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Abstract

The Feynman path integral method plays even more important role in
p-adic and adelic quantum mechanics than in ordinary quantum theory.
p-Adic path integral is defined as a natural generalization of the standard
one. Here1, we give a brief review of our recent investigations on this
subject. In particular, the path integrals for two-dimensional models with
quadratic Lagrangians are evaluated.

1 Introduction

The invention of the path integral [8] is one of the major achievements in theo-
retical physics. Originally developed as a space-time approach to non-relativistic
quantum mechanics, Feynman’s path integrals became very soon of great impor-
tance in quantum electrodynamics. Presently, it is very useful tool and some-
times inevitable ingredient of many modern physical theories (as superstring
theory and quantum cosmology).

During the last 15 years applications of p-adic numbers and adeles have at-
tracted a significant interest, mainly in mathematical and high energy physics
devoted to the Planck scale processes and very early universe [1, 11]. There is
a quite common belief that the usual picture of space-time as a smooth pseudo-
Riemannian manifold should be essentially changed at the Planck scale. Besides
an idea of noncommutativity [2], nonarchimedean space-time is also an attrac-
tive mathematical background for the fundamental physical theory.

There is not p-adic Schrödinger equation. Nevertheless, p-adic generalization
of the Feynman path integration is possible [12, 4], and for one-dimensional
quadratic systems the corresponding propagator is completely determined [5].
During the last few years, besides a few standard and very interesting one-
dimensional models [6], some multidimensional systems have been also treated
by the same technique [7].

The main aim of this paper is to examine two-dimensional p-adic path in-
tegrals and to find the corresponding propagator for the models with quadratic
actions. We restrict ourselves to the systems which classical trajectories are
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represented by analytic functions. During calculations we will see that three- or
higher-dimensional generalization at least in principle is possible but, as in the
real case [9], it is mainly a problem of increasing computational complexity.

2 p-adic numbers and related analysis

Let us recall that all numerical experimental results belong to the field of rational
numbers Q. The completion of this field with respect to the standard norm | |∞
(absolute value) leads to the field of real numbers R = Q∞. According to the
Ostrowski theorem, each non-trivial norm (valuation) on Q is equivalent either
to a p-adic norm (p is a prime number) | |p or to the absolute value function.
Completion of Q with respect to the p-adic norms yields the fields of p-adic
numbers Qp.

Any p-adic number x ∈ Qp can be presented as an expansion [11]

x = xν(x0 + x1p + x2p
2 + · · ·), ν ∈ Z, (1)

where xi = 0, 1, ..., p − 1. p-Adic norm of any term xip
ν+i in (1) is p−(ν+i).

The p-adic norm is the nonarchimedean (ultrametric) one, i.e. |x + y|p ≤
max{|x|p, |y|p} and, as a consequence, there are a lot of exotic features of p-adic
spaces. For example, any point of a disc Bν(a) = {x ∈ Qp : |x− a|p ≤ pν} can
be treated as its center. It also leads to the total disconnectedness of p-adic
spaces.

There is no natural ordering on Qp, but one can define a linear order as
follows: x < y if |x|p < |y|p, or when |x|p = |y|p, there exists an index m ≥ 0
such that following is satisfied: x0 = y0, x1 = y1, · · · , xm−1 = ym−1, xm < ym.
Generally speaking, there are mainly two analyses over Qp. One of them is
connected with map φ : Qp → Qp, and the second one is related to the map
ψ : Qp → C.

In the case of p-adic valued function, derivatives of φ(x) are defined as in the
real case, but using p-adic norm instead of the absolute value. p-Adic valued
definite integrals are defined for analytic functions

φ(t) =
∞∑

n=0

φntn, φn, t ∈ Qp, (2)

as follows: ∫ b

a

φ(t)dt =
∞∑

n=0

φn

n + 1
(bn+1 − an+1). (3)

In the case of mapping Qp → C, standard derivatives are not possible,
and some types of pseudodifferential operators have been introduced [11, 3].
However, there is a well defined integral with the Haar measure. Of a special
importance is Gauss integral
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∫

Qp

χp(αx2 + βx)dx = λp(α)|2α|−1/2
p χp

(
−β2

4α

)
, α 6= 0, (4)

where χp(u) = exp(2πi{u}p) is a p-adic additive character, and {u}p denotes
the fractional part of u ∈ Qp. λv(α) is an arithmetic complex-valued function

