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Abstract

In this work! we consider infinitesimal deformation f : z° — z* +
ez'(27), where 2*(27) is infinitesimal deformation field, e-an infinitesimal
real magnitude.

We consider basic facts in connection with infinitesimal deformations
and Lie derivative at non-symmetric affine connection space. The Lie
derivative is expressed with respect to covariant derivatives of four kinds at
a space of non-symmetric affine connection Ly, proving tensor character
of the Lie derivative.

1 Introduction

The problem of infinitesimal deformations of a space has been treated for years
from a lot of authors (for instance see [4] — [7]). We refer to [8],[9] for more
details and references.

Let us consider a space Ly of non-symmetric affine connection L; , With the
torsion tensor

(11) Tgk = L;k - ;lcj7

at local coordinates z° (i =1,...,N).

Definition 1.1 A transformation f: Ly — Ly : @ = (2%,...,2") = (2%) —
z=(z%,...,2N) = (2'), where

(1.2) T =ux+z(x)e,
or in local coordinates

(1.2") =242z, d,j=1,...,N,
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where ¢ is an infinitesimal, is called infinitesimal deformation of a space
Ly, determined by the vector field z = (z%), which is called infinitesimal
deformation field.

We denote with (7) local coordinate system in which the point x is endowed
with coordinates z*, and the point & with the coordinates z*. We will also
introduce a new coordinate system (i'), corresponding to the point z = (%)
new coordinates
(1.3) o =7,

i.e. as new coordinates ¢ of the point # = (z*) we choose old coordinates (at

the system (7)) of the point Z = (z'). Namely, at the system (i) is z = (2" ) &

(z%), where o denotes "equal according to (1.3)”.
1.3

Definition 1.2 Coordinate transformation which we get based on punctual
transformation f : x — Z, getting for the new coordinates of the point x the
old coordinates of its transform Z, is called dragging along by point trans-
formation. New coordinates 2/ = Z' of the point Z are called dragged along
coordinates.

In the case of infinitesimal deformation (1.2") coordinate transformation

v

(1.4) 2 = =2t 42t 2N )e

is called dragging along by z'c.

Let us consider a geometric object A with respect to the system (i) at the
point « = (z') € Ly, denoting this with A(7, x).

Definition 1.3 The point Z is said to be deformed point of the point x, if
(1.2) holds. Geometric object A(i, ) is deformed object A(i, z) with respect
to deformation (1.2), if its value at system ('), at the point x is equal to the
value of the object A at the system (i) at the point Z, i.e. if

(1.5) A, x) = A(3, 7).

Remark 1.1. In this study of infinitesimal deformations according to (1.2')
quantities of an order higher then the first with respect to € are neglected.

We will now define some important notions of the theory of infinitesimal
deformations, following from (1.2): Lie differential and Lie derivative, and in
further considerations we will find them for some geometric objects.

Definition 1.4 The magnitude DA, the difference between deformed object A
and initial object A at the same coordinate system and at the same point with
respect to (1.2'), i.e.

(1.6) DA = A(i,xz) — A(i, x),
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is called Lie difference (Lie differential), and the magnitude

D T/ - .
(1.6) L.A= lim—A - limw
e—0 € e—0 I
is Lie derivative of geometric object A(%,2) with respect to the vector field
z = (24(27)).

Using the relation (1.6) for deformed object A(i, ) we have

(16") Ali,z) = Ali, z) + DA,
and thus we can express A, finding previously D.A. We will consider the main

cases.

1.1. According to (1.6) we have Dz’ = z% — z¢, i.e. for the coordinates we
have

(1.7) D' = 2'(29)e,
from where
(1.7 L.xt = 2'(27).

Although z° is not a vector, we see that £.z° is a vector.
The next cases were considered at [4] — [7].

1.2. For the scalar function ¢(x) = p(z!,... zV)

(1.8) Dp(x) = @ p2P(x)e = Lop(x)e, (pp = 0p/0zP),

i.e. Lie derivative of the scalar function is derivative of this function in the
direction of the vector field z.
1.3. For the covariant vector v;(z) we have

we have

(1.9) Du; = (v p2? + 2hvp)e = Lovie (v = vy [0xP),

1.4. Let us consider contravariant vector u'(z). According to (1.6) we have
(1.10) Du' = @'(z) — u'(2),

and we have to find 4°(x). According to the coordinate transformation low

i o axi -
(1.11) u'(x) = Wuj (z),

where the right side is to be determined. Based on (1.4) we have

(1.12) 8x‘ _ 02" 0z (a:)gz ;. 0z

B r s T 7.5.
oxi’ Oz’ oI’ 7 9xd’
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Taking account of zi(x) = 2 (2t, ..., a%)
az° 0z ox* 8zi( K a2k o)
o’ Oxk i’ (112) Ok @z
Substituting at (1.12) we get

, we have

o' 02 . 02F
dxi” &T’“E( i 8mj'€)’
and neglecting the member with (¢):
8:@- i 822
(1.13) e =0 — o e

For the second member at the right side at (1.11), using Taylor’s formula, we
have:
(1.14) W (z) = ul(2) =l (2" + 2%) = v (x) + oW ke

(1.5) Oxk

Substituting (1.13,14) into (1.11):

4 - ou? 0z% .
' (x) = u'(z) + 2" — ~—ule
() = (o) 4 D0 ke = O e,
and substituting this value into (1.10) we get:
(1.15) Du’ = (u')2" — 2 uP)e = L ou'e.

