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Abstract

The simple nonlinear models of autoregressive and moving average
structure are analyzed in the paper1. In this paper we obtain some infor-
mation on distributions of random parameters of two models.

1 An autoregressive process

In this section we shall deal with the following model for a stationary sequence

{Xt}, t ∈ {0,±1,±2, . . .} :

Xt = AXt−1 + Bξt (1)

where A and B are random coefficients with distributions

A :
(

α β γ
p r q − r

)

B :
(

0 1
q p

)
.

p, q, r are probabilities with p+q = 1, 0 < α < β < γ < 1 and ξt are independent
identically distributed random variables.

We assume A is independent of B, A, B are independent of Xt and A,B are
independent of ξt, all t. We also assume Xt is independent of ξs, for all s > t.

To derive moments of Xt from model (1):

Xt+1 =





αXt, w.p.pq
βXt, w.p.rq
γXt, w.p.(q − r)q
αXt + ξt+1, w.p.p2

βXt + ξt+1, w.p.rp
γXt + ξt+1, w.p.(q − r)p

(2)

we use the Laplace transforms
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Lx(s) = E (exp(−sX)) ,

Lξ(s) = E (exp(−sξ)) .

Transforming both sides of (2) gives:

Lx(s) = pqLx(αs) + rqLx(βs) + (q − r)qLx(γs) + p2Lx(αs)Lξ(s) + (3)
+ rpLx(βs)Lξ(s) + (q − r)pLx(γs)Lξ(s) ,

and from (3) follows

EX = −L′X(0) =
pEξ

1− pα− rβ − (q − r)γ
,

EX2 = L′′X(0) =
2pEξEX(pα + rβ + (q − r)γ) + pEξ2

1− pα2 − rβ2 − (q − r)γ2
.

The method of moments is quite complicated for estimating unknown pa-
rameters p, q, r and we shall estimate p, q and r using the method of maximum
likelihood.

For model (2) we can consider the conditional probability:

ψ(s|st) = P (Xt+1 < s|st ≤ Xt < st + h)

and the conditional density given by:

g(s|st) =
d

ds
P (Xt+1 < s|Xt = st) =

= pqδ(s− αst) + rqδ(s− βst) + (q − r)qδ(s− γst) +
+ p2gξ(s− αst)H(s− αst) + rpgξ(s− βst)H(s− βst) +
+ (q − r)pgξ(s− γst)H(s− γst)

when h → 0.
δ(.) is the Dirac delta function, H(.) is the Heaviside function defined by:

H(0)(s− αst) =
{

1, s = αst

0, s 6= αst
,

H(s− αst) = H(0,∞)(s− αst) =
{

1, s > αst

0, s ≤ αst
,

and gξ(.) is the density of random variables ξt for all t.
An alternative form for the conditional density is:

g(s|st) = [pqδ(s− αst)]H(0)(s−αst)[rqδ(s− βst)]H(0)(s−βst) ·
· [(q − r)qδ(s− γst)]H(0)(s−γst)[p2gξ(s− αst)]H(s−αst) ·
· [rpgξ(s− βst)]H(s−βst)[(q − r)pgξ(s− γst)]H(s−γst).
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Having observed (X2, . . . , Xn+1) and fixed X1 = s1 from the model (2) we
can estimate the parameters p, q, r of the model (2) using conditional likelihood
function:

L(p, r) =
n∏

t=1

g(st+1|st) .

For fixed α, β, γ the maximum likelihood estimators of p, q and r are:

p̂ =
A1 + 2A4 + A5 + A6

2n

r̂ =
(A2 + A5)(A1 + 2A2 + 2A3 + A5 + A6)

(A2 + A3 + A5 + A6)2n

q̂ = 1− p̂ =
A1 + 2A2 + 2A3 + A5 + A6

2n
,

where

A1 =
n∑

t=1

H(0)(st+1 − αst); A2 =
n∑

t=1

H(0)(st+1 − βst);

A3 =
n∑

t=1

H(0)(st+1 − γst); A4 =
n∑

t=1

H(0,∞)(st+1 − αst);

A5 =
n∑

t=1

H(0,∞)(st+1 − βst); A6 =
n∑

t=1

H(0,∞)(st+1 − γst).

If the exponential distribution with mean λ−1 is used for the sequence {ξt}
then the maximum likelihood estimator of λ is:

λ̂ =
∑n

t=1[H(0,∞)(st+1 − αst) + H(0,∞)(st+1 − βst) + H(0,∞)(st+1 − γst)]
S

where

S =
n∑

t=1

[
(st+1 − αst)H(0,∞)(st+1 − αst) +

+ (st+1 − βst)H(0,∞)(st+1 − βst) +

+ (st+1 − γst)H(0,∞)(st+1 − γst)
]
.
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2 A moving-average process

Let us consider a first order moving-average process given by

Xt+1 =





αξt+1, w.p. p1q1

βξt+1, w.p. q2
1

αξt+1 + ξt, w.p.p2
1

βξt+1 + ξt, w.p. p1q1

(4)

where ξt are i.i.d. random variables with exponential ε(λ) distribution (with
mean λ−1), and p1, q1 are probabilities with p1 + q1 = 1 and 0 < α < β < 1.
We assume Xt is independent of ξs, for all s > t.

Using Laplace transform of (4) we can derive:

EX =
p1α + q1β + p1

λ
.

Let’s denote p̂1 and q̂1 the estimators of p1 and q1 produced by the method
of moments (for fixed α, β). Then we have

p̂1 =
λX̄n − β

α− β + 1
,

and

q̂1 = 1− p̂1 =
−λX̄n + α + 1

α− β + 1
,

where X̄n =
1
n

n∑

i=1

Xi for given sample (X1, . . . , Xn). It can be easily shown

that p̂1 and q̂1 are consistent estimators for n →∞.
For model (4) we can also consider the conditional probability:

ψ(s|st) = P (Xt+1 < s|st ≤ Xt < st + h).

We can not give the maximum likelihood estimators of p1 and q1 here. In
one of 16 (4 · 4 combinations in(4)) different cases (where, for example Xt+1 =
αξt+1 + ξt and, for example, Xt = αξt + ξt−1) we have very complicated form
of the conditional density:

g(s|st) =
λ(α− 1) exp(−λ s

α )(exp(−λ st

α ) exp(λ st

α2 )− exp(−λst))
(α2 − α + 1)(exp(−λ st

α )− exp(−λst))

for s > st+h
α and h → 0. Then it is difficult to derive the likelihood and estimate

unknown parameters.
Some other aspects of such a process are under investigation.
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