λp(0) = 1, (5)

λp(x) =





1, ν = 2k , p 6= 2,(
x0
p

)
, ν = 2k + 1, p ≡ 1(mod 4),

i
(

x0
p

)
ν = 2k + 1, p ≡ 3(mod 4),

(6)

λ2(x) =

{
1√
2
[1 + (−1)x1i], ν = 2k ,

1√
2
(−1)x1+x2 [1 + (−1)x1i], ν = 2k + 1,

(7)

with the following basic properties:

λp(a2α) = λp(α), λp(α)λp(β) = λp(α + β)λp(α−1 + β−1), |λp(α)|∞ = 1. (8)

3 Path integral in ordinary quantum mechanics

According to Feynman’s idea [8], quantum transition from a space-time point
(x′, t′) to another (x′′, t′′) is a superposition of motions along all possible paths
connecting these two points. The corresponding probability amplitude is
〈x′′, t′′|x′, t′〉 =

∑
q e

2πi
h S[q], where S[q] is the action along the corresponding tra-

jectory q. Dynamical evolution of any quantum-mechanical system, described
by a wave function ψ(x, t), is given by

ψ(x′′, t′′) =
∫

Q∞
K(x′′, t′′; x′, t′)ψ(x′, t′)dx′, (9)

where K(x′′, t′′;x′, t′) is a kernel of the unitary evolution operator U(t′′, t′).
In Feynman’s formulation of quantum mechanics, the transition amplitude

K(x′′, t′′;x′, t′) was postulated to be the path integral

K(x′′, t′′; x′, t′) =
∫ (x′′,t′′)

(x′,t′)
exp

(
2πi

h

∫ t′′

t′
L(q, q̇, t)dt

)
Dq, (10)

where x′′ = q(t′′) and x′ = q(t′), and h is the Planck constant. K(x′′, t′′;x′, t′)
is also called the quantum-mechanical propagator. One can easily deduce the
following three general properties:

K(x′′, t′′;x′, t′) =
∫

Q∞
K(x′′, t′′; x, t)K(x, t; x′, t′)dx, (11)
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∫

Q∞
K∗(x′′, t′′; x′, t′)K(z, t′′;x′, t′)dx′ = δ(x′′ − z), (12)

K(x′′, t; x′, t) = δ(x′′ − x′). (13)

For a classical action S̄(x′′, t′′;x′, t′), which is a polynomial quadratic in
x′′ and x′, it has been shown [10] that in ordinary one-dimensional quantum
mechanics

K(x′′, t′′; x′, t′) =
(

i

h

∂2S̄

∂x′′∂x′

) 1
2

exp
(

2πi

h
S̄(x′′, t′′; x′, t′)

)
. (14)

It can be rewritten in the form

K∞(x′′, t′′; x′, t′) = λ∞

(
− 1

2h

∂2S̄

∂x′′∂x′

) ∣∣∣∣
1
h

∂2S̄

∂x′′∂x′

∣∣∣∣
1/2

∞
χ∞

(
− 1

h
S̄

)
, (15)

where
√

ia =
√

i sign a |a|∞ = |a|1/2
∞ λ∞(−a). In (15), χ∞(a) = exp(−2πia)

is an additive character of the field of real numbers R. D-dimensional gener-
alization of the transition amplitude for a quadratic classical action contains a
determinant:

K∞(x′′, t′′; x′, t′) = λ∞

(
det

(
− 1

2h

∂2S̄

∂x′′a∂x′b

)) ∣∣∣∣det
(
− 1

h

∂2S̄

∂x′′a∂x′b

)∣∣∣∣
1/2

∞

×χ∞

(
− 1

h
S̄(x′′, t′′;x′, t′)

)
, (16)

where we defined

λ∞

(
det

(
− 1

2h

∂2S̄

∂x′′a∂x′b

))
=

√
1
iD

sign det
(
− 1

2h

∂2S̄

∂x′′a∂x′b

)
, (17)

and x = (xa), a = 1, 2, · · · , D. Defining λ∞(0) = 1 one can easily show that
this λ∞-function satisfies all properties stated for λp in (8).

