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A Note on the Schwarz Lemma for Harmonic Functions
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Abstract. In this note we consider some generalizations of the Schwarz lemma for harmonic functions on
the unit disk, whereby values of such functions and the norms of their differentials at the point z � 0 are
given.

1. Introduction

1.1. A summary of some results
In this paper we consider some generalizations of the Schwarz lemma for harmonic functions from the

unit diskU � tz P C : |z|   1u to the interval p�1, 1q (or to itself).
First, we cite a theorem which is known as the Schwarz lemma for harmonic functions and is considered

a classical result.

Theorem 1 ([10],[9, p.77]). Let f : UÑ U be a harmonic function such that f p0q � 0. Then

| f pzq| ¤
4
π

arctan |z|, for all z P U,

and this inequality is sharp for each point z P U.

In 1977, H. W. Hethcote [11] improved this result by removing the assumption f p0q � 0 and proved the
following theorem.

Theorem 2 ([11, Theorem 1] and [29, Theorem 3.6.1]). Let f : UÑ U be a harmonic function. Then���� f pzq � 1 � |z|2

1 � |z|2
f p0q

���� ¤ 4
π

arctan |z|, for all z P U.

As was written in [25], it seems that researchers had some difficulties handling the case f p0q � 0, where
f is a harmonic mapping from U to itself. Before we can explain the essence of these difficulties, it is
necessary to recall a particular mapping and some of its properties. We emphasize that this mapping and
its properties have an important role in our results.

Let α P U be arbitrary. Then for z P Uwe define ϕαpzq �
α� z

1 � αz
. It is well known that ϕα is a conformal

automorphism ofU. Also, for α P p�1, 1q we have
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1� ϕα is increasing on p�1, 1q and maps p�1, 1q onto itself;

2� ϕαpr�r, rsq � rϕαp�rq, ϕαprqs �
�
α� r

1 � αr
,
α� r

1 � αr

�
, where r P r0, 1q.

Now we can explain the previously mentioned difficulties. If f is a holomorphic mapping from U to
U, such that f p0q � b, then using the mapping 1 � ϕ�b � f we can reduce the problem to the case f p0q � 0.
But, if f is a harmonic mapping from U to U such that f p0q � b, then the mapping 1 � ϕ�b � f does not
have to be a harmonic mapping.

In a previous joint work [25] of the author with M. Mateljević, the Theorem 1 was proved in a different
way than previously found in the literature (for example, see [10] and [9]). Modifying that proof, the
following theorem (which can be considered an improvement of the H. W. Hethcote result) has also been
proved in [25].

Theorem 3 ([25, Theorem 6]). Let u : UÑ p�1, 1q be a harmonic function such that up0q � b. Then

4
π

arctanϕap�|z|q ¤ upzq ¤
4
π

arctanϕap|z|q, for all z P U.

Here a � tan
bπ
4

. Also, these inequalities are both sharp at each point z P U.

As one corollary of Theorem 3 it is possible to prove the following theorem.

Theorem 4 ([26, Theorem 1]). Let f : UÑ U be a harmonic function such that f p0q � b. Then

| f pzq| ¤
4
π

arctanϕAp|z|q, for all z P U.

Here A � tan
|b|π

4
.

This paper expands on that previous research. We give further generalizations of Theorems 3 and 4.
These generalizations (see Theorems 11 and 12) consist of considering harmonic functions on the unit disk
Uwith following additional conditions:

1) the value at the point z � 0 is given;

2) the norm of its differential at the point z � 0 is given.

In the literature one can find the following two generalizations of the Schwarz lemma for holomorphic
functions.

Theorem 5 ([17, Proposition 2.2.2 (p. 32)]). Let f : UÑ U be a holomorphic function. Then

| f pzq| ¤
| f p0q| � |z|
1 � | f p0q||z|

, for all z P U.

The following theorem is in fact a corollary of Theorem 5, by considering the holomorphic function

1pzq �
" f pzq

z , z P Uzt0u,
0, z � 0.

Theorem 6 ([17, Proposition 2.6.3 (p. 60)], [28, Lemma 2]). Let f : UÑ U be a holomorphic function such that
f p0q � 0. Then

| f pzq| ¤ |z|
| f 1p0q| � |z|

1 � | f 1p0q||z|
, for all z P U.

