
Reverse Polish notation in constructing the
algorithm for polygon triangulation

Predrag V. Krtolica,
Predrag S. Stanimirović and Rade Stanojević

Abstract

The reverse Polish notation properties are used in the construction
of the algorithms for the polygon triangulation. The formal grammar
method is “translated” to the arithmetic expression field enabling appli-
cation of the reverse Polish notation method. The result of this approach
is a relatively simple algorithm for polygon triangulation1.

1 Introduction and Preliminaries

The triangulation of a convex polygon is the following problem: for a given
polygon find the number of possible splittings on triangles by its diagonals
without gaps and overlaps of these splittings. This is the classical problem
solved so far in a few ways.

One solution from [4] uses a context-free grammar with productions:

S → aSS, S → b, (1)

where a and b are terminals, and S a non-terminal symbol.
The triangulation of polygon is based on the following principles:

(a) The non-terminal S represents an oriented topological segment, named
potential .

(b) The replacement S → aSS means the replacement of the potential seg-
ment S by the triangle aSS, consisting of its real edge a with defined
orientation and potential edges S, being the edge of the polygon which is
about to be defined.

(c) The replacement S → b means replacing the potential edge S with the
real edge b.

1Presented at the IMC “Filomat 2001”, Nǐs,August 26–30, 2001
2000 Mathematics Subject Classification: 68Q40
Keywords: Reverse Polish notation, polygon triangulation, formal grammars

25



26 Predrag Krtolica, Predrag Stanimirović and Rade Stanojević

If we apply n− 2 times the first production in (1) and then we apply n− 1
times the second production in (1), we get one triangulation of the n-gon.

However, in [4] there is no algorithm suggested for implementation of de-
scribed approach. Algorithm proposed here presents detailed implementation
of the formal grammar approach. Being inspired by the method described in [4],
we replace the first grammar rule in (1) and use the following rules generating
the arithmetic expression in the reverse Polish notation.

S → SS + (1.1) S → b (1.2)
In this way, we switch on arithmetic expressions. Similar idea is found in [3],

where an algorithm, based on the matrix multiplication and corresponding parse
trees, is presented. But, this algorithm needs to operate with data structures
which are more complex than in the case of our algorithm. As we shall see, our
algorithm needs no more than one string of characters, one array of integers
and one matrix to store particular triangulation, and corresponding processing
is relatively simple.

Before we start with the algorithm construction, let us expose some of the
notations concerning the reverse Polish notation method based on the properties
investigated in [5]. Note that the expression in the reverse Polish notation is
stored in the array postfix, where postfix[i], for each i ≥ 0, is a string which
denotes an expression element, i.e. a variable, a constant, or an operator.

Definition 1.1 The grasp of the element postfix[i] is the number of its preced-
ing elements which form operand(s) of the element postfix[i]. We denote the
grasp of the element postfix[i] by GR(postfix[i]).

Definition 1.2 The grasped elements of the operator postfix[i] are the grasp
left preceding elements in the array postfix which form operand(s) of the op-
erator postfix[i]. The index of the most left element among them is called the
left grasp bound.

Definition 1.3 The element postfix[i] is called the main element or head for
the expression formed by postfix[i] and its grasped elements.

In the second section we investigate a bijection Fn : Pn 7→ Tn from the subset
of the expressions, made by consecutive application of the rule (1.1) n−2 times
and the rule (1.2) n − 1 times, to the set of an n-gon triangulations. In the
third section we construct an algorithm for the polygon triangulation, using the
properties of the reverse Polish notation and the results of the second section.

2 Arithmetical Expressions and Triangulations

Since we replace the production S → aSS by production (1.1), in the corre-
sponding triangle we replace the real side a by the real side +, keeping the
orientation. Sign + can be considered as the arithmetic operator, with two S’s
as its operands.



