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Abstract

In this paper® we study some notions related to the space X for which
the remainder 58X \ 5(X) is one-point set.

1 Introduction and definitions

The closure of a subset A of a space X is denoted by clx(A) and the one-point
compactification of X is denoted by wX. In this paper we assume that all
spaces are noncompact and T5. We use the standard definitions for filter-base
and filter. For notions and definitions not given here see [3], [6], [8].

Definition 1.1 Let X be a topological space. Then:

(a) The symbol §(X) denotes the family of all subsets of X.

(b) P(X) = (X)) \ {0, }.

(c) By R(X) we denote the family of all nonempty compact subsets of X.

d) UX)={U:UCXAU=X\K, Ke&X)}. (UX) CB(X) if X is
noncompact.)

(e) €*(X) denotes the ring of all bounded continuous real-valued functions
defined on X.

It is clear that the family P(X)\ {X} is a refinement of Q(X). A filter-base
in P(X) is a non-empty family B C PB(X) such that if 41, Ay € B, then there
exists an As € B such that A3 C A; N As [2]. By a filter in P(X) we mean a
non-empty subfamily § C PB(X) satisfying the following conditions:

(a) If Ay, As € §, then Ay N Ay € 5.

(b)If Ae Fand A C A; € P(X), then 4; € F [3].

By a filter (filter-base) in a topologigal space X we mean a filter (filter-base)
in the family PB(X).

One readily sees that for any filter-base 9B in PB(X), the family Fp = {4 €
PB(X) : there exists a B € B such thatB C A} is a filter in P(X).

Definition 1.2 ([2]) Filter-bases B1 and By are equivalent if Fu, = T, -
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Lemma 1.1 ([2]) Filter-bases B1 and Bs are equivalent if and only if for every
B € B, there exists a By € B9 such that B, C By and for every By € By
there exists a By € B, such that B; C Bs.

A point z is called a cluster point of a filter F( of a filter-base B) if = belongs
to the closure of every member of F(of B). A point x is called a limit of filter §
(of filter-base B) if every neighbourhood of z is a member of § (Fx); we then
say that the filter (filter-base) converges to z.

Proposition 1.2 ([3]) The point  belongs to clx(A) if and only if there exists
a filter-base consisting of subsets of A and converging to x.

Definition 1.3 A filter base B C P(X) is called a free filter-base if for every
point x € X, the point x is not a cluster point of *B.

2 ()-spaces

The following proposition gives an information when the family Q(X) satisfies
the free filter-base property.

Proposition 2.1 Let X be a noncompact Ty space. Then the family Q(X) is a
free filter-base in if and only if X is a locally compact space.

Proof. =: Let Q(X) is a free filter-base in X. Then for every point z € X
there exists an open neighbourhood U, such that for some A € Q(X) the set
ANU, = 0. Hence U, C X \ A=K € R(X). The closure clx(U,) € K(X).
This proves that X is locally compact space.

<: It suffices to show that if A;, As € Q(X), then there exists an A3 € Q(X)
such that A3 C A NAs. Let A; = X\Kl, Ay = X\KQ; Ky, Ky € ﬁ(X) As
K1 UK2 € R(X) the set A3 = A1 ﬂAQ = (X\Kl)ﬂ(X\Kg) = X\(Klqu) S
Q(X). Since X is locally compact, for every x € X there exists a neighbourhood
U of the point x such that clx(U) € K(X). Then the set UN (X \ clx(U)) = 0.
Hence, the point x does not belong to the closure of every member of Q(X). It
follows that x is not a cluster point of the filter base Q(X). O

Definition 2.1 A topological space X is called an Q-space if all free filter-bases
in X are equivalent to the Q(X).

Example 2.1 Let X = [0,w;) be the space of ordinals less than the first un-
countable ordinal with the order topology. It is clear (by the order topology and
Lemma 1.1.) that every free filter-base in [0,w;) is equivalet to the Q([0,w1)).