S. G. Krantz in his book [17] attributes Theorem 5 to Lindelöf. Note that Theorem 4 could be considered
a harmonic version of Theorem 5. Similarly, one of the main results of this paper (Theorem 12) could be
considered a harmonic version of Theorem 6.
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1.2. Hyperbolic metric and the Schwarz-Pick type estimates

By Ω we denote a simply connected plane domain different from C (we call these domains hyperbolic).
By Riemann’s Mapping Theorem, it follows that any such domain is conformally equivalent to the unit
diskU. The domain Ω is also equipped with the hyperbolic metric ρΩpzq|dz|. More precisely, by definition
we have

ρUpzq �
2

1 � |z|2

and if f : Ω Ñ U a conformal isomorphism, then also by definition, we have

ρΩpwq � ρUp f pwqq| f 1pwq|.

The hyperbolic metric induces a hyperbolic distance on Ω in the following way

dΩpz1, z2q � inf
»
γ
ρΩpzq|dz|,

where the infimum is taken over all C1 curves γ joining z1 to z2 in Ω. For example, one can show that

dUpz1, z2q � 2 artanh
���� z1 � z2

1 � z1z2

����,
where z1, z2 P U.

Hyperbolic metric and hyperbolic distance do not increase under a holomorphic function. More pre-
cisely, the following well-known theorem holds.

Theorem 7 (The Schwarz-Pick lemma for simply connected domains, [3, Theorem 6.4.]). Let Ω1 and Ω2
be hyperbolic domains and f : Ω1 Ñ Ω2 be a holomorphic function. Then

ρΩ2p f pzqq| f 1pzq| ¤ ρΩ1pzq, for all z P Ω1, (1)

and

dΩ2p f pz1q, f pz2qq ¤ dΩ1pz1, z2q, for all z1, z2 P Ω1. (2)

If f is a conformal isomorphism from Ω1 onto Ω2 then in (1) and (2) equalities hold. On the other hand if either
equality holds in (1) at one point z or for a pair of distinct points in (2) then f is a conformal isomorphism from Ω1
onto Ω2.

For a holomorphic function f : Ω1 Ñ Ω2 (where Ω1 and Ω2 are hyperbolic domains) the hyperbolic
derivative of f at z P Ω1 (for motivation and details see Section 5 in [3], cf. [2]) is defined as follows:

f hpzq �
ρΩ2p f pzqq
ρΩ1pzq

f 1pzq.

Note that by Theorem 7 we also have | f hpzq| ¤ 1 for all z P Ω1.
Using this notion, in 1992, A. F. Beardon and T. K. Carne proved the following theorem, which is stronger

than Theorem 7.

Theorem 8 ([2]). Let Ω1 and Ω2 be hyperbolic domains and f : Ω1 Ñ Ω2 be a holomorphic function. Then for all
z,w P Ω1,

dΩ2p f pzq, f pwqq ¤ logpcosh dΩ1pz,wq � | f hpwq| sinh dΩ1pz,wqq. (3)
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Let us note that Theorem 8 is of crucial importance for our research (see proof of Theorem 11).
Note that in [2], Theorem 8 is formulated and proved for Ω1 � Ω2 � U. Using the fact that Ω1 and Ω1

are conformally equivalent toU, one can easily prove that this result remains valid for hyperbolic domains.
Next, since for all t P R we have logpcosh t � sinh tq � logpetq � t, it follows that for | f hpwq| � 1

inequality (3) becomes (1). On the other hand, for all t P r0,�8q the function h : r0, 1s Ñ r0,�8q defined by
hpaq � logpcosh t� a sinh tq is monotonically increasing. Hence, if | f hpwq|   1 then (3) is stronger inequality
than (1).

There are many papers where authors have considered various versions of Schwarz-Pick type estimates
for harmonic functions and related problems (see [13], [4], [16], [8], [12], [6], [19], [27] and [18]). In this
regard, we note that M. Mateljević [24] cf. [23] recently explained one method (we will refer to it as the strip
method) which enabled that some of these results to be proven in an elegant way.

For completeness we will shortly reproduce the strip method. In order to do so, we will first introduce
the appropriate notation and specify some simple facts.

By S we denote the strip tz P C : �1   Re z   1u. The mapping ϕ defined by ϕpzq � tan
�π

4
z
	

is a
conformal isomorphism from S ontoU and by φ we denote the inverse mapping of ϕ (see also Example 1
in [25]). Throughout this paper by ϕ and φ we always denote these mappings.

Using the mapping ϕ one can derive the following equality

ρSpzq � ρUpϕpzqq|ϕ1pzq| �
π
2

1

cos
�π

2
Re z

	 , for all z P S.

