
From twists to involution bands
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Abstract

In this note1 we give a representation theorem for involution bands. In
addition, it is shown that the construction used in such a representation
yields an operator on the lattice of involution band varieties.

§1. By an involution semigroup we mean a semigroup S endowed with a
unary operation ∗ (called the involution) such that the identities (xy)∗ = y∗x∗

and (x∗)∗ = x are satisfied. Groups and, more generally, inverse semigroups
are clearly the most natural examples of involution semigroups. The intensive
study of involution semigroups began with the paper of Nordahl and Scheiblich
[15], where involution semigroups with the additional identity xx∗x = x, called
regular ∗-semigroups (or just ∗-semigroups for short), were considered.

Idempotent involution semigroups, that is, involution bands, constitute a
separate topic within the involution semigroup theory. Following the description
of the lattice of all varieties of bands [2, 9, 10, 11] (see also [20, 22]), Adair
[1] provided a complete description of the lattice of all ∗-band varieties. A
somewhat broader lattice of varieties of involution bands was provided by the
author [6], while all varieties of normal involution bands were described in [7].
See also [8] for some related results.

In studying the structure of bands, spined (pullback) products turned out
to be one of the most powerful tools. First Kimura [13] proved that any regular
band S (a band satisfying xyxzx = xyzx) is a spined product of a left regular
band (xyx = xy) and a right regular band (xyx = yx) with respect to the
structure semilattice S/D of S. Later, this was generalized (along with some
results of Petrich [17, 18, 19]) by Ćirić and Bogdanović [5] who proved that if U
and V are arbitrary homotypical varieties of bands then actually any band from
U ∨ V is a spined product of a band from U and a band from V with respect to
a member of U ∧ V.

Concerning involution bands, Scheiblich [21] proved the ∗-band analogue of
Kimura’s result. Namely, S is a ∗-band which is also a regular band if and only
if it is a spined product of a left regular band and its dual band (which is a
right regular band) with respect to a semilattice, where the involution is just
the operation of reversing pairs. Our main objective in this note is to extend
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this result to all involution bands by introducing the notion of a twisted spined
square of a band. This construction will provide us with an operator V 7→ Vtw

on the lattice of varieties of involution bands, called the twisting operator, which
certainly contains some information on the structure of the considered lattice.

§2. We begin with some definitions and notations. For any semigroup S
(whose operation is denoted by juxtaposition), the dual semigroup of S (the
semigroup with universe S, whose operation is given by a ¦ b = ba) is denoted
by S∂ . A semigroup variety V is central if S ∈ V implies S∂ ∈ V for any S.
Centrality is easily seen to be equivalent with the following syntactic property:
for any identity u = v that holds on V, the identity u = v also holds in V,
where w denotes the word obtained by reversing w. It is easy to extract central
varieties of bands from the results of [2, 9, 10]: they are depicted in the following
figure (which, in addition, defines a sequence Bi,
leqi ≤ ∞, of central homotypical band varieties).
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Figure 1. All central varieties of bands

If V is a variety of involution bands, let V denote the band variety generated
by semigroup reducts of all members of V. Equivalently, we are concerned with
the band variety determined by the ∗-free identities of V. Obviously, V must be
a central variety. We define the type of V, t(V), such that t(V) = i if and only
if V = Bi, while for the other cases we set t(V) = V.

By the main result of [1], the varieties of ∗-bands are in a one-to-one corre-
spodence with the central band varieties. Thus, for any central variety of bands
V we have one variety of ∗-bands of the corresponding type, which we denote
by Vreg. Similarly, we define V∗ as the variety of all involution bands whose
semigroup reducts belong to V (this is in fact the greatest variety of the type
which corresponds to V). In particular, RBreg = RB∗. The subvariety of V∗
defined by the identities xx∗y = xyx∗ = xx∗ (whose effect is precisely that any
product containing a factor a and its star a∗ equals to zero) is denoted by V0.
Varieties of this form were investigated in more detail in [4].
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Finally, for a semigroup variety V, let V∂ denote its dual variety, consisting
of duals of members of V. Note that for band varieties, the conditions V ∨V∂ =
Bi+2 and V ∧V∂ = Bi for some i ≥ 0 determine V up to duality. Among the two
possible ‘solutions’ we are going to choose one of them, LBi+2, such that LB2

is the variety of left regular bands and that for all j ≥ 2 we have LBj ≤ LBj+1.