A pair (Y] ¢), where Y is a compact space and ¢ : X — Y is a homeomorphic
embedding of X in Y such that cly (¢(X)) =Y, is called a compactification of



On the Stone-Cech compactification of Q-spaces 137

the space X (see [3]). Compactifications ¢; X and ¢ X of a space X are equiva-
lent if there exists a homeomorphism f : ¢; X — ¢ X such that f(c1z)) = co(x)
for every z € X.

The following theorem shows that when in {2-spaces the one-point compact-
ification is equivalent to the Stone-Cech compactification.

Theorem 2.2 Let X be an Q-space. Then the one-point compactification of X
is equivalent to the Stone-Cech compactification of X.

Proof. It suffices to show that for every compactificatition ¢X of the space X
the remainder ¢X \ ¢(X) is a one point set. Assume that the remainder X\ ¢(X)
contains two distinct points z; and xs. By Proposition 1.2, there exist filter-
bases B and By consisting of subsets of ¢(X) such that B, converging to
and Bs to xo. It is known that a space X is a Hausdorff space if and only if
every filter in X has at most one limit. This implies, in particular, that filter-
bases 81 and B, are free filter-bases in the space ¢(X) and %, is not equivalent
to By. Denote Ay = ¢ 1(By) = {c}(B1) : By € By}, Ay = ¢ 1(By) =
{c71(By) : By € By}. Since the space X is homeomorphic to ¢(X), we have
that 2y and %, are free filter-bases in the space X and 2l; is not equivalent
to %As. By assumption X is an {2- space, a contradiction. Hence, for every
compactification ¢X of the space X, the remainder ¢X \ ¢(X) is a one point set.
Furthermore, the mapping of ¢X to wX = X U {Q} defined by

_Jioc (), ifxec(X),
f(x){Q, if 2 € X \ o(X)

is a homeomorphism. This proves that wX is equivalent to fX. O

Remark 2.1 The result of Theorem 2.2, can be also described in terms of nets.
By Theorem 2.2, every )- space has a unique (up to equivalence) compactifi-
cation. The following example shows that there exists a space X which has a
unique compactification and is not a 2-space.

Example 2.2 Let W be the space of all ordinal numbers < w; and W’ the
subspace consisting of all numbers < wg; the space T =W x W'\ {(w1,wp)} is
called the Tychonoff plank. It is known that the Tychonoff plank has a unique
compactification. We shall now show that T is not an (- space. Consider the
subspaces A = [0,w;1) X {wo} and B = {w1} x [0,wp). Denote A = {[o,w1) x
{wo} ra€[0,w1)}, B ={{wi} x[B,wo) : B € [0,wp)}. It is clear that A and B
are free filter-bases in the space T and 2l is not equivalent to 5.

Proposition 2.3 If f: X — Y is a continuous mapping of a Tychonoff space
X which has a unique compactification, onto a non-compact Tychonoff space Y,
then Y has a unique compactification and f is a perfect mapping.
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Proof. It is known that the Tychonoff space X has a unique( up to equiva-
lence) compactification if and only if for any two closed subsets of X which are
completely separated, at least one is compact (See [1,IV,23]). f PCY, QCY
are closed completely separated subsets, then there exists a function g € €*(Y)
such that g(P) = 0 and g(Q) = 1. By continuity,the sets A = f~1(P) and
B = f~1(Q) are closed and ANB = (). Therefore, (go f)(A) = g((fof~1)(P) =
g(P)=0and (go f)(B) =g((fof~1)(Q) = g(Q) = 1. Hence, the subsets A, B
are completely separated. By assumption the space X has a unique compact-
ification. If A = f~1(P) is compact in X, then f(A) = fo f~}(P) = P is
compact in Y. This implies that the space Y has a unique compactification.
Hence, X ~ wX = X U{wx} (wx ¢ X) and Y = wY = X U{wy} (wy ¢ 7).
The mapping f : X — wY is extendable to a mapping F' : wX — wY. It is
clear that wY C F(wX) and F(wX) C wY which implies that F(wX) = wY.
Since the spaces wX and wY are compact, F': wX — wY is a perfect mapping.
Furthermore, F(wX) = F(X U{wx}) = F(X)UF({wx}) = f(X)UF({wx}) =
Y UF({wx}) = wY =Y U{wy}, which implies that F(wx) = wy. For ev-
ery y € Y fibers f~1(y) are compact subsets of X. For every closed subset
A C X the subset AU {wx} is compact and closed in wX. By continuity,
F(AU{wx}) = F(A)UF({wx}) = f(A)U{wy}, is a compact and closed subset
of WY =Y U{wy}. This implies that f(A) C Y is a closed subset in Y. Hence
f is a perfect mapping. O