Reverse Polish notation in constructing the algorithm for polygon triangulation 27

Using this correspondence, for every n ≥ 3 we can consider the mapping
Fn : Rn 7→ Tn, whose domain is the set of expressions made by the consecutive
application of the rule (1.1) n− 2 times and the rule (1.2) n− 1 times, and the
range is the set of an n-gon triangulations. It is not difficult to verify that some
elements from Rn could be derived in multiple ways. In the following lemma
we get unique characterization for each element in Rn.

Beside the known notations (see, e.g. [6]), by {b,+}∗p,q we denote the sub-
set of the closure set {b,+}∗ consisting of p appearances of the sign b and q
appearances of the sign +. In the boundary case, we have {b,+}∗0,0 = {ε}.
Lemma 2.1 An arbitrary element rn ∈ Rn, corresponding to a particular tri-
angulation of n-sided polygon, is uniquely determined by the following two con-
ditions:

(C1) It possesses the form
rn = bbα+, α ∈ {b,+}∗n−3,n−3,

(C2) Each initial part of the expression rn (the substring of consecutive char-
acters which start from the first character) must be of the form

{b,+}∗p,q p > q, p = 1, . . . , n− 1, q = 1, . . . , n− 2.

Proof. We use the induction by n. For n = 3 the expression bb+ corresponds
to a triangle, and it satisfies the conditions (C1) and (C2). An arbitrary (k+1)-
gon triangulation is derived by replacing an adequate side of a triangle in the
corresponding k-gon triangulation with a triangle. Consider the expressions

bb+, bbαbβ+,

α ∈ {b,+}∗pα,qα
, β ∈ {b,+}∗pβ ,qβ

, pα + pβ =n−4, qα+qβ =n−3
(2.1)

which satisfy condition (C2) and correspond to any k-gon triangulation. Each
of these expressions satisfies (C1). Then, the corresponding (k + 1)-gon trian-
gulation is determined by one of the following expressions

bbb++, bb+b+, bbb + αbβ+, bb + bαbβ+, bbαbb+β+, (2.2)

which satisfy (C2) and

α ∈ {b,+}∗pα,qα
, β ∈ {b,+}∗pβ ,qβ

, pα+pβ =n−4, qα+qβ =n−3.

Each of the expressions from (2.2) is uniquely determined. Since the following
transformations are valid

bbb++ = bbγ+, γ = b+ ∈ {b,+}∗1,1

bb+b+ = bbδ+, δ = +b ∈ {b, +}∗1,1

{bbb + αbβ+, bb + bαbβ+, bbαbb+β+, α ∈ {b,+}∗pα,qα
, β ∈ {b,+}∗pβ ,qβ

,

pα + pβ =n−4, qα + qβ =n−3} ={bbγ+, γ∈{b, +}∗n−2,n−2}



28 Predrag Krtolica, Predrag Stanimirović and Rade Stanojević

we conclude that these expressions satisfy the condition (C1), too. Using the
same transformations and the inductive hypothesis we can prove that this ex-
pression satisfies also the condition (C2).

By Pn we denote the set of expressions generated by the grammar rules (1.1),
(1.2) which satisfy conditions (C1) and (C2).

Corolarry 2.1 The grasp of the head element in the expression corresponding
to a particular triangulation of an n-sided polygon is 2n− 4. The head element
has n− 1 signs b and n− 3 signs + as its grasped elements, and the initial part
of the grasped elements is of the form

bb{b,+}∗p,q, p > q, p = 1, . . . , n− 3, q = 1, . . . , n− 3.

Proof. From Lemma 2.1 it follows that the length of the expression from Pn cor-
responding to any triangulation of the polygon with n angles is 2n−3, possesses
the form bb{b,+}∗n−3,n−3, and each its initial part is of the form bb{b, +}∗p,q,
p > q, p = 1, . . . , n − 3, q = 1, . . . , n − 3. Then, the proof is obvious from
Definition 1.1 and Definition 1.3.

