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Abstract

We introduce1 the separable sets of variables for trees and tree au-
tomata. If a set Y of input variables is inseparable for a tree and an
automaton, then there a non empty family of distributive sets of Y . It is
shown that if a tree t has ”many” inseparable sets with respect to a tree
automaton A, then there is an effective way to reduce the complexity of
A when running on t.

1 Introduction

The consideration that finite automata may be viewed as unary algebras is at-
tributed to J.Büchi and J.Wright [10]. In many papers trees were defined as
terms. Investigations on regular and context-free tree grammars dated back to
the 60-th.
Tree automata are designed in the context of circuit verification and logic pro-
gramming. Since the end of 70’s tree automata have been used as powerful
tools in program verification. There are many results connecting properties of
programs or type systems or rewrite systems with automata [3, 4].
The algebraic theory of terms was created and developed upto the equational
theory in the work of A.Malc’ev, G.Grätzer etc.[1, 7, 5].
The theory of essential variables and separable sets for discrete functions was
created and developed by S.Jablonsky, A.Salomaa, K.Chimev etc.[2, 6, 8]. The
results obtained here are very useful for analysis and synthesis of functional
schemes and circuits.
The present paper is a continuation and generalization of the results in [9] which
are borderline cases of these fields of theoretical computer science and mathe-
matics.

2 Preliminaries

Let F be any finite set, the elements of which are called operation symbols. Let
τ : F → N be a mapping into the non negative integers; for f ∈ F , the number
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τ(f) will denote the arity of the operation symbol f. The pair (F , τ) is called
type or signature. If it is obvious what the set F is, we will write ”type τ”.
The set of symbols of arity p is denoted by Fp. Elements of arity 0, 1, . . . , p
respectively are called constants(nullary), unary,...,p-ary symbols. We assume
that F0 6= ∅.

Definition 2.1 Let X be a finite set of variables, and let τ be a type with the
set of operation symbols F = ∪i≥0Fi = (fi)i∈I . The set Wτ (X) of terms of type
τ with variables from X is the smallest set such that
(i) X ∪ F0 ⊆ Wτ (X);
(ii) if f is n−ary operation symbol and t1, . . . , tn are terms, then the ”string”
f(t1 . . . tn) is a term.

Note that terms are also called trees.
Let t be a term, then the set V ar(t) consisting of these elements of X which
occur in t is called the set of input variables (or variables) for this term.
The depth of a tree t is defined in the following inductive way:
(i) If t ∈ X ∪ F0, then Depth(t) = 0;
(ii) If t = f(t1, . . . , tn), then Depth(t) = max{Depth(t1), . . . , Depth(tn)}+ 1.
If t = f(t1, . . . , tn), then t, t1, . . . , tn are subterms (subtrees) of t and all subtrees
of t1, . . . , tn are subtrees of t, too.
Thus we define a partial order relation in the set of all terms Wτ (X). We denote
by £ the subterm ordering, i.e. we write t £ t′ if t is a subterm of t′. We denote
t ¢ t′ if t £ t′ and t 6= t′. A chain of subterms t1 ¢ t2 ¢ . . . ¢ tk is called strong if
there does not exist a term s such that tj ¢ s¢ tj+1 for some j ∈ {1, . . . , k− 1}.
Let t, t′ ∈ Wτ (X) and t1 £t. We denote by t(t1 ← t′) the term which is obtained
by substituting in t simultaneously t′ for each occurrence of t1 as a subterm of
t.

3 Finite tree automata and separable sets of in-
put variables

Definition 3.1 A finite tree automaton over F and X is a tuple

A = 〈Q,F , X, Qf , ∆〉

where, F and X are sets of operational symbols and variables, Q is a finite set
of states, Qf ⊆ Q is a set of final states and ∆ is the set of transition rules, ∆ =
{∆0, ∆1, . . . , ∆n}, where ∆0 : F0 → Q, and ∆i : Fi ×Qi → Q, i = 1, . . . , n are
mappings. In this paper we will consider complete and deterministic automata
only i.e. ∆i is a total function for each i = 0, 1, . . . , n.