By ∇u we denote the gradient of real-valued C1 function u, i.e. ∇u � pux,uyq � ux � iuy. If f � u � iv is
complex-valued C1 function, where u � Re f and v � Im f , then we use notation

fx � ux � ivx and fy � uy � ivy,

as well as
fz �

1
2
p fx � i fyq and fz �

1
2
p fx � i fyq.

Finally, by d f pzq we denote differential of the function f at point z, i.e. the Jacobian matrix�
uxpzq uypzq
vxpzq vypzq



.

The matrix d f pzq is an R-linear operator from the tangent space TzR2 to the tangent space T f pzqR
2. By

}d f pzq} we denote norm of this operator. It is not difficult to prove that }d f pzq} � | fzpzq| � | fzpzq|.

Briefly, the strip method consists of the following elementary considerations (see [24, 25]):

(I) Suppose that f : UÑ S be a holomorphic function. Then by Theorem 7 we have

ρSp f pzqq| f 1pzq| ¤ ρUpzq,

for all z P U.

(II) If f � u � iv is a harmonic function and F � U � iV is a holomorphic function on a domain D such
that Re f � Re F on D (in this setting we say that F is associated to f or to u), then

F1 � Ux � iVx � Ux � iUy � ux � iuy.

Hence F1 � ∇u and |F1| � |∇u| � |∇u|.

(III) Suppose that D is a simply connected plane domain and f : D Ñ S is a harmonic function. Then it
is known from the standard course of complex analysis that there is a holomorphic function F on D
such that Re f � Re F on D, and it is clear that F : D Ñ S.
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(IV) The hyperbolic density ρS at point z depends only on Re z.

From (I)-(IV) we immediately obtain:

Theorem 9 ([24, Proposition 2.4], [12],[6]). Let u : UÑ p�1, 1q be a harmonic function and let F be a holomorphic
function which is associated to u. Then

ρSpupzqq|∇upzq| � ρSpFpzqq|F1pzq| ¤ ρUpzq, for all z P U.

In other words

|∇upzq| ¤
4
π

cos
�π

2
upzq

	
1 � |z|2

, for all z P U. (4)

If u is the real part of a conformal isomorphism fromU onto S then in (4) equality holds for all z P U and vice versa.

In 1989, F. Colonna [8] proved the following version of the Schwarz-Pick lemma for harmonic functions.

Theorem 10 ([8, Theorem 3] and [24, Proposition 2.8], cf. [1, Theorem 6.26]). Let f : U Ñ U be a harmonic
function. Then

}d f pzq} ¤
4
π

1
1 � |z|2

, for all z P U. (5)

In particular,

}d f p0q} ¤
4
π
. (6)

Remark 1. The inequality (5) is sharp in the following sense: for all z P U there exists a harmonic function
frzs : UÑ U (which depends on z) such that

}d frzspzq} �
4
π

1
1 � |z|2

.

One such function is defined by frzspζq � Re pφpϕ�zpζqqq. For more details see Theorem 4 in [8].

Remark 2. The inequality (6) could not be improved even if we add the assumption that f p0q � 0. More precisely, if

f pζq � Reφpζq then f satisfies all assumptions of Theorem 10, f p0q � 0 and }d f p0q} �
4
π

(see also [24, Proposition
2.8] and [1, Theorem 6.26]).

Remark 3. It seems that the question: “Is it possible to improve the inequality (5) if we add the assumption f p0q � b,
where b � 0?” is an open problem (see [24, Problem 2]).

Note that the inequalities (4) and (6) naturally impose assumptions in Theorems 11 and 12 below.

2. Main results

Theorem 11. Let u : UÑ p�1, 1q be a harmonic function such that:

(R1) up0q � b and

(R2) |∇up0q| � d, where d ¤
4
π

cos
�π

2
b
	

.
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Then, for all z P U,

4
π

arctanϕa
�
� |z|ϕcp|z|q

�
¤ upzq ¤

4
π

arctanϕa
�
|z|ϕcp|z|q

�
. (7)

Here a � tan
bπ
4

and c �
π
4

1

cos
π
2

b
d. These inequalities are sharp for each point z P U in the following sense: for

arbitrary z P U there exist harmonic functions purzs, qurzs : U Ñ p�1, 1q, which depend on z, such that they satisfy
(R1) and (R2) and also

purzspzq �
4
π

arctanϕa
�
� |z|ϕcp|z|q

�
and qurzspzq �

4
π

arctanϕa
�
|z|ϕcp|z|q

�
.

Remark 4. Formally, if c � 1 then function ϕc is not defined. In this case we mean that ϕcp|z|q � 1 for all z P U.