1.5. In the same manner for a tensor of the kind (u,v) we get
u
U1 eealoy _ [401---T0 Lo 2 ]ﬁ
Dtjll Jv [t N j'mpzp - Z Z’Zp ( >t]11 Jv M Z ZJB < ) jv]g
(116) a=1
= Laty e
where we denoted

P\ ivin _ gi1eda—1Piat1iu jﬂ i i1y,
(1.17) (Z'Ot)tjlrnjv =t g, ) <p)t . v tjll~~-jﬂ—117jﬂ+1~~jv'
Remark 1.2. We can also see that the equations (1.8,9,15) are the special
cases of the equation (1.16).

1.6. For the vector dz’ we have
(1.18) D(da') = L.(dz*) =0
1.7. In the same way, as for the tensors, for the connection coefficients we

have

(1.19) DL, = (L

jkvpzp + zfj - z ka + zp ka + zp L )5 = EZLékE

1.8. For Lie differential (derivative) of a sum, product, contraction, composition

of geometric objects the same rules hold as in the case of covariant derivative.
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2 Tensor character of the Lie derivative

2.1 Tensor character of the Lie derivative of a tensor

In the previous considerations we expressed the Lie derivative with respect to
partial derivatives. We will now express it by covariant derivatives and prove
that the Lie derivative of a tensor is a tensor too.

Because of non-symmetry of the connection, at Ly we can consider two
types of covariant derivatives for a vector and four types for general tensor. So,
denoting by |(6 =1,...,4) a derivative of the type 6, we have ([1]-[3]):

0

(2.1) Zim = 2oy + Ly 2’ = 2{m
1 mp 3
2 4
i ij i i Ti 4P TP g
(2.2) Ty |m = thm + Lpmty + Lty L,wgtp .
1 mp mp m

According to (1.16) for the tensor t?g we have
23 Lot = 13,9 — At — S+ e

Based on (2.1,2), we can express partial derivatives with respect to covariant
derivatives, and we get

o 1J _— 4] D _ i $PI _ T 4P
Lty = gztk =ty lpz letk Z|Ptk
1 1

(2.4a) o i i i _— . i
+ 7 Kty + Tosty 2 + Tt 20 + T td 27,
1
L.t = gztfcj = tzjépzp - zfptzj - zfpt;;p
2 2
(2.4b) g o o .
2Pt 4 TP TP + T2,
2
Eztécj = Eztzj = t?cj 1p2 — Z\iptgj - Z\jptip
(2.4¢) ’ ’ ’ ’
+ 2Pty + Tty 2P + Thti 27,
3
L.t} = éﬁzt;j =ty 1p2" — 2]ty — z‘th;Cp
(2.4d) ' ! !

P 4ij i 457 i 4
+ 2wty + Tty 27 + Tty 27,
4
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where gz denotes that the Lie derivative L, is expressed by covariant derivatives
of the type 8 (]), 6=1,...,4.
0

Naturally, as the same magnitude at the right side at (2.3) was expressed in
different ways we have

(2.5) gztjj =L.t), 0=1,....4

We will prove only (2.4c). The other cases can be proved in similar way. Ac-
cording to (2.1) and (2.2) we have

i i i s
zp=2[p— L2’
3
15 483 T4 4S5 _ 7] 4is s 4ij
tkﬂ’ _tk? |p le)tk Lsp k +ka:tsa
3

which we substitute at (2.3) and using, for example,
—Lipty 2+ Lot 2® = =Lt 2% + Ly ) 27 = Ty 177 27,

we get (2.4c).

2.2 Lie derivative of the connection as a tensor

On the base of (1.19) for the Lie derivative of the connection we have

(2.6) ,CZL;,c = z)’]k + Lz»k’pzp - zpré.)k + ZZL;,C + zf’kLé»p.

o i — A28 /G ek i i
In order to express z';;, = 0°2"/0x? 9z" with respect to Zj, = Z|j ), We find
1 11

(2.7) Z

i i p
i =2t Lz
1

p

i

i i (i i
2k = Z‘jlk = (Z\j),k + Lz
1 1 1

p i
ijzlp
1 1

(2.8)

_ i i i p P s P : P
oy @+ L) L2 + L3527 = L (2, + Loy 2”).

Finding from here 2%, and substituting it at (2.6), we obtain
LoLy, = ZIjk + Ryppa” + Tjp 2P + L5 Ty 20 + L T2 + T 28
where ([1] — [3])

7 . X Tt s i s 7
(2-9) ljkp_lew Ljp,kJrijLsp jpsk
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is curvature tensor of the first kind of the space Ly. The last four
summands at the previous equation for ﬁsz-k give (T;'pzp)‘k, and finally we
1

have

(2.10) LoLjy = L:L5, = 255 + B 2 + (T,27) i
1 1

Using different types of covariant derivatives, we have
*z JrL’ (zfjJrL;)jzp) Lz szrL zplejJrT;pzp,

ilk — (Z|] +TZ Zp)\ \Z (T?pzp)lka

\
1 1
and (2.10) becomes

(2.10) LeLi = = + B

In the similar way we obtain

EZL}kzgzL;kEZijk‘Fg z—l—lekzp—l-T ‘]

(2.11) _
Tp Z|p + le|pz + (Teijij =+ T;LkT;] + sp jk)zp'

J

(2.12) L.LY = LZL;'.k = z{;p + ]:;E;kpzp —Thzl, + Tjp2, i
! |

(213)  LoLjy = L:L5, = zlijerkp + (T e+ T T+ Tey Ty 2P + T2
4

p U’
where
(2.14) 2;]@17 - ifj,p - LZ 7,k + Lk‘] ps LS Z
(2.15) iy = Likp = Lpje + LieLps — Lypi L + LywT;
(2.16) {f;'kp = Linp = Ly + Lo Lps = Ly L + Lip T3

are curvature tensors of the second, the third and the fourth kind of
the space Ly respectively (see [1]-[3]).
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