Let Y, Y ⊆ X be a set of variables and γ : Y → F0 be a function which
assigns nullary operation symbols (constants) to each input variable from Y.
The function γ is called assignment on the set of inputs Y. The set of such
assignments will be denoted by Ass(Y,F0).
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Let t ∈ Wτ (X), γ ∈ Ass(Y,F0) and Y = {x1, . . . , xm}. The term t(x1 ←
γ(x1), . . . , xm ← γ(xm)) will be denoted by γ(t). We will definitely assume that
if xi ∈ Y \ V ar(t), then t(xi ← γ(xi)) = t for each γ ∈ Ass(Y,F0).

It is clear that if Y ∩ Z = ∅ , γ1 ∈ Ass(Y,F0) and γ2 ∈ Ass(Z,F0), then
γ1(γ2(t)) = γ2(γ1(t)).

Let γ ∈ Ass(X,F0). The automaton A = 〈Q,F , X, Qf , ∆〉 runs on t and γ.
The state A(γ, t) in which the automaton A = 〈Q,F , X, Qf , ∆〉 reaches the
root of a tree t for a given assignment γ ∈ Ass(X,F0) is defined recursively as
follows:
(i) A(γ, x) = ∆0(γ(x)) for x ∈ X, and A(γ, f0) = ∆0(f0) for f0 ∈ F0;
(ii) A(γ, t) = ∆n(f,A(γ, t1), . . . ,A(γ, t2)) if t = f(t1, . . . , tn).
A term t in Wτ (X) is accepted by an automaton A = 〈Q,F , X,Qf ,∆〉 if there
exists an assignment γ such that when running on t and γ the automaton A
reaches the root of t in a final state q ∈ Qf .

Definition 3.2 An input variable xi ∈ V ar(t) is called essential for t and A if
there exist two assignments γ1, γ2 ∈ Ass(X,F0) such that γ1(xj) = γ2(xj), for
each variable xj , xj 6= xi and A(γ1, t) 6= A(γ2, t).

The set of all essential inputs for t and A is denoted by Ess(t,A). The input
variables from V ar(t) \ Ess(t,A) are called fictive for t and A.

Lemma 1 Let f0 ∈ F0. If xi /∈ Ess(t,A), then

A(γ, t) = A(γ, t(xi ← f0))

for each γ ∈ Ass(X,F0).

Proof. Suppose the lemma is false and let γ0 ∈ Ass(X,F0) be an assign-
ment such that A(γ0, t) 6= A(γ0, t(xi ← f0)). Consider the assignment γ1 ∈
Ass(X,F0) defined by γ1(x) = f0 if x = xi, and γ1(x) = γ0(x) if x 6= xi. Hence
A(γ1, t) = A(γ0, t(xi ← f0)) 6= A(γ0, t), i.e. xi ∈ Ess(t,A). A contradiction.

Lemma 2 Let t, s ∈ Wτ (X). If xi /∈ Ess(t,A) and for each q ∈ Q there exists
f0 ∈ F0 such that ∆0(f0) = q, then

A(γ, t) = A(γ, t(xi ← s))

for each γ ∈ Ass(X,F0).

Proof. Suppose that the lemma is false and let γ0 ∈ Ass(X,F0) be such as-
signment that A(γ0, t) 6= A(γ0, t(xi ← s)). Since t(xi ← s) ∈ Wτ (X) and A is
complete, it follows that there is a state q, q ∈ Q such that A(γ0, s) = q. Let
f0 ∈ F0 be such nullary operation symbol that ∆0(f0) = q. Hence A(γ0, t(xi ←
s)) = A(γ0, t(xi ← f0)). Now, as in Lemma 1 we will obtain xi ∈ Ess(t,A)
which is a contradiction.