§3. We now turn to some special congruences on (involution) bands. As
known, for every equivalence relation ρ on a semigroup S there exists the greatest
congruence relation contained in ρ, which is called the congruence opening of
ρ and denoted by ρ[. We have (a, b) ∈ ρ[ if and only if (xay, xby) ∈ ρ for all
x, y ∈ S1.

In general, the well-known Green’s equivalences L and R are not congru-
ences, even if we restrict ourselves to bands (however, the equivalence D = L◦R
is equal to the least semilattice congruence on a band). Therefore, it is mean-
ingful to consider L[ and R[. In particular, bearing in mind the simple form
that L and R take on bands and the fact that R (resp. L) is a left (right) con-
gruence on any semigroup, we obtain that (a, b) ∈ R[ if and only if ax = bxax
and bx = axbx for all x ∈ S (while L[ is defined by the dual condition).

In [5], Ćirić and Bogdanović proved that (just as L and R do in an arbitrary
semigroup), L[ and R[ commute in any band, so that we obtain their join D′
simply as their composition L[ ◦ R[. Also, a number of descriptions of D′ are
given in [5], from which we single out the following one.

Proposition 1 ([5, Proposition 1]) Let S be any band and a, b ∈ S. Then
(a, b) ∈ D′ if and only if for any x, y ∈ S we have xay = xaxbay and xby =
xbayby.

Sometimes, we shall use lower indices such as R[
S to stress that we consider

the corresponding relation on S. For convenience, the relations introduced so
far are depicted in the following diagram (it is clear that on a band S we have
LS ∩RS = L[

S ∩R[
S = ∆S).
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Figure 2. Green’s relations and some related congruences

Now let S be an involution band. Of course, we can consider S as an ordinary
band too, and deal with L[

S and R[
S in that sense, as we are going to do in the
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rest the paper (it is easy to see that the identity relation on S is the greatest
∗-congruence contained in any of R and L). Also, this is the way in which
quotients S/R[ and S/L[ should be understood.

If ρ is any relation on S, we define its dual relation ρ∗ by (a, b) ∈ ρ∗ if and
only if (a∗, b∗) ∈ ρ. In involution bands, we have the following symmetry.

Lemma 2 In any involution band S, R = L∗ and R[ = (L[)∗.

Proof. Obviously, we have (a, b) ∈ R if and only if ab = b and ba = a. By
applying involution, the latter condition is equivalent to b∗a∗ = b∗ and a∗b∗ =
a∗, i.e. to (a∗, b∗) ∈ L, (a, b) ∈ L∗. As for any equivalence ρ of S we easily have
(ρ∗)[ = (ρ[)∗, the second assertion of the lemma also follows.

Hence, for each element a of an involution band S, we have aR[ = a∗L[.
Also, the following important observation is worth noting.

Lemma 3 In any involution band S, D′ is a ∗-congruence.

Proof. This can be immediately seen from Proposition 1 above, or from the
previous lemma and the fact that D′ is obtained as D′ = (R[)∗◦R[ = R[◦(R[)∗,
which yields that D′ is preserved by the involution.

Therefore, whenever S is an involution band, the quotient S/D′ will be
equipped with a natural involution (aD′)∗ = a∗D′.

§4. Let S be an arbitrary band. Assume that there is an onto homomor-
phism ξ : S → T , where T is an involution band. Then there is a natural way
to define a homomorphism ξ∂ : S∂ → T , namely

ξ∂(x) = ξ(x)∗.

Indeed, for every x, y ∈ S we have

ξ∂(xy) = ξ(xy)∗ = (ξ(x)ξ(y))∗ = ξ(y)∗ξ(x)∗ = ξ∂(x) ¦ ξ∂(y).

