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Abstract
In this paper! we investigate generalized Kéhlerian spaces and find
some relations for curvature tensors in these spaces. Also, we define holo-
morphically projective mappings of generalized Kahlerian spaces and ob-
tain an invariant geometric object for these mappings.

1 Introduction

A generalized Riemannian space GRy in the sense of Eisenhart’s definition [1]
is a differentiable N-dimensional manifold, equipped with nonsymmetric ba-
sic tensor g;;. Connection coefficients of this space are generalized Cristoffel’s
symbols of the second kind. Generally it is T'%, # T}

In a generalized Riemannian space one can define four kinds of covariant
derivatives [3], [4]. For example, for a tensor a} in GRy we have

i i p_ TP i i i p_ TP i
Wl = @ + Fpmaj ijap, Wl = A + Fmpaj ijap,
1 2
i i P _ TP i i i p_ TP i
@ = @ + Fpmaj ijap, Wl = Qo + Fmpaj ijap.
3 4

In the case of the space GRy we have five independent curvature tensors [5] (in
[5] ]5% is denoted by ]2%)

‘I?ijn = F;m,n - F;n,m + F?mr;znn - ]'—‘?nr;)m’

Rjumn = i~ T + Ty~ TE, T,
R = T~ Vg & T2 by T0,T 4 T, (T — T,
{Eijmn = F;'m,n - FiLj,m + F?mrip - Ffljr;m + ann(r‘;)j - F;'p)v
gljmn = i(rzm,n + 1_‘znj,n - F;n,m - F:Lj,m + Fé)mF;)n + anjrfnp

-T2 1t TP T ).

jntmp ~ L gl pm
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The Kahlerian spaces and their mappings were investigated by many authors,
for example K. Yano [9],[10], M. Prvanovié¢ [7], N. S. Sinyukov [8], J. Mikes [2]
and many other authors.

An N-dimensional Riemannian space with basic metric tensor g;;(z) is a
Kahlerian space if there exists an almost complex structure F;(:c), such that

h _ h
Fp (,T)Flp(.’l,') - _61' )
gqungq = Yij»

Flj =0,

where ; denotes the covariant derivative with respect to the basic metric ten-
sor g;;. This paper is devoted to the generalized Kahlerian spaces and their
mappings.

2 Generalized Kahlerian spaces
A generalized N-dimensional Riemannian space with (non-symmetric) metric

tensor g;;, is a generalized Kdhlerian space G K if there exists an almost com-
plex structure F}(z), such that

(2.1) F(x)F} (z) = =07,
(2.3) Fih|j =0, (0=12),

0
where | denotes the covariant derivative of the kind 6 with respect to the metric

6
tensor g;;. From (2.2), using (2.1), we get
(24) gQF]p +gﬂF1p = 0,
(2.5) gLF) + g2F) = 0.
Let us denote
(2.6) Fji = Flgy, F'=F]g"

Then from (2.4) and (2.5) one obtains
(2.7) iy +F; =0, Fi ¢ it — .

From here we prove the following theorems
Theorem 2.1. For the torsion tensor of a generalized Kahlerian space the next
relation

(2.8) i, =-Ib FF].
1s valid.

Proof. From (2.3) we have

r,, Fr =1 F

jm= p?
\

from where follows (2.8). [
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Theorem 2.2. The curvature tensors R (0 =1,---,4) in the space GKn

ijk
satisfy the next relations

(2.9 — 11) FPRY = FRRY o =1,23,
(212) FpRh jk + FhR ikj = 2(]'—‘?]\19 F%m + 21—‘::7]1_‘ - 21_‘221—‘;3)}7 .

Proof. a) From (2.3) we have Fi’“‘ij — Fi}fkj = 0, and then, using the first Ricci
1 1
identity [3], [4] we have
h
—F, Rp ikt FpR ik~ 2F§)sz\p 0,

i.e.
(2.13) F”R ik — FhR” i =0.