4 Path integral in p-adic quantum mechanics

In p-adic quantum mechanics does not exist dynamical differential equation of
the Schrödinger type and p-adic quantum dynamics is defined by the kernel
Kp(x′′, t′′; x′, t′) of the evolution operator:

ψp(x′′, t′′) =
∫

Qp

Kp(x′′, t′′; x′, t′)ψp(x′, t′)dx′. (18)

We evaluate a general expression for this kernel as in standard quantum mechan-
ics. All general properties which hold for the kernel K(x′′, t′′;x′, t′) in standard
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quantum mechanics also hold in p-adic case, where integration in (11) and (12)
is now over Qp.

p-Adic generalization of (10) for a harmonic oscillator was done in [12] start-
ing from

Kp(x′′, t′′;x′, t′) =
∫ (x′′,t′′)

(x′,t′)
χp

(
− 1

h

∫ t′′

t′
L(q, q̇, t)dt

)∏
t

dq(t) (19)

(h ∈ Q and q, t ∈ Qp). In (19), dq(t) is the Haar measure and p-adic path
integral is the limit of a multiple Haar integral. This approach has been also
used in [4].

We extend here our previous one-dimensional investigations of p-adic path
integrals [5] to the two-dimensional case

Kp(x′′, y′′, t′′;x′, y′, t′) =
∫ (x′′,y′′,t′′)

(x′,y′,t′)
χp

(
−

∫ t′′

t′
L(q1, q2, q̇1, q̇2, t)dt

)
Dq1Dq2,

(20)
(h = 1) for a system which Lagrangian is a quadratic polynomial with respect
to qi and q̇i, i = 1, 2. Classical action is related to the classical p-adic trajectory
q̄i(t), i.e.

S[q̄1, q̄2] = S̄(x′′, y′′, t′′;x′, y′, t′) =
∫ t′′

t′
L(q̄1, q̄2, ˙̄q1, ˙̄q2, t)dt, (21)

with
x′′ = q̄1(t′′), y′′ = q̄2(t′′), x′ = q̄1(t′), y′ = q̄2(t′). (22)

We regard any p-adic quantum path qi = qi(t) as a deformation of the classical
p-adic trajectory: qi(t) = q̄i(t) + hi(t) with conditions hi(t′′) = hi(t′) = 0.

Using the Taylor expansion of S[q1, q2] around the classical path q̄i(t) (with
δS[q̄1, q̄2] = 0), we obtain p-adic analogue of the Feynman theorem, namely

Kp(x′′, y′′, t′′; x′, y′, t′) = χp (−S[q̄1, q̄2])

×
∫ (0,0,t′′)

(0,0,t′)
χp

(
−1

2

∫ t′′

t′

(
h1

∂

∂q1
+h2

∂

∂q2
+ḣ1

∂

∂q̇1
+ḣ2

∂

∂q̇2

)2

Ldt

)
Dh1Dh2.

(23)
Since expression of the above integral depends only on t′′ and t′, we denote it
Np(t′′, t′), i.e.

Kp(x′′, y′′, t′′;x′, y′, t′) = Np(t′′, t′)χp(−S̄(x′′, y′′, t′′; x′, y′, t′)). (24)

Applying property (12) to the kernel (24), performing expansion of the clas-
sical action around the classical path , integrating over x′ and y′ and using
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standard properties of the δp function, we obtain

|Np(t′′, t′)|∞ =

∣∣∣∣∣det

(
− ∂2S̄

∂x′∂x′′ − ∂2S̄
∂x′∂y′′

− ∂2S̄
∂y′∂x′′ − ∂2S̄

∂y′∂y′′

)∣∣∣∣∣

1/2

p

. (25)

Since the factor Np(t′′, t′) can be presented as Np(t′′, t′) = Ap(t′′, t′)|Np(t′′, t′)|∞
we have to investigate the form of the factor Ap(t′′, t′) in two-dimensional case.

The general form of the quadratic Lagrangian for a system with two degrees
of freedom can be expressed in the following form:

L(q1, q2, q̇1, q̇2, t)

= L0 +
∂L0

∂q1
q1 +

∂L0

∂q2
q2 +

∂L0

∂q̇1
q̇1 +

∂L0

∂q̇2
q̇2 +

1
2

∂2L0

∂q2
1

q2
1 +

∂2L0

∂q1∂q̇1
q1q̇1

+
1
2

∂2L0

∂q̇2
1

q̇2
1 +

1
2

∂2L0

∂q2
2

q2
2 +

∂2L0

∂q2∂q̇2
q2q̇2 +

1
2

∂2L0

∂q̇2
2

q̇2
2

+
∂2L0

∂q1∂q2
q1q2 +

∂2L0

∂q1∂q̇2
q1q̇2 +

∂2L0

∂q̇1∂q2
q̇1q2 +

∂2L0

∂q̇1∂q̇2
q̇1q̇2. (26)