Lemma 2.2 The mapping Fn : Pn 7→ Tn is well defined, one-to-one and onto
for any n ≥ 3.

Proof. Firstly, we shall prove by the induction that the mappings Fn, n ≥ 3,
are well defined. For n = 3, the unique expression bb+ corresponds to the unique
and trivial triangulation of a triangle.

In the case n = k + 1, consider an arbitrary expression from Pk+1 corre-
sponding to an expression form (2.2). If in the expression under the consider-
ation we replace the appearance of the substring bb+ by b (using the opposite
directions in the rules (1.2) and (1.1)), then we get one of the expressions from
(2.1) belonging to Pk. By the inductive hypothesis it corresponds to the unique
triangulation of the k-gon. But, returning bb+ on the previous place, we get
the starting expression (2.2) making an additional triangle on the edge of the
k-gon which corresponds to the transformed b. In this way we get one unique
triangulation of (k + 1)-gon.

Similarly, we can prove by induction that the mapping Fn is one-to-one.
In order to prove that the mapping Fn is onto, we will construct an effective

procedure to get an expression from Pn starting from a given triangulation.
Suppose that we have one triangulation with oriented edges and diagonals. To
every diagonal and to edge AB assign the + sign and to the rest of edges
assign the b sign. Observe two edges which define one triangle with edge AB.
Denote the incoming edge sign by L and outgoing edge sign by R. Generally,
the needed expression has the form L + R. If L or R is equal to + sign, it
should be surrounded by the parenthesis and the algorithm recursively applied
on it. When we complete the recursion, transform the obtained expression to
the reverse Polish form which is obviously the element of the set Pn.



Reverse Polish notation in constructing the algorithm for polygon triangulation 29

3 The Construction of the Algorithm

Definition 3.1 By the non-commutative sum of two integers a and b, denoted
by a⊕ b, we assume the usual sum a + b, but not b + a.

Definition 3.2 By the multilevel decomposition of an even integer n we assume
its presentation in the form of the non-commutative sum of odd summands not
higher than 3, made by using the following rules:

(1) Express the even integer n as a non-commutative sum of two odd integers.

(2) In every sum continue to decompose those summands greater than 3, but
decreasing by 1 every such summand before the further decomposition. The
summand a which is decreased by one before the further decomposition
will be denoted in the multilevel decomposition by a+. The value of this
expression is a + 1.

Theorem 3.1 There is a bijection between the set Tn of different triangulations
of the given n-gon and the set Mn of different multilevel decompositions of the
number 2n− 4.

Proof. We prove the existence of the bijection between the sets Pn and Mn.
Consider the expression bbα+, α ∈ {b,+}∗ from Pn corresponding to any n-gon
triangulation. From the Corollary 2.1 the grasp of its head + is 2n−4. This is an
even number, so the lengths of its arguments arg1 and arg2 must be both even
or both odd. But, they cannot be even numbers, because the least length of an
argument is always equal to 1 (for argument S, i. e. b after the transformation
S → b), and any longer argument is made by the rule (1.1) which increases its
length by two.

Observe the heads op1 and op2 of arguments arg1 and arg2. In the case
GR(op1) = 1 or GR(op1) = 3 and GR(op2) > 3, the grasp of the head can be
expressed as

2n− 4 = GR(op1)⊕ (1 + GR(op2)) = GR(op1)⊕ (GR(op2))+.
This gives us multilevel decompositions

2n− 4 = 1⊕ (2n− 6)+ and 2n− 4 = 3⊕ (2n− 8)+,
respectively.

Similarly, for GR(op1) > 3 and GR(op2) = 1 or GR(op2) = 3, we get
2n− 4 = (1 + GR(op1))⊕GR(op2) = (GR(op1))+ ⊕GR(op2).

Respectively, we can write
2n− 4 = (2n− 6)+ ⊕ 1 and 2n− 4 = (2n− 8)+ ⊕ 3.