The relation (2.9) is proofed.
b) Analogously, using the Ricci identity for F* ok~ i}Iij and (2.3) we get
2

(2.14) FPR ik — FthU P =

=0,
from where (2.10) follows.

c) From (2.3) we get F| P i}fk\j = 0. From another side is [3]
12 21

h _ ph _ ph o pp
Fljin = Filyy = B = By
12 21

From last two equations we get the relation (2.11).
d) From (2.3) we get

Fm = QFfJFI?, F’Tk = QFQZFZ?,
h _ h h h h h
mev = 2Ffjlka + 4Ffjronq , szw 21“£MF + 4F§2ngFq
3 Vv

Using the Ricci type identity [4]
h h _
Flljie = Fijuyy = By + 1
3 4 4 3

ikj p’
we have the relation (2.12). L]
Theorem 2.3. For the curvature tensors ]jhijk (0 =1,---,4) of the space

GKy are valid the next relations

(2.15 — 17) FY Ryiji = F Rynji, @ = 1,23,

(2.18)  FyRpijk = —F) Bpn; +2Fip(rh.lgl’j *Fh.ivjjlk +2F%Fh.pvj - QF%Fh.kvp)a
(2.19) F,f(]fpijk + l?pikj) = 2Ff(I‘h_kvi£j — I‘h_ivjjlk. + 2F%I‘h_pvj — 21"%Ph,kvp).
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Proof. By composition in (2.9) with F}! we get

h
(2.20) FPF, quk—kR”k—O
From here we have

(2:21) Ey E Rpgjre — Bnijre = 0,

and by composition with F! we get
(2.22) F}szﬁpijk + Ff]‘?hpjk =0.

The first kind curvature tensor satisfy the relation }Ehijk = —]ilihjk. Now from

(2.22) we get the relation (2.15). The relations (2.16-18) we get in the same
manner from (2.10-12) by using of anti-symmetry for the tensors é%hijk (0=

2,3,4) with respect to the two first indices. The relation (2.19) follows directly
from (2.17,18). [

Theorem 2.4. The curvature tensors ]921'4 (0=1,---,5) of the space GKy

jmn

satisfy the next relations

(223a,b,¢) Ry FPFY = Rjmy — 2I0, T4 FTFS + 2T T4 a=1,2,3,

rq ps jq Pm’
(2.23d) R(pq)F:-DFq = ]j(]m) + 6quFgSFng 6F§’ng,m,
(2.23¢) R(pq)F ks f;(]‘m) + 2F§’QFZSFTF,§L — 2F§’qum,

where (jm) denotes the symmetrization wz’thout dzmszon with respect to the in-
dices j, m

Proof. (a) From F"

il = =0, F?Ij = 0 by addition and division with 2 we get
2

h __
(2.24) Fl =0,

where ; denotes covariant derivative with respect to g;;. The integrability con-
ditions of the equation (2.24) give the relation

F'RP

”k—FpR ik =0,

where R" ijl 18 a curvature tensor with respect to symmetric basic tensor g;;.
Using the condition (2.1) we get
h
F Fqu]k+RUk =0,

and from here
F,fFiquqjk — Rpijr = 0.
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With respect to the condition (2.1), we get
F Ryijie — Ff Rynji, = 0.
By composition with ¢*. and contraction by virtue of indices 7,5, we get
Fy Ryl = FR %
By symmetrization with respect to h, k we get
(2.25) Ry, = FYFIRy,.

in the form [5]:

We can express the tensor 11% imn

By contraction with respect to indices 7, n, and by symmetrization with respect
to 7, m, we get
From (2.25) and (2.26) we have (2.23a).
(b) The tensor ‘gijmn we can express in the form [5]:
gljmn - R j - F;m n + F;'vn;m - Ffmrzm + anl—‘;}m
By contraction with respect to i, n, and then by symmetrization with respect
to j, m, we get

Bim) = Bigm) = 205 m,

from where, using (2.25), we get the relation (2.23b).
(c) For the tensor R';,,,, we have [5]:
3

R, =R + 1

3 jmn jmn gmn

i P i P i i
+ Fjvn;m Fymrzm + FJanm o 2rﬁmrm
Contracting according to i, n, and then symmetrizing in relation to j, m, we
get
Bim) = Bijm) = 205, T,
from where, using (2.25), we can see that the relation (2.23c) is valid.
(d) The tensor {fijmn we can express in the form [5]:
R'. =R 4T e i 4+T2 70 42T T