Corollary 1. Let u : U Ñ p�1, 1q be a harmonic function such that up0q � 0 and ∇up0q � p0, 0q. Then, for all
z P U,

|upzq| ¤
4
π

arctan |z|2.

Theorem 12. Let f : UÑ U be a harmonic function such that:

(C1) f p0q � 0 and

(C2) }d f p0q} � d, where d ¤
4
π

.

Then, for all z P U

| f pzq| ¤
4
π

arctan
�
|z|ϕCp|z|q

�
, (8)

where C �
π
4

d.

Corollary 2. Let f : UÑ U be a harmonic function such that f p0q � 0 and }d f p0q} � 0. Then, for all z P U,

| f pzq| ¤
4
π

arctan |z|2.

Remark 5. Formally, if C � 1 then function ϕC is not defined. In this case we mean that ϕCp|z|q � 1 for all z P U.

3. Proofs of main results

3.1. Proof of Theorem 11
In order to prove Theorem 11, we recall the following definitions and one lemma from [25].
Let λ ¡ 0 be arbitrary. By Dλpζq � tz P U : dUpz, ζq ¤ λu (respectively Sλpζq � tz P S : dSpz, ζq ¤ λu) we

denote the hyperbolic closed disc inU (respectively in S) with hyperbolic center ζ P U (respectively ζ P S)
and hyperbolic radius λ. Specifically, if ζ � 0 we omit ζ from the notation.

Let r P p0, 1q be arbitrary. By Ur we denote the Euclidean closed disc

tz P C : |z| ¤ ru.

Also, let

λprq � dUpr, 0q � log
1 � r
1 � r

� 2 artanh r.
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Since dUpz, 0q � log
1 � |z|
1 � |z|

� 2 artanh |z|, for all z P U, we have

Dλprq � tz P C : 2 artanh |z| ¤ 2 artanh ru � tz P C : |z| ¤ ru � Ur.

Let b P p�1, 1q be arbitrary and a � tan
bπ
4

. By Theorem 7 we have

Sλprqpbq � Sλprqpφpϕap0qqq � φpϕapDλprqqq � φpϕapUrqq,

where φ is the conformal isomorphism fromU onto S defined in subsection 1.2. Further, one can show that
(see Figure 1):

i) Sλprqpbq is symmetric with respect to the x-axis;

ii) Sλprqpbq is Euclidean convex (see [3, Theorem 7.11]).

Figure 1: Disks Ur, ϕapUrq and φpϕapUrqq

From i)-ii) we immediately obtain:

Lemma 1 ([25, Lemma 3]). Let r P p0, 1q and b P p�1, 1q be arbitrary. Then

RepSλprqpbqq �
�

4
π

arctanϕap�rq,
4
π

arctanϕaprq
�
.

Here a � tan
bπ
4

and Re : CÑ R is defined by Repzq � Re z.

Proof. [Proof of Theorem 11] Applying the strip method we obtain that there exists holomorphic function
f : UÑ S such that Re f � u, f p0q � b and | f 1p0q| � d. Also, we have

| f hp0q| �
ρSp f p0qq
ρUp0q

| f 1p0q| �
π
4

1

cos
π
2

b
d � c.

Let z P U be arbitrary. By Theorem 8, taking Ω1 � U and Ω2 � S, we have

dSp f pzq, bq ¤ logpcosh dUpz, 0q � | f hp0q| sinh dUpz, 0qq � log
�

1 � |z|2 � 2c|z|
1 � |z|2



.
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Now, we chose a point Rpzq P r0, 1q such that

dUpRpzq, 0q � log
�

1 � |z|2 � 2c|z|
1 � |z|2



. (9)

Note that the equality (9) is equivalent to the equality

1 � Rpzq
1 � Rpzq

�
1 � |z|2 � 2c|z|

1 � |z|2

and hence we obtain Rpzq � |z|
c � |z|

1 � c|z|
� |z|ϕcp|z|q. Therefore

dSp f pzq, bq ¤ dUp|z|ϕcp|z|q, 0q,

i.e. f pzq P S
λ
�
|z|ϕcp|z|q

�pbq. Finally, by Lemma 1

upzq � Re f pzq P
�

4
π

arctanϕa
�
� |z|ϕcp|z|q

�
,

4
π

arctanϕa
�
|z|ϕcp|z|q

��
.

If z � 0 then it is clear that the inequality (7) is sharp.
In order to prove that inequality (7) is sharp in the case z P Uzt0u, we first define the functionspΦ, qΦ : UÑ S as follows pΦpζq � φ

�
ϕa
�
� ζ � ϕcpζq

�	
and qΦpζq � φ

�
ϕa
�
ζ � ϕcpζq

�	
.