In the case GR(op1) = k1 and GR(op2) = k2, k1, k2 ∈ {5, 7, . . .}, k1 + k2 =
2n− 4− 2, we use

2n− 4 = (GR(op1))+ ⊕ (GR(op2))+ = (k1)+ ⊕ (k2)+
and apply further decompositions on k1 and k2.

Finally, it is clear that we must go on with the decomposition until we get
arguments no longer than 3, because they correspond to one triangle (bb+).

Conversely, when we have a multilevel decomposition of 2n− 4, it is trivial
to get the expression from the set Pn, corresponding to the n-gon triangulation.

The proof can be completed using Lemma 2.2.



30 Predrag Krtolica, Predrag Stanimirović and Rade Stanojević

Example 3.1 In the case of the pentagon triangulation, the number 2n−4 = 6
can be expressed as a non-commutative sum of two odd integers in three different
ways: 1 ⊕ 5 = 6, 3 ⊕ 3 = 6, 5 ⊕ 1 = 6. In the first and third sum there is one
summand greater than 3. We should decompose them decreasing their values for
1. All possibilities are summarized in Table 3.1.

Table 3.1.

Multilevel decomposition Derivation of corresponding expression from P5

1⊕ (1⊕ 3)+ = 6 S → SS+ → SSS++ → SSSS+++ → bbbb+++

1⊕ (3⊕ 1)+ = 6 S → SS+ → SSS++ → SSS+ S++ → bbb+ b++

3⊕ 3 = 6 S → SS+ → SSS++ → SS+ SS++ → bb+ bb++

(1⊕ 3)+ ⊕ 1 = 6 S → SS+ → SS+ S+ → SS+ S+ S+ → bb+ b+ b+

(3⊕ 1)+ ⊕ 1 = 6 S → SS+ → SS+ S+ → SSS++S+ → bbb++b+

Algorithm 3.1.
Regarding to Theorem 3.1, on the basis of one multilevel decomposition we

could get one triangulation. At the first level we decompose 2n − 4 on two
odd summands. For every summand higher than 3 we should continue with its
decomposition.

We start from a single triangle denoting and recording its nodes as A = 1,
B = 2, and C = 3 (keeping the triangle orientation). During the decomposi-
tion the current triangle nodes A, B, and C change their values. Trailing one
“path” of decomposition we get the corresponding triangulation in the following
way. If we decompose the right summand, then this corresponds to the further
transformation of right S from SS+ or to the further transformation of edge
(B, C). In this case, the node A becomes the former node B, the node B be-
comes the former node C, and we introduce a new node C with value which is
for 1 greater than minimal value among former nodes B and C. Further, any
node into so far found triangles with value greater than or equal to the value
of newly introduced node should be increased for 1. If we decompose the left
summand, then this corresponds to the further transformation of left S from
SS+ or to the further transformation of edge (C, A). In this case, the node A
becomes the former node C, the node B becomes the former node A, and we
introduce a new node C in the same manner as in the previous case. But, if
some of the nodes C or A have the value 1, we introduce a new node C with
the value which is for 1 greater than the value of maximal node among former
nodes A and C.

We should generate all postfix expressions corresponding to the particular
triangulations, and then we shall get one triangulation for each of these expres-
sions. All expressions from the set Pn could be generated using backtracking
method. We start from the highest allowed expression in the lexicographic sense.
This is the expression Sn−1 +n−2 . In every further step we find the first allowed
expression lexicographically less than the previous found expression. In this
way we could find all allowed expressions from Pn. Having the generated set Pn

we use the grasp of the operator to “reconstruct” the multilevel decomposition.



Reverse Polish notation in constructing the algorithm for polygon triangulation 31

Every grasp greater then two indicates a compound argument, i.e. further de-
composition of the integer. We need to know which of the arguments should be
decomposed (right or left or both).