Definition 3.3 A set Y ⊆ Ess(t,A) is called separable for t and A w.r.t. a
set Z ⊆ Ess(t,A), with Z ∩ Y = ∅ if there is an assignment γ on Z such that
Y ⊆ Ess(γ(t),A).
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The set of all separable sets for t and A w.r.t. Z will be denoted by Sep(t,A, Z).
When Y is separable for t and A w.r.t. Z = Ess(t,A) \ Y the set Y is called
separable for t and A and the set of such Y will be denoted by Sep(t,A).
When a set of essential inputs is not separable, it will be called inseparable.

Theorem 1 If Y ∈ Sep(t,A), then for every input xi ∈ Y there exists at least
one strong chain xi = tk ¢ tk−1 ¢ . . . ¢ t1 £ t such that xi ∈ Ess(tj ,A) for
j = 1, . . . , k.

The proof of the theorem can be done as Theorem 1 in [9].

Theorem 2 If A(γ, t1) = A(γ, t) for every γ ∈ Ass(X,F0), then Sep(t,A) =
Sep(t1,A).

Proof. Let Y ∈ Sep(t,A) and Y = {x1, . . . , xm}. There is an assignment
γ0 ∈ Ass(Z,F0), Z = X \ Y, such that Y = Ess(γ0(t),A). We have to prove
that Y ⊆ Ess(γ0(t1),A). Let xi ∈ Y be an arbitrary input variable from Y. It
follows that there are two assignments γ1, γ2 ∈ Ass(X,F0) with

∀xj /∈ Y γ1(xj) = γ2(xj) = γ0(xj), ∀xj ∈ Y, j 6= i γ1(xj) = γ2(xj)

and (γ1(xi) 6= γ2(xi) such that A(γ1, t) 6= A(γ2, t). Hence A(γ1, t1) = A(γ1, t) 6=
A(γ2, t) = A(γ2, t1) i.e. xi ∈ Ess(γ0(t1),A). Consequently Sep(t,A) ⊆ Sep(t1,
A). The inclusion Sep(t1,A) ⊆ Sep(t,A) can be proved in a similar way.

The following lemma is obvious.

Lemma 3 If Y /∈ Sep(t,A, Z) and V ⊂ Ess(t,A) with V ∩ Z = ∅, then
Y ∪ V /∈ Sep(t,A, Z).

Further, we want to describe what the relation between separable sets for t
and A and the ”speed of runs” of A on t is?

Consider the following relation in the set of terms:
t `A t′ ⇐⇒
(t′ = t(xi ← f0) where xi /∈ Ess(t,A) and A and f0 ∈ F0)

or

(t′ = t(t2 ← t1) where t1 ¢ t2 £ t and A(γ, t1) = A(γ, t2) for each assignment
γ ∈ Ass(X,F0).)

The transitive closure of `A in Wτ (X) will be denoted by |=A .

Theorem 3 For every two terms t and s if t |=A s, then A(γ, t) = A(γ, s) for
every assignment γ ∈ Ass(X,F0).

Proof. Let t `A s. If Dept(t) = 0, then t = xi or t = f0 for some f0 ∈
F0. Clearly s = t and the theorem is proved in this case. Let Depth(t) ≥
1. At first let s be a term obtained through applying a transformation with
t2 ∈ X. Hence t = f(t1, . . . , tn), with xi /∈ Ess(t,A). Let ti1 , . . . , tik

be all
subterms among t1, . . . , tn for which xi ∈ V ar(tip), p = 1, . . . , k. Then s =
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f(t1, . . . , t′i1 , . . . , t
′
ik

, . . . , tn) = t(ti1 ← t′i1 , . . . , tik
← t′ik

) = t(xi ← f0) where
t′ip

= tip
(xi ← f0), p = 1, . . . , k for some f0 ∈ F0. Hence for all γ1, γ2 ∈

Ass(X,F0) if γ1(xj) = γ2(xj) with j 6= i then A(γ1, t) = A(γ2, t). Let γ ∈
Ass(X,F0) be an arbitrary assignment and let us consider the assignment γ′ ∈
Ass(X,F0) defined as follows: γ′(x) = f0 if x = xi and γ′(x) = γ(x) if x 6= xi.
Thus we have A(γ′, t) = A(γ, t) and A(γ′, t) = A(γ, t(xi ← f0)) = A(γ, s). The
theorem is proved in this case.

