Some Singular Value Inequalities Related to Linear Maps

Junjian Yang ${ }^{\text {a,b,c,d }}$, Linzhang Lu ${ }^{\text {a,e }}$, Zhen Chen ${ }^{\text {a }}$
${ }^{a}$ School of Mathematical Sciences, Guizhou Normal University, Guiyang, P. R. China
${ }^{b}$ School of Mathematics and Statistics, Hainan Normal University, Haikou, P. R. China
${ }^{c}$ Key Laboratory Of Data Science And Intelligence Education, Hainan Normal University, Ministry of Education
${ }^{d}$ Key Laboratory of Computational Science and Application of Hainan Province
${ }^{e}$ School of Mathematical Sciences, Xiamen University, Xiamen, P. R. China

> Abstract.
> $\operatorname{If}\left(\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right) \in \mathbb{M}_{2}\left(\mathbb{M}_{n}\right)$ is positive semidefinite, Lin [7] conjectured that $2 s_{j}(\Psi(X)) \leq s_{j}(\Psi(A)+\Psi(B)), \quad j=1, \ldots, n$,
> and
> $s_{j}(\Psi(X)) \leq s_{j}(\Psi(A) \sharp \Psi(B)), \quad j=1, \ldots, n$,
where the linear map $\Psi: X \mapsto 2 \operatorname{tr}(X) I_{n}-X$ and $s_{j}(\cdot)$ means the j-th largest singular value.
In this paper, we reprove that

$$
\left(\begin{array}{cc}
\Psi(A) & \Psi(X) \\
\Psi\left(X^{*}\right) & \Psi(B)
\end{array}\right)
$$

is PPT by using an alternative approach and prove the above singular value inequalities hold for the linear map $\Psi_{1}: X \mapsto(2 n+1) \operatorname{tr}(X) I_{n}-X$.

1. Introduction

We denote by $\mathbb{M}_{n}\left(\mathbb{M}_{k}\right)$ the set of $n \times n$ block matrices with each block in \mathbb{M}_{k}. By convention, the $n \times n$ identity matrix is denoted by I_{n}. We use $E_{j, k}$ to denote the $n \times n$ matrix with 1 at the i, k component and zeros elsewhere. A positive semidefinite matrix A will be expressed as $A \geq 0$. Likewise, we write $A>0$ to refer that A is a positive definite matrix. For any $n \times n$ matrix A, the singular values $s_{j}(A)$ are nonincreasingly arranged, $s_{1}(A) \geq s_{2}(A) \geq \cdots \geq s_{n}(A)$. If A is Hermitian, we also arrange its eigenvalues $\lambda_{j}(A)$ in nonincreasing order $\lambda_{1}(A) \geq \lambda_{2}(A) \geq \cdots \geq \lambda_{n}(A)$. The geometric mean of two positive definite matrices $A, B \in \mathbb{M}_{n}$, denoted by $A \sharp B$, is the positive definite solution of the Ricatti equation $X B^{-1} X=A$ and

[^0]it has the explicit expression $A \sharp B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\frac{1}{2}} A^{\frac{1}{2}}$. More details on the matrix geometric mean can be found in [1, Chapter 4].

A matrix $H=\left[H_{i, j}\right]_{i, j=1}^{n} \in \mathbb{M}_{n}\left(\mathbb{M}_{k}\right)$ is said to be positive partial transpose (i.e., PPT) if H is positive semidefinite and its partial transpose $H^{\tau}=\left[H_{j, i}\right]_{i, j=1}^{n}$ is also positive semidefinite.

A linear map $\Phi: \mathbb{M}_{k} \mapsto \mathbb{M}_{m}$ is said to be n-positive if for $A=\left[A_{i, j}\right]_{i, j=1}^{n} \in \mathbb{M}_{n}\left(\mathbb{M}_{k}\right)$,

$$
\begin{equation*}
\left[A_{i, j}\right]_{i, j=1}^{n} \geq 0 \Rightarrow\left[\Phi\left(A_{i, j}\right)\right]_{i, j=1}^{n} \geq 0 \tag{1}
\end{equation*}
$$

It is said to be completely positive if (1) is true for any positive integer. On the other hand, a linear map $\Phi: \mathbb{M}_{k} \mapsto \mathbb{M}_{m}$ is said to be n-copositive if

$$
\begin{equation*}
\left[A_{i, j}\right]_{i, j=1}^{n} \geq 0 \Rightarrow\left[\Phi\left(A_{j, i}\right)\right]_{i, j=1}^{n} \geq 0 \tag{2}
\end{equation*}
$$

and Φ is said to be completely copositive if (2) is true for any positive integer n. Furthermore, Φ is called a completely PPT map if $\left[\Phi\left(A_{i, j}\right)\right]_{i, j=1}^{n}$ and $\left[\Phi\left(A_{j, i}\right)\right]_{i, j=1}^{n}$ are both positive semidefinite.

Lin [7] left the following inequalities unsolved:
Conjecture 1.1. Let $H=\left(\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right) \in \mathbb{M}_{2}\left(\mathbb{M}_{n}\right)$ be positive semidefinite. Then

$$
\begin{equation*}
2 s_{j}(\Psi(X)) \leq s_{j}(\Psi(A)+\Psi(B)), \quad j=1, \ldots, n \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{j}(\Psi(X)) \leq s_{j}(\Psi(A) \sharp \Psi(B)), \quad j=1, \ldots, n \tag{4}
\end{equation*}
$$

where $\Psi: X \mapsto 2 \operatorname{tr}(X) I_{n}-X$.
Actually, Lin [5] has showed that (3) holds for the linear map $\Phi: X \mapsto \operatorname{tr}(X) I_{n}+X$. However, (4) has not been proven for the linear map $\Phi: X \mapsto \operatorname{tr}(X) I_{n}+X$.

In this paper, we first prove that

$$
\left(\begin{array}{ll}
\Psi(A) & \Psi(X) \\
\Psi\left(X^{*}\right) & \Psi(B)
\end{array}\right)
$$

is PPT for $\Psi: X \mapsto 2 \operatorname{tr}(X) I_{n}-X$ by a new approach which is different from that in [7, Exampe 3.6] and then show (3) and (4) hold for linear map $\Psi_{1}: X \mapsto(2 n+1) \operatorname{tr}(X) I_{n}-X$.

2. Auxilliary results and proofs

