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Abstract

Potential surfaces arise in physics. Here we use our own software

[6, 1, 2, 3, 4] for their graphical representation. We also consider their

fundamental coefficients and their Gaussian and mean curvatures’.

1 Introduction

In this paper, we deal with the graphical representation of potential surfaces and
their Gaussian and mean curvatures. We use our own software for geometry and
differential geometry [6, 1, 2, 3, 4]; no commercial software package for computer
graphics is needed.

Many interesting functions in physics, such as surface energy functions, are
real-valued functions depending on the direction in three dimensional space.
They can be represented as surfaces over the unit sphere, so—called potential
surfaces.

2 Potential surfaces

Throughout, we assume that D C IR? is a domain, and surfaces are given by a
parametric representation

Z=2(u') = (' (u'), 2’ ('), 2’ (W) ((u',u?) € D) (1)

where 2/ € C"(D) for j = 1,2,3, that is the component functions x/ have
continuous partial derivatives of order » > 1 on D, and the vectors &y = 0%/0u*
(k = 1,2) satisfy the condition

21 (u?) x Zo(u?) #0 for all (u',u?) € D where &} = —
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(2) ensures the existence of the tangent plane to a surface at each of its points.
If we denote the surface unit normal vectors, the first and second fundamental
coefficients of a surface S given by (1) by

ik (u) = 75 (u’) @ T (u'),
_ 9%#(u?)

ou? ouF
respectively, and write g(u’) = det(g;x(u’)) and L(u’) = det(L;j(u’)) then the
functions K : D —+ IR and H : D — IR with

for j,k = 1,2,

L
K = 7 and H = L1922 —2L12912 + L22g11)

1
24
g

are the Gaussian curvature and the mean curvature of S.
Let D be a subset of the rectangle R = (=7 /2,7/2) x (0,27). Then the part
of the unit sphere S%, in IR ® corresponding to D has a parametric representation

7(u') = (cosu' cosu?, cosu' sinu? sinu') ((u',u?) € D)

where u' and u? are the spherical coordinates of the point Y (u!,u?) with posi-
tion vector §(u',u?). Each vector 7(u',u?) represents a direction in IR*, given
by u' and u%. Let f : D — IR be a function depending on the direction. If, at
each point Y (u?) € S%, we move the distance f(u?) in the direction of the vector
—N(u?), then we obtain a potential surface PS; generated by f; thus potential
surfaces are natural representations over the unit sphere of real-valued func-
tions of two variables from a subset of R. We put h = f + 1; then a parametric
representation for a potential surface PS; is given by

#(u') = h(u?)(cos u! cosu?, cosu' sinu

2

,sinu')  ((u',u?) € D). (3)

Figure 1: Generation of a potential surface
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Figure 2: A potential surface
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Potential surfaces and their graphical representations

As an example we consider the growth of crystals.

Example 1 According to Wulff’s principle [8, 1], the shape of a crystal that

grows under ideal laboratory conditions is uniquely defined by it surface energy

function, o real-valued function that depends on the direction in IR®.

shown in [7] that if the surface energy function is a norm then the shape of the

corresponding crystal is a sphere with respect to the dual norm.

Figure 3: Wulff’s crystals corresponding to the ¢, and £; norms
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3 The first and second fundamental coefficients
and the Gaussian and mean curvature of po-
tential surfaces

In this section we compute the first and second fundamental coefficients and the
Gaussian and mean curvature of potential surfaces given by a parametric repre-
sentation (3). Furthermore, we represent some of these quantities as potential
surfaces by using the corresponding functions as f in h = f + 1.

Omitting u! and u? in the notations, from (3), that is, from & = hg, we
obtain
Ty = hy+ hy1 and Ty = haoyf + hij>
where i, = (—sinu' cosu?, —sinu' sinu?, cosul), i = (—cosu'sinu?, cosu'
cosu?,0), 72 = g2 =1, 72 = cos?ul, 7, e 7> = 0 and Fe i} = %BL;,? =0 (k=
1,2). Thus the first fundamental coefficients are given by
g11 = h? + h2%, g12 = hiha, goo = h2h? cos? u!
and g = h? ((h? 4+ h3) cos® u' + h}).
Furthermore
711 = (— cosu! cosu?, — cosul sinu?, — sinul) = -7,
12 = (sinu! sinu?, — sinu! cos u?,0),
a2 = (— cosu' cosu?, — cosu! cosu?,0),
11 = huf + 2hih + hyi = (b — h)§ + 2,
T2 = hi2y + haifz + haif> + hiji2,
Tz = ho2yf + 2h2y> + hyaz and
T1 X To = hhy(§ X y2) + hha(fh X §) + h2(i1 X ),
hence

Li1y/g =& e (&1 x &) = (hiy — h)h*G e (F1 X §2) + 2hh3i, e (7 X §)
((hi1 = h)h? = 2hhih})F e (G X §a)

and 7 e (i1 X ) = — cosu! imply
L11+/g = hcosu' (h® — hhyy + 2h}).
Next

Li2\/g = T12 ® (F1 X &) = h*hiaf @ (i X §2) + hhyhois ® (1 X §)+
+hhihoy e (F X §2) + hijfiz ® (hha (7 X §2) + hha (1 X §) + h2(§1 X §2))
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—

and iz 8 (¥ X 72) =0, g1z ® (71 x §) = —sinu' and 712 ® (71 X 72) = 0 imply
L12\/§ =h (COS ul (2h1h2 — hhlg) — th sin ul) .
Finally,

L1y\/q = oz @ (B X &) = h’haof ® (J1 X §2) + 2hh37 ® (71 X §)+
+h (hhyifaz @ (F X f2) + hhaiaz ® (1 X ) + B?ifaz @ (i1 X §2))

and 3oz @ (¥ X 2) = cos® u' sinu', gz @ (#h x¥) = 0 and oz ® (71 X ) = cos® u'
imply

Ly>\/g = hcos u! (2h§ — hhay + B2 cos® u! + hhy sinu' cos ul) .

From this, we obtain the second fundamental coefficients L (j,k = 1,2), L
and

L 1
K= 7 and H = %(Lngm —2L15g12 + L22g11).
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Figure 4: The potential surface
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f the function h(u') = |sin2u?| + 1
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Figure 5: The Gaussian curvature of the potential surface in Figure 4
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Figure 6: The mean curvature of the potential surface in Figure 4

Figure 7: The potential surface of h(u’) = sin (exp (0.4(u! + u?))) + 2
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Figure 8: The Gaussian curvature of the potential surface in Figure 7

Figure 9: The mean curvature of the potential surface in Figure 7



54 Eberhard Malkowsky and Vesna Velickovié

Figure 10: The function g of the potential surface in Figure 7
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