Let s be a term obtained through applying a transformation with t2, Depth(t2)
> 0. Hence there are subterms t1 ¢ t2 £ t with A(γ, t1) = A(γ, t2) for every
γ ∈ Ass(X,F0) and s = t(t2 ← t1). Clearly A(γ, s) = A(γ, t(t2 ← t1)) =
A(γ, t(t2 ← t2)) = A(γ, t).

4 Complexity of automata on trees

It is easy to see that if t ¢ s with A(γ, t) = A(γ, s) for each assignment γ ∈
Ass(X,F0), then the results of the runs of A on t and s will be the same, but
the run on t will be ”quicker” than the run on s because of t ¢ s. So, we need a
definition of the ”quickness” of runs of an automaton on a tree.

Let t be a tree and A be an automaton. The set of all states of A in which
A reaches the root of t will be denoted by St(t,A) and st(t,A) = |St(t,A)| is
the number of the elements in St(t,A). Thus q ∈ St(t,A) if and only if there is
an assignment γ ∈ Ass(X,F0) such that A(γ, t) = q.

Definition 4.1 The complexity of A on t denoted by Comp(t,A) is defined in
the following inductive way:
(i) If t = x ∈ X, then Comp(t,A) = |F0|;
(ii) If t = f0 ∈ F0, then Comp(t,A) = 1;
(iii) If t = f(t1, . . . , tn), then

Comp(t,A) =
n∏

j=1

st(tj ,A) +
n∑

i=1

Comp(ti,A).

So, the complexity of A on t presents the number of all calculations of values
of ∆ for all runs of A on t.

It is clear that if t |=A s, then Comp(s,A) ≤ Comp(t,A).
We created (mainly V. Shtrakov) a code of programme which for given tree

t and automaton A calculates Comp(t,A). As an illustration of that algorithm
we give the following example.

Example 4.1 Let A = 〈Q,F , X, Qf , ∆〉 with F0 = {0, 1, 2}, F1 = {f0, f1, f2},
F2 = {g}, F4 = {h}, Q = {q0, q1, q2}, Qf = {q1}, ∆0(i) = qi for i = 0, 1, 2,

∆1(fi, qj) =
{

q1, if i = j
q0, if i 6= j; for i = 0, 1, 2, ∆2(g, qi, qj) = qm, where m =

i.j (mod 3) and ∆4(g, qi, qj , qk, ql) = qm, where m = i + j + k + l (mod 3).
Let us consider the term t = h(g(f0(x1), x2), g(f1(x1), x3), g(f2(x1), x4), x5),
with the tree, given on the Fig.1.
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The subterms of this term are: t1 = g(f0(x1), x2), t2 = g(f1(x1), x3), t3 =
g(f2(x1), x4), t4 = x5, t11 = f0(x1), t12 = x2, t21 = f1(x1), t22 = x3, t31 =
f2(x1), t32 = x4, t111 = x1, t211 = x1, t311 = x1.
Let us calculate Comp(t,A). Clearly,

Comp(t111,A) = Comp(t211,A) = Comp(t311,A) = Comp(t12,A) =
Comp(t22,A) = Comp(t32,A) = Comp(t4,A) = 3.