For every expression from Pn we must calculate the grasps of its elements. In
[5] there is an algorithm for recursive grasp calculation. But, in this case we have
only one kind of the operator and it is easy to calculate grasp non-recursively,
speeding up our algorithm.

In the following table we present behavior of this algorithm.

Table 3.2.

n # of different triangulations Processing time [s]
13 58786 2
14 208012 11
15 742900 48
16 2674440 195
17 9694845 790
18 35357670 3197

From Table 3.2. we can conclude that complexity of Algorithm 3.2 linearly
depends on n. This observation is formally expressed in the following theorem.

Theorem 3.2 Number of needed recursions to generate one particular triangu-
lation on an n-gon is equal to n− 2.

Proof. From Corollary 2.1 we have that grasp of the corresponding expression
from Pn is 2n − 4. By other words, we want to prove that we need twice less
recursions. For n = 3 grasp of the corresponding expression is two and we
need only one function call to generate the unique triangulation of the triangle.
Suppose that claim is valid for every polygon with k < n nodes and consider
an n-gon. If l1 and l2 are the lengths of the arguments for the head of the
corresponding expression we have that l1 + l2 = 2n−4. To complete the needed
recursions for these arguments (which correspond to the polygons with less
then n nodes) we need (l1 − 1)/2 = gr1/2 and (l2 − 1)/2 = gr2/2 recursions
respectively, where gr1 and gr2 are the corresponding grasps. In addition, we
need additional call to process these two arguments. So, this gives

gr1

2
+

gr2

2
+ 1 =

gr1 + gr2 + 2
2

=
l1 + l2

2
=

2n− 4
2

= n− 2

recursive calls to complete one triangulation corresponding to an n-gon.

Example 3.2 Let us illustrate Algorithm 3.1 for n = 5 and the decomposition
“path” 6 = 1⊕ 5 = 1⊕ (1⊕ 3)+.



32 Predrag Krtolica, Predrag Stanimirović and Rade Stanojević

Fig. 3.1

Fig. 3.2

Fig. 3.3

4 Conclusion

Starting from the triangulation strategy based on the formal grammar from [4]
and using the arithmetic expressions in the reverse Polish notation, we get an
relatively simple algorithm for polygon triangulation. Similar idea is found in [3],
where an algorithm, based on the matrix multiplication and corresponding parse
trees, is presented. But, this algorithm needs to operate with data structures
which are more complex than in the case of our algorithm.

The reader should be aware that our intention was not to present revolution-
ary better algorithm for polygon triangulation. The problem of convex polygon
triangulation is old and solved so far in many ways (see, for example, [1], [2])
and it is known that it can be done in linear time. Our main goal is to show



Reverse Polish notation in constructing the algorithm for polygon triangulation 33

how to successfully apply reverse Polish method for the symbolic computation
in this area.

References

[1] B. Chazelle, Triangulation a simple polygon in linear time, Discrete Comput.
Geom. 6 (1991), 485-524.

[2] B. Chazelle and L. Palios, Decomposition Algorithms in Geometry, Algebraic
Geometry and its Application (ed. Ch. L. Bajaj), Springer-Verlag New York,
Inc., (1994), pp. 419–447.

[3] T. H. Corman, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms,
MIT Press, Cambridge, Massachusetts, London, England, (1990).

[4] M. Kross and A. Lentin, Notions sur les Grammaries Formelles, Gauthier-
Villars, 1967.

[5] P. V. Krtolica and P. S. Stanimirović, On some properties of reverse Polish
notation, FILOMAT, 13 (1999), 157-172.

[6] J.-P. Tremblay and P. G. Sorenson, The Theory and Practice of Compiler
Writing, McGraw-Hill Book Company, New York (1985).

Faculty of Science and Mathematics, University of Nǐs,
Vǐsegradska 33, 18000 Nǐs
krca@pmf.pmf.ni.ac.yu, pecko@pmf.pmf.ni.ac.yu, rrr@eunet.yu