Since S and S∂ share the same homomorphic image T , we can define their spined
product with respect to T and ξ, S ⊗T,ξ S∂ . This is just the subsemigroup of
the direct product S × S∂ determined by

⋃

a∈T

(
ξ−1(a)× (ξ∂)−1(a)

)
.

In fact, we are concerned with a subdirect product of S and S∂ . Further, define
a unary operation ∼ on the above set by (x, y)∼ = (y, x). Of course, this
operation is well defined since ξ(y) = ξ∂(y)∗ = ξ(x)∗ = ξ∂(x). It is easy to
verify that the above subdirect product equipped with ∼ forms an involution
band, which we call a twisted spined square of S over T .

The importance of this construction for involution bands is explained by the
following result.
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Theorem 4 Every involution band S is isomorphic to a twisted spined square
of S/R[ over S/D′.
Proof. First of all, we note that S/L[ ∼= (S/R[)∂ . Namely, consider the
mapping ϕ which maps aL[ to a∗R[. Then aL[ · bL[ = abL[ is mapped to
(ab)∗R[ = b∗R[ · a∗R[ = ϕ(aL[) ¦ ϕ(bL[), confirming that ϕ is a homomor-
phism. Since (R[)∗ = L[, it is obviously a bijection.

Let ν : S/R[ → S/D′ be the natural homomorphism defined by ν(aR[) =
aD′, a ∈ S. As for all a ∈ S we have aL[ = a∗R[, it follows

ν∂(aL[) = ν(a∗R[)∗ = (a∗D′)∗ = (a∗)∗D′ = aD′ = ν(aR[).

Now define a function ψ : S → S/R[ ⊗S/D′,ν S/L[ by

ψ(a) = (aR[, aL[).

By the above remarks, this function is well defined. It remains to show that it
is a ∗-homomorphism, since it is clearly a bijection. Indeed,

ψ(ab) = (abR[, abL[) = (aR[ · bR[, aL[ · bL[) =
= (aR[, aL[)(bR[, bL[) = ψ(a)ψ(b)

and
ψ(a∗) = (a∗R[, a∗L[) = (aL[, aR[) = (aR[, aL[)∼ = ψ(a)∼,

as required.

The above decomposition of an involution band S we call the standard twisted
representation of S. Our aim is now to ‘position’ the factors of this representa-
tion.

Lemma 5 The following conditions are equivalent for a band (an involution
band) S and an integer i ≥ 0:

(1) S ∈ Bi+2 (S ∈ B∗i+2),

(2) S/R[ ∈ LBi+2,

(3) S/D′ ∈ Bi (S/D′ ∈ B∗i ).
Proof. (1)⇒(3) By Theorems 8 and 11 of [5], S/D′ ∈ LBi+2 ∧ LB∂

i+2 = Bi

(where LBi+2 is just VR0 in the notation of [5]).
(2)⇒(1) If S/R[ ∈ LBi+2, then S/L[ ∈ LB∂

i+2, and so by Theorem 12 of [5]
we have that S ∈ LBi+2 ∨ LB∂

i+2 = Bi+2.
(3)⇒(2) By Corollary 1 of [5], (S/R[

S)/L[
S/R[

S

is a homomorphic image of

S/D′, and so it also belongs to Bi. By Theorem 4 of [3] (or, alternatively,
by Theorem 9 of [16]), we obtain that S/R[

S belongs to the Mal’cev product
LZ ◦ Bi = LBi+2.
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The above lemma motivates us define Vtw as the class of all involution bands
S such that S/D′ ∈ V, where V 6= RB∗ is some involution band variety (ac-
tually, we can omit this constraint by seeing that (T ∗)tw = (RB∗)tw = RB∗).
Obviously, if t(V) = i ≥ 0, we have t(Vtw) = i + 2. It is not difficult to see that
Vtw is actually the class of all involution bands isomorphic to twisted spined
squares of members of LBi+2 over members of V. The principal virtue of the
just introduced operator V 7→ Vtw is expressed by

Theorem 6 Vtw is a variety.