From fi ∈ F1 and st(x1,A) = 3 it follows that Comp(fi(x1),A) = 6 for
i = 0, 1, 2, i.e. Comp(t11,A) = Comp(t21,A) = Comp(t31,A) = 6, because
St(ti1,A) = {q0, q1} for i = 1, 2, 3 and st(ti1,A) = 2 for i = 1, 2, 3. Analogously,
st(ti2,A) = 3 for i = 1, 2, 3. Thus Comp(ti,A) = 2.3 + 6 + 3 = 15 for i = 1, 2, 3
i.e. Comp(t1,A) = Comp(t2,A) = Comp(t3,A) = 15. It is easy to see that
st(ti,A) = 3 for i = 1, 2, 3, 4.
Hence Comp(t,A) = 3.3.3.3 + 15 + 15 + 15 + 3 = 129.
To light up these calculations let us explain how Comp(t1,A) = 15 is obtained.
We have t1 = g(f0(x1), x2) = g(t11, t12) and assume that we have calculated
Comp(t11,A) = 6 and Comp(t12,A) = 3. The number of states in which A
reaches the root of t11 is 2 because St(t11,A) = {∆1(f0, qi) | i = 0, 1, 2} =
{q0, q1}, analogously St(t12,A) = {∆0(i) | i = 0, 1, 2} = {q0, q1, q2}. Hence
st(t11,A) = 2 and st(t12,A) = 3. Thus to calculate A(γ, t) , γ ∈ Ass(X,F0)
we have to make at most 2.3 = 6 calculations of the ∆’s values. Adding the
complexities of A on t11 and t12, we obtain

Comp(t1,A) = st(t11,A).st(t12,A) + Comp(t11,A) + Comp(t12,A) =

= 2.3 + 6 + 3 = 15.

5 Distributive sets of inseparable sets of inputs

We will consider the case when a set of essential inputs is inseparable. It seems
that if a term has ”many” inseparable sets the runs of A on such a term will be
”quicker”.
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Definition 5.1 Let Y, Z ⊆ Ess(t,A), Y ∩ Z = ∅ and Y /∈ Sep(t,A). The
set Z is called distributive set of Y for t and A if Y 6⊆ Ess(γ(t),A) for every
γ ∈ Ass(Z,F0) and Z is minimal with respect to this property.

The family of all distributive sets of Y will be denoted by Dis(Y, t,A). Note
that the family of distributive sets of Y is non-empty iff Y is not separable.

Theorem 4 If Z ∈ Dis(Y, t,A), then for each proper subsets Z1 and Y1 of Z
and Y it is held that Z1 /∈ Dis(Y1, t,A).

Proof. Let Y1 is a proper subset of Y. Suppose the theorem is false and let Z1

is a proper subset of Z with Z1 ∈ Dis(Y1, t,A). Because of Lemma 3 it follows
that Z1 ∈ Dis(Y, t,A). This contradicts to the minimality of Z as a distributive
set of Y and A.

The next example is a good illustration of how to use distributive sets to
obtain ”quicker” runs of A on t under different assignments.

Example 5.1 Let us try to find a simpler way for running of A on t and
γ ∈ Ass(X,F0) where t and A are as in Example 4.1.

Let Y = {x2, x3, x4}, Z = {x1} and γ ∈ Ass(Z,F0). There are only the
following three possible cases.
a) If γ(x1) = 0, then x3, x4 /∈ Ess(γ(t),A);
b) if γ(x1) = 1, then x2, x4 /∈ Ess(γ(t),A);
c) if γ(x1) = 2, then x2, x3 /∈ Ess(γ(t),A).
Hence Y /∈ Sep(t,A) and Z ∈ Dis(Y, t,A).
Now, we can consider Comp(t,A) and use distributive set Z to obtain simpler
runs of A on t. The fact that Z is a distributive set of Y allows us to distribute
all 243 assignments in three classes Γ0,Γ1,Γ2 according to a),b) and c) i.e.
γ ∈ Γi ⇐⇒ γ(x1) = i. Let γ ∈ Ass(X,F0)∩Γ0. We can apply a transformation
defined as above on the tree γ(t) = h(g(f0(0), x2), g(f1(0), x3), g(f2(0), x4), x5).
By ∆1(fi, qj) = 0 when i 6= j it follows that γ(t) |=A s0, where s0 = h(x2, 0, 0, x5)
(see Fig.2). It is easy to calculate Comp(s0,A) = 17. In an analogous way the
trees si (see Fig.2) when γ ∈ Ass(X,F0) ∩ Γi, i = 1, 2 with Comp(si,A) =
17, i = 1, 2 can be obtained.
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So, we have a very simple procedure to execute the runs of A on t with given
γ ∈ Ass(X,F0). This procedure consists of:
Step 1. Find i, i ∈ {0, 1, 2} such that γ ∈ Γi.
Step 2. Find A(γ, si).

