefore,
algorithms 3.1-3.2 work for rational and polynomial matrices, respectively, but
for poorly conditioned data results can be significantly incorrect [10]. This fact
is a motivation for the usage of symbolic programming language MATHEMATICA,
version 4.1, in the implementation. About the package MATHEMATICA see, for
example, [12] and [13].

Essentially, main function DrzPoly[] deals with a polynomial matrix repre-
sented by the corresponding three-dimensional list of the form {l1, . . . , lq+1}.
The coefficient matrices Ai are indicated by the global array A, which is defined
by

A[[i]] = li−1, i = 0, . . . , q, A[[i]] = O, i = q + 1, . . . , nq.

Recursive relations (9) and (10) for computing the real numbers ai,j and the
constant matrices Bi,j , respectively, are implemented in the following two func-
tions, appropriate also for procedural programming languages. The result of
the standard function Tr[a ] is the trace of matrix a.

Fa[i1_,j1_]:=-1/i1*Tr[Sum[A[[j1-l+1]].FB[i1-1,l],{l,0,j1}]];

FB[u_,v_]:= Block[{w={},nul},

nul=Table[0,{n},{n}]; (* The zero matrix *)

If[u==0 && v==0, w=IdentityMatrix[n], (* Then *)

If[u==0, (* Else if*)

w=nul, (* Then *)

If[(v>=u q+1)&&(v<=(n-1) q), (* Else if *)

w=nul,

w=Sum[A[[v-k+1]].FB[u-1,k],{k,0,v}]+Fa[u,v]*IdentityMatrix[n]

] ] ];

Return[w]

];

However, three-dimensional list representation is inconvenient for the user. It is
much more operative to present each element of a polynomial matrix as the cor-
responding polynomial aij(s) ∈ C[s]. By means of the function FrmA[A List,var ]

we construct the list of coefficient matrices corresponding to matrix A(var) =
{aij(var)}. In the function FrmA[A List,var ] we use symbolic computations,
unsuitable for procedural languages. By the expression q=Max[Exponent[a,var,List]]

we pick the greatest power q in (3). Also, the coefficient matrix Ai corresponding
to vari is computed by koef = Coefficient[a,varˆi] .

FrmA[a_List,var_]:= Block[{L={},L1,nul,q,n,m,i},

{n,m}=Dimensions[a]; nul=Table[0,{i,n},{j,m}];

L1=nul; q=Max[Exponent[a,var,List]];

For[i=1, i<=q, i++,

koef=Coefficient[a,var^i]; L=Append[L,koef]; L1=L1+koef*var^i

];

If[L==={}, Return[{a-L1}] ];

L1={a-L1}; For[i=1,i<=Length[L],i++, AppendTo[L1,L[[i]]] ];

Return[L1]

]
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The method for computation of the Drazin inverse which is described in Al-
gorithm 3.2 , is implemented in the following function DrzPoly[mat List] . A
major problem in the implementation of this function in procedural program-
ming languages is the simplification of polynomials corresponding to elements
of the Drazin inverse. This problem in MATHEMATICA is easily solved by the
standard function Simplify , which is applicable to rational expressions with real
coefficients.

DrzPoly[mat_List]:=

Block[{A,i,j,nul,k,q,r=t=0,log1=log2=True,var=Variables[mat]},

If[var =={}, A={mat},A=FrmA[mat,First[var]]];

q=Length[A]-1; {n,n}=Dimensions[A[[1]]]; nul=Table[0,{n},{n}];

For[i=q+1,i<=n q,i++,A=Append[A,nul]];

For[i=0,i<=n-1,i++,

For[j=0,j<=(i+1) q,j++,

If[Fa[i+1,j]==0 ,log1=log1 && True,log1=log1 && False];

If[FB[i+1,j]===nul ,log2=log2 &&True,log2=log2 &&False];

];

If[!log1,t=i+1;log1=True]; If[!log2,r=i+1];

];

k=r-t;

rez1=(-1)^(k+1)*Sum[Fa[t,j]*First[var]^j,{j,0,t q}]^(-k-1);

rez2=MatrixPower[Sum[A[[i+1]] First[var]^i,{i,0,q}],k];

rez3=MatrixPower[Sum[FB[t-1,l] First[var]^l,{l,0,(t-1) q}],k+1];

rez=rez1*rez2.rez3;

Return[Simplify[rez]]

]

Example 4.1 The polynomial matrix

A(s)=

[
1 + s s 1 + s

s2 −1 + s s
1 + s s 1 + s

]
=

[
1 0 1
0 −1 0
1 0 1

]
+

[
1 1 1
0 1 1
1 1 1

]
s+

[
0 0 0
1 0 0
0 0 0

]
s
2
.

is represented by the following three-dimensional list:
{{{1,0,1},{0,-1,0},{1,0,1}},{{1,1,1},{0,1,1},{1,1,1}},{{0,0,0},{1,0,0},{0,0,0}}}.
generated by the expression FrmA[a,s] Applying the program DrzPoly[mat],
we get t = 2, r = 3 and the following Drazin inverse of A:

A
D

=




1−s+2s3−2s4

(2−s2+s3)2
s

2−s2+s3
1−s−s2+s4

(2−s2+s3)2

s(−1+s2+s3)
(1+s)(2−2s+s2)2

− 2
2−2s+s2

3s−2s3

(1+s)(2−2s+s2)2

1−s+2s3−2s4

(2−s2+s3)2
s

2−s2+s3
1−s−s2+s4

(2−s2+s3)2


 .

5 Conclusion

We develop two algorithms for symbolic computation of the Drazin inverse of a
given square one-variable polynomial matrix of the form (3). These algorithms
are a continuation of the papers [8], [9], [10] and extension of the papers [5], [6],
[7]. Also, the implementation in the package MATHEMATICA of the algorithm is
described.



78 P.S. Stanimirović and M.B. Tasić
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