Proof. Assume Θ = {ui = vi : i ∈ I} is a set of identities that defines V
(within B∗). Further, assume that all variables which appear in the identities
from Θ are contained in the set X = {x1, x2, x3, . . .}, while y and z are two
variables such that y, z 6∈ X. Consider the following set of identities:

Θtw = {yuiz = yuiyviuiz : i ∈ I} ∪ {yviz = yviuizviz : i ∈ I}.

We claim that form any involution band S we have S ∈ Vtw if and only if
S satisfies all the identities from Θtw (i.e. that Vtw coincides with the variety
defined by Θtw).

So, let S ∈ Vtw and let α : X → S be an arbitrary valuation of variables,
which assigns to each semigroup word w an element wα ∈ S. Then we have
S/D′ ∈ V, and thus for each i ∈ I, S/D′ satisfies ui = vi. In other words, we
have (uα

i , vα
i ) ∈ D′. By Proposition 1, for arbitrary p, q ∈ S we have puα

i q =
puα

i pvα
i uα

i q and pvα
i q = pvα

i uα
i qvα

i q. This means that S satisfies the identities
indicated in the definition of Θtw. However, note that the above argument can be
reversed without any trouble at all, so that we obtain the converse implication.
Thus, the theorem is proved.

Now we give the central result of this note, the aforementioned representation
theorem.

Theorem 7 For any i ≥ 0, every involution Bi+2-band is isomorphic to a
twisted spined square of some LBi+2-band over some involution Bi-band. In
short, (B∗i )tw = B∗i+2. Also, for all i ≥ 0 we have (Breg

i )tw = Breg
i+2.

Proof. The first assertion of the theorem follows immediately from Theorem 4
and Lemma 5.

For the second assertion assume that V ≤ Breg. Since V satisfies the identity
x = xx∗x, the proof of the above theorem implies that Vtw satisfies yxz =
yxy(xx∗x)xz = yxyxx∗xz = yxx∗xz. By identifying y, z and x we obtain x =
xx∗x, so that Vtw ≤ Breg. With these facts, we obtain the required conclusion
by applying Theorem 4 and Lemma 5 once again.
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This result is a generalization of Theorem 2.2 of Scheiblich [21]. In our
notation, this theorem asserts that (SLreg)tw = ReBreg.

The mapping V 7→ Vtw is obviously monotone, and moreover, we have that
U tw ∧Vtw = (U ∧V)tw holds for any U and V (indeed, S ∈ (U ∧V)tw if and only
if S/D′ ∈ U ∧ V — in other words, S/D′ ∈ U and S/D′ ∈ V, which means that
S ∈ U tw ∧ Vtw). Further, the twisting operator is extensive, i.e. V ≤ Vtw holds
because if S ∈ V, then, of course, S/D′ ∈ V. These observations lead to some
easy, but interesting consequences.

Proposition 8 Let V be an involution band variety of type i ≥ 2 and let 2 ≤
j ≤ i + 1. Then

(i) Vtw ∧ B∗j = (V ∧ B∗j−2)
tw,

(ii) V ≤ (V ∧ B∗i−2)
tw,

(iii) (V ∧ B∗i−2)
tw ∨ B0

i+2 ≤ Vtw, provided V 6= Breg
i ,

(iv) (B0
i )tw ∧ B∗j = (B0

j−2)
tw.

Proof. The relations (i) and (ii) follow from the above remarks, while (iii) is a
consequence of the monotonicity of the twisting operator and Lemma 2.1 of [6]
(which in this situation yields that B0

i+2 ≤ Vtw). Finally, (iv) follows from (i)
and the equality B0

i ∧B∗j−2 = B0
j−2, which is implied by Proposition 2.2 of [6].