Note that step 1. can be realized by a simple checking γ(x1) = 0|1|2. We can
naturally assume that the complexity of this step equals 3. Thus the complexity
of the whole procedure is 20 and in the general case it is 129.
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This example is a good motivation for future investigations of the inseparable
sets and their distributive sets.

Theorem 5 If Z ∈ Dis(Y, t,A), then for each proper subsets Z1 and Y1 of Z
and Y it is held that Z1 /∈ Dis(Y1, t,A).

Proof. Let Y1 is a proper subset of Y. Suppose the theorem is false and let Z1

is a proper subset of Z with Z1 ∈ Dis(Y1, t,A). Because of Lemma 3 it follows
that Z1 ∈ Dis(Y, t,A). This is a contradiction with the minimality of Z as a
distributor of Y and A.

Definition 5.2 Let M = {M1, . . . , Mm} be a finite family of nonempty sets.
A set M = {z1, . . . , zl} is called representative system for M if M ∩Mi 6= ∅ for
every i ∈ {1, . . . , m} and M is minimal with respect to this property.

Lemma 4 If M is a representative system for M, then the following is true:
(i) For each Mi ∈M there is zj ∈ M with zj ∈ Mi;
(ii) For each zj ∈ M there is Mi ∈M with {zj} = Mi ∩M.

Proof. The statement (i) is obvious. To prove (ii) let us suppose there is
zj ∈ M with {zj} 6= Mi ∩M for every Mi, Mi ∈M.
Hence if zj ∈ Mi, then |Mi ∩M | ≥ 2) for every Mi, Mi ∈M.

This means that M \ {zj} is a representative system for M. A contradiction.

Theorem 6 Let Y = {x1, . . . , xk} /∈ Sep(t,A). If Z = {xk+1, . . . , xm}, k < m
is a representative system for Dis(Y, t,A), then Y ∪ Z ∈ Sep(t,A).

Proof. We will consider the non-trivial case |Y | ≥ 2. Clearly Dis(Y, t,A) 6= ∅.
Let us set V = {xm+1, . . . , xn} = Ess(t,A) \ (Y ∪Z). Since, Z is representative
system for Dis(Y, t,A) it follows that V1 /∈ Dis(Y, t,A) for each V1 ⊆ V and
there is an assignment γ ∈ Ass(V,F0) such that Y ∈ Ess(γ(t),A).
We have to prove that Z ⊂ Ess(γ(t),A). Suppose this is false. Without loss of
generality assume that xk+1 /∈ Ess(γ(t),A).
Let Z1 = {xk+1, xj1 , . . . , xjl

}, jl ≤ n be a distributor of Y for t and A such
that Z1 ∩ Z = {xk+1}. The existence of Z1 follows by Lemma 4. Thus we have
{xj1 , . . . , xjl

} ⊆ V, Ess(γ(t),A)∩{xj1 , . . . , xjl
} = ∅ and Ess(γ(t),A)∩Z1 = ∅.

Let f0 ∈ F0 be an arbitrary nullary operation symbol and γ1 ∈ Ass(Z1,F0) be
an assignment defined as follows:

γ1(x) =
{

f0 if x = xk+1;
γ(x) if x ∈ Z1 ∩ V.

Since (Z1 \ V ) ∩ Ess(γ(t),A) = ∅ it follows that Ess(γ1(t),A) = Ess(γ(t),A).
Consequently Y ⊂ Ess(γ1(t),A) and Z1 /∈ Dis(Y, t,A). This is a contradiction.

There are examples showing that any representative system Z of the family of
distributive sets of Y is a maximal set for which Y ∪ Z ∈ Sep(t,A) i.e. the
Theorem 6 can not be generalized in this direction.
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