Proposition 2.4 If there exists a continuous, open mapping f : X — Y of
an Q-space X onto a Hausdorff space Y, then'Y is an Q-space.

Proof. Let X be an Q-space. Hence X is Hausdorff, locally compact and
pseudocompact space for which every free filter-base is equivalent to Q(X).
Since local compactness is an invariant of continuous open mappings we have
that Y is a locally compact space. This implies that Q(Y) is a free filter-
base in Y. Let By # Q(Y) be any free filter-base in Y. By continuity of
fy f7H(By) and f~1(Q(Y)) are free filter-bases in X. From the definition of Q-
property it follows that free filter-bases f~!(By) and f~1(Q(Y)) are equivalent
to the Q(X). By Lemma 1.1, By = f(f~}(By)) is equivalent to Q(Y) =
F(f~HQ(Y))). By Definition 2.1, the space Y is an Q-space. O

Proposition 2.5 Let Y be a closed subspace of an Q-space X. If for all U €
QX) the set UNY # 0, then'Y is an Q-space.

Proof. Since local compactness is hereditary with respect to closed subsets the
subspace Y is locally compact. By Proposition 2.1, the family Q(Y) is a free
filter-base in Y. Let B # Q(Y) be a free filter base in V. It is clear that the
family B is a free filter-base in X. By assumption B is equivalent to Q(X). For
all U € Q(X) the sets U NYare nonempty. This implies, in particular, that the
free filter-base 9B is equivalent to Q(Y"). O
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3 Equiscalar space

Definition 3.1 A topological space X is called equiscalar if for each f € €*(X)
there exists a U € Q(X) such that f/U : U — R is constant.

Remark 3.1 The space X in Example 2.1, is both equiscalar and an Q-space.
By the next theorem, the one-point compactification of X is equivalent to the
Stone-Cech compactification.

Theorem 3.1 Let X be an equiscalar space. Then the one-point compactifica-
tion of X is equivalent to the Stone-Cech compactification.

Proof. Let wX = X U {oco} be the one-point compactification of X. By
Corollary 3.6.3, in [3], it suffices to show that every continuous function f :
X — I from the space X to the closed interval I is extendable to a function
F : wX — I. Since the space X is equiscalar, we extend f to the corner
point co by assigning the value r, where r = f(U); U € Q(X) (see Definition
3.1) at that point and this gives us a continuous extension of f. By Theorem
3.6.3, in [3] the one-point compactification of X is equivalent to the Stone-Cech
compactification. O

Proposition 3.2 If there exists a continuous mapping f : X — Y of an
equiscalar space X onto a Tychonoff space Y, then'Y is an equiscalar space.

Proof. Let X be a equiscalar space and f : X — Y a continuous surjection.
Let g be any function of €*(Y). Then go f € €*(Y), hence there exists a
U € Q(X) such that (go f)/U is constant. Since f(X \U) € R(Y), set V =
Y\ f(X\U) € QY). Therefore, g/V is constant. Hence Y is an equiscalar
space. U
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