Let z P Uzt0u. Define the functions purzs, qurzs : UÑ p�1, 1q (which depend on z) in the following way:

purzspζq � Re pΦpe�i arg zζq

and qurzspζq � Re qΦpe�i arg zζq.

It is easy to check that the functions purzs and qurzs are harmonic and that they satisfy assumptions (R1) and
(R2). Also

purzspzq �
4
π

arctanϕa
�
� |z|ϕcp|z|q

�
and qurzspzq �

4
π

arctanϕa
�
|z|ϕcp|z|q

�
.

3.2. Proof of Theorem 12
In order to prove Theorem 12, we need two lemmas.

Lemma 2 ([8, Lemma 1]). Let z,w P C. Then

max
θPR

|w cosθ� z sinθ| �
1
2
p|w � iz| � |w � iz|q.

Lemma 3. Fix z P U. Function h : p�1, 1q Ñ R defined by hptq �
t � |z|

1 � t|z|
is monotonically increasing.
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Proof. The proof follows directly from the fact h1ptq �
1 � |z|2

p1 � t|z|q2 ¡ 0 for all t P p�1, 1q.

Proof. [Proof of Theorem 12] Denote by u and v real and imaginary part of f , respectively. Let θ P R be
arbitrary. It is clear that the function U defined by

Upzq � cosθupzq � sinθvpzq

is harmonic on the unit diskU, Up0q � 0 and |Upzq| ¤ | f pzq|   1 for all z P U. By Theorem 11 we have

Upzq ¤
4
π

arctan
�
|z|ϕcp|z|q

�
, for all z P U, (10)

where c �
π
4
|∇Up0q|.

Since

∇Upzq � cosθ∇upzq � sinθ∇vpzq
� cosθ

�
uxpzq � iuypzq

�
� sinθ

�
vxpzq � ivypzq

�
,

by Lemma 2 we get

max
θPR

|∇Upzq| � max
θPR

| cosθ
�
uxpzq � iuypzq

�
� sinθ

�
vxpzq � ivypzq

�
|

�
1
2
�
|uxpzq � iuypzq � ipvxpzq � ivypzqq| � |uxpzq � iuypzq � ipvxpzq � ivypzqq|

�
�

1
2

�b
puxpzq � vypzqq2 � puypzq � vxpzqq2 �

b
puxpzq � vypzqq2 � puypzq � vxpzqq2

	
� | fzpzq| � | fzpzq| � }d f pzq}.

Hence
|∇Up0q| ¤ }d f p0q}

and
c �

π
4
|∇Up0q| ¤

π
4
}d f p0q} �

π
4

d � C.

By Lemma 3, from (10) we obtain

Upzq ¤
4
π

arctan
�
|z|ϕCp|z|q

�
, for all z P U. (11)

Finally, let z P U be such that f pzq � 0 and let θ such that

cosθ �
upzq
| f pzq|

and sinθ �
vpzq
| f pzq|

.

Then Upzq � | f pzq| and hence from (11) we get the inequality (8).
If z P U is such that f pzq � 0 then the inequality (8) is trivial.

4. Appendix

4.1. Harmonic quasiregular mappings and the Schwarz-Pick type estimates
Taking into account Remark 3 we mention some results related to harmonic quasiregular mappings.
Let D and G be domains in C and K ¥ 1. A C1 mapping f : D Ñ G we call K�quasiregular mapping if

}d f pzq}2 ¤ K|J f pzq|, for all z P D.

Here J f is the Jacobian determinant of f . In particular, a K�quasiconformal mapping is a K�quasiregular
mapping that is also a homeomorphism.

In [16], M. Knežević and M. Mateljević proved the following result (which can be considered as gener-
alization of Theorem 10):
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Theorem 13. Let f : UÑ U be a harmonic K�quasiconformal mapping. Then

}d f pzq} ¤ K
1 � | f pzq|2

1 � |z|2
, for all z P U.

One result of this type was also obtained by H. H. Chen [5]:

Theorem 14. Let f : UÑ U be a harmonic K�quasiconformal mapping. Then

}d f pzq} ¤
4
π

K
cos p| f pzq|π{2q

1 � |z|2
, for all z P U.

For further results related to harmonic quasiconformal and hyperbolic harmonic quasiconformal mappings
we refer the interested reader to [21], [30], [20], [7], [22], [14], [15] and literature cited there.
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topic and for many stimulating conversations. The author also wishes to express his thanks to Miljan
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