The collected information allows us to draw a rough sketch of the lattice of
subvarieties of B∗. Namely, by Lemma 2.1 of [6] cited above, every involution
band variety V of type i ≥ 0 different from Breg

i is contained in the interval
Γi = [B0

i ,B∗i ]. Therefore, it is essential to consider these intervals. The above
proposition show that the intervals Γj , j < i, serve as a kind of the ‘skeleton’
for the structure of the upper part of Γi (namely, for [(B0

i−2)
tw,B∗i ]). It is the

twisting operator which realizes this lifting.
We finish the note by pointing out another set of important varieties of

involution bands which are obtained by means of twists. But first we need an
auxiliary result.

Lemma 9 For each (involution) band S, S and S/D′ are based on the same
structure (involution) semilattice, that is, S/DS

∼= (S/D′)/DS/D′ .

Proof. Clearly, we consider the mapping φ : S/DS → (S/D′)/DS/D′ defined by
φ(aDS) = (aD′)DS/D′ . It is easy to prove that φ is a surjective ∗-homomorphism
(since the relations D and D′ are ∗-congruneces on any involution band), once
we prove that it is well-defined and injective. In other words, we should verify
that (a, b) ∈ DS if and only if (aD′, bD′) ∈ DS/D′ for all a, b ∈ S.

Obviously, the first of the these conditions is equivalent to a = aba and b =
bab, while the latter becomes aD′ = aD′ ·bD′ ·aD′ = (aba)D′ and bD′ = (bab)D′.
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Hence, the direct implication is immediate. Conversely, let (a, aba), (b, bab) ∈
D′. Then, by Proposition 1, xay = xax(aba)ay = xabay for all x, y ∈ S, and
so, by letting x = y = a, we obtain a = aba. Similarly, we have b = bab, and
the lemma is proved.
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Figure 3. Some varieties of involution bands

Let V be an involution band variety. Define a sequence of varieties twn(V),
n ≥ 0, recursively by tw0(V) = V and twn(V) = (twn−1(V))tw for all n ≥ 1.

Theorem 10 Let X be a nontrivial variety of involution semilattices and let
S ∈ B∗i for some 0 ≤ i < ∞. If i = 2n, then S/D ∈ X if and only if S ∈ twn(X ),
while for i = 2n + 1 we have S/D ∈ X if and only if S ∈ twn(X ∨RB∗).

Consequently, twn(X ) (resp. twn(X ∨RB∗)) is the largest variety V of type
2n (resp. 2n + 1) such that V ∧ SL∗ = X .

Proof. We prove the theorem by induction on n. For n = 0 and i = 0, it suffices
to note that for any (involution) semilattice S, DS = ∆S . On the other hand,
for i = 1, the fact that for a normal involution band S we have S/D ∈ X if and
only if S ∈ X ∨ RB∗ follows from the description of the lattice of all normal
involution band varieties, given in [7], and Propositions 4.3, 4.4 and 4.6 of [6]
(alternatively, the same conclusion can be extracted from Section 7 of [8]).
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Now let S ∈ B∗i for some i ≥ 2. By the above lemma, S/DS ∈ X if and
only if (S/D′)/DS/D′ ∈ X . By the induction hypothesis, the latter condition is
equivalent to S/D′ ∈ twn−1(U), where U is X or X ∨RB∗ depending on whether
i is even or odd, and n = b i

2c. By definition of the twisting operator, this means
that S ∈ (twn−1(U))tw = twn(U), as desired.

By Theorem 3.1 of [6], there are precisely four nontrivial varieties of involu-
tion semilattices: SLreg, SL0, SL′ = SLreg ∨ SL0 (determined by the identity
xx∗y = xx∗y∗) and SL∗. The mentioned Propositions 4.3, 4.4 and 4.6 of [6]
show that if X is any of these varieties, the condition S/D ∈ X determines a
subvariety B∗(X ) of B∗ (and of B∗i , if we are working only with varieties of type
≤ i). These propositions provide both structural and equational descriptions of
B∗i (X ) = B∗(X ) ∧ B∗i , 0 ≤ i ≤ ∞. Thus, the above theorem adds yet another
entry to the list of conditions characterizing these varieties.
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