%
4 jmn jmn jmn+Fj\'/rL;m ]m pn J’n pm mn p]

Contracting according to 4, n, and symmetrizing with respect to j, m, we get

B(jm) = Bjm) + 615,

]’I pm
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Using (2.25) we get the relation (2.23d).
(e) The tensor ls%ijmn satisfies the relation [5]:
‘gljmn - R jmn + anLF;}n + F?n]‘—‘;ﬂm
Contracting by virtue of indices 4, n, and than symmetrizing by virtue of j, m,
we get

R(jm) = R(Jm) +2I'2 14

J‘I pm’

from where, using (2.25) we get (2.23e). [

For generalized Kahlerian spaces also the next theorem is valid.
Theorem 2.5. If the almost complex structure F' of the space GKy satisfies
the condition F'. =0, (§ = 3,4) then F?j =0.

l\J

Proof. The proof follows directly from F ‘J =0,0=1,---,4). [ ]

3 Holomorphically projective mappings

Generalizing the concept of analytic planar curve in a Kahlerian space [6], [8]
we get an analog notion for a generalized Kahlerian space.
Definition 3.1. A curve

(3.1) l:a"=ah(t), (h=1,2,---,N)
is an analytic planar if for it is satisfied the relation

(3.2) /\’lﬁpv =a(t)\" +b()FIN,  (0=1,2)

where A" = dx" /dt, and a(t) and b(t) are same function of a parameter .
In GKy is
N = A e v
P = T + 15 — A p
1 2
Then the expression on the left side in (3.2) is self-same with respect to the
booth kind of covariant derivative, from where we can define analytic planar

curve in the space GKx by one relation

d\"

(3.3) =

+ TR APAT = a(t)A" + b(t)FLAP.

Consider two N-dimensional generalized Kéhlerian spaces GKy and GK v

. —=h .
with almost complex structures Fih and F'; respectively, where

(3.4) Fh=F
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in common by mapping f : GKny — GK n coordinate system.

Definition 3.2. Diffeomorfism f : GKy — GK y is holomorphically projective
or analytic planar if by this mapping analytic planar curves of the space GKn
map into analytic planar curves of the space GK . Let us denote

h _ Th h
(3.5) P =13 — T3

the deformation tensor of connection at analytic planar mapping, where ]."f’J
and f?j are the second kind Cristophell’s symbols of the space GKy and GK y
respectively. o

Analytic planar curves of the space GKy and GK y are given by relations

d\" h \P\q h hyp d\" Th \P\2 — = h 7 hyp
respectively. From these relations we get (Ijy, —'n )APA? = ¢ (t) A" + o (t) FP AP,
where we denote ¥(t) = a(t) — a(t), o(t) = b(t) — b(t). Putting ¢(t) =
?/)p)\p, o(t) = o4A9, we have (T}, — T — 1,68 — o, F)A’A9 = 0, from where
is
Th h h h h

where (ij) denotes a symmetrization without division by indices 4, j and 51}; is an
anti-symmetric tensor. In (3.6) vector o; we can select such that o; = —1, F?.
Then we have

(3.7) T =T + o) — pr{;F;g +&f.

Contracting by indices h, i in (3.7) and using Ff =0, &P, =0 we have

(3.8) fzj - ng = (N +2)y;.

From (3.8) we can see that 1; is a gradient vector. By substitution from (3.8)
in to (3.7) we get

— 1 — — —  —p—h —
R h h 7 h
3.9
—rh o (TPl + TP 6t —T FPEN) — TP
T i N o pitd pji ap* (i''4) i
Let us denote
1
h _ Th D <h p roh
(3.10) HTij = I‘Q “Ni2 (Fp(iéj) - ngF(iFj)).

Then (3.9) we can present in the form

(3.11) HT;, = HT]

YR
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where HTZ denotes an object of the form (3.10) in the space GKy. The
magnitude HTg is not a tensor. We shall call it holomorphically projective
parameter of the type of Thomas’s projective parameter. From the facts given
above, we have

Theorem 3.1. Geometric objects (3.10) of the space GKy are invariant of
holomorphically projective mappings.
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