The general solution of the classical equations of motion

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, 2, (27)

can be expressed as

q1(t) =
4∑

j=1

Cifi(t) + X(t), q2(t) =
4∑

j=1

Cigi(t) + Y (t) (28)

where X(t) and Y (t) are two particular solutions of the two coupled inhomo-
geneous differential equations (27). Ci are four constants of integration and
fi are four linearly independent particular solutions of the homogeneous linear
resolvent equation of the fourth order for q1(t). When solutions fi are chosen
the corresponding g-functions are uniquely determined as a consequence of the
coupling between the equations (27). Functions fi, gi, X, Y are some analytic
functions of time. The classical path is given by

x(t) =
4∑

j=1

Cj(t′′, t′)fj(t) + X(t), y(t) =
4∑

j=1

Cj(t′′, t′)gj(t) + Y (t). (29)

Determination of the constants of integration from the conditions x′′ = x(t′′),
x′ = x(t′), y′′ = y(t′′), y′ = y(t′), gives

Cj(t′′, t′) =
1

∆(t′′, t′)
([x′ −X(t′)]∆1j(t′′, t′) + [x′′ −X(t′′)]∆2j(t′′, t′))
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+
1

∆(t′′, t′)
([y′ − Y (t′)]∆3j(t′′, t′) + [y′′ − Y (t′′)]∆4j(t′′, t′)) , (30)

with determinant

∆(t′′, t′) =

∣∣∣∣∣∣∣∣

f ′1 f ′2 f ′3 f ′4
f ′′1 f ′′2 f ′′3 f ′′4
g′1 g′2 g′3 g′4
g′′1 g′′2 g′′3 g′′4

∣∣∣∣∣∣∣∣
, (31)

and ∆jk(t′′, t′) represents the ”algebraic cofactor” of the element in the jth row
and kth column of ∆(t′′, t′).

Due to the equations of motion (27) and the expansion of the Lagrangian
(26), we get

S̄(x′′, y′′, t′′; x′, y′, t′) =
∫ t′′

t′
L(q1, q2, q̇1, q̇2, t)dt

=
1
2

[
∂2L0

∂q̇2
1

ẋx +
∂2L0

∂q̇1∂q̇2
ẏx +

∂2L0

∂q1∂q̇1
x2 +

∂2L0

∂q2∂q̇1
xy

]t′′

t′

+
1
2

[
∂2L0

∂q̇2
2

ẏy +
∂2L0

∂q̇1∂q̇2
ẋy +

∂2L0

∂q2∂q̇2
y2 +

∂2L0

∂q1∂q̇2
xy

]t′′

t′
+ Slin(x′′, t′′;x′, t′).

(32)
After substitution of (29) for x, y, ẋ and ẏ into (32), we obtain expressions
for the partial derivatives of the classical action with respect to its arguments
x′, y′, x′′, y′′.

We now apply property of the form (11) to the kernel (24) and perform the
corresponding Gauss integration. At the end we derive the phase

Ap(t′′, t′) = λp

(
det

(
− 1

2
∂2S̄

∂x′∂x′′ − 1
2

∂2S̄
∂x′∂y′′

− 1
2

∂2S̄
∂y′∂x′′ − 1

2
∂2S̄

∂y′∂y′′

))
. (33)

Finally, we obtain that the propagator in two dimensional p-adic case is

Kp(x′′, y′′, t′′; x′, y′, t′) = λp

(
det

(
− 1

2
∂2S̄

∂x′∂x′′ − 1
2

∂2S̄
∂x′∂y′′

− 1
2

∂2S̄
∂y′∂x′′ − 1

2
∂2S̄

∂y′∂y′′

))

×
∣∣∣∣∣det

(
− ∂2S̄

∂x′∂x′′ − ∂2S̄
∂x′∂y′′

− ∂2S̄
∂y′∂x′′ − ∂2S̄

∂y′∂y′′

)∣∣∣∣∣

1/2

p

χp

(−S̄(x′′, y′′, t′′;x′, y′, t′)
)
. (34)

Note that obtained p-adic result (34) has the same form as (16) in the real
case. It is natural to expect that also higher-dimensional p-adic propagator will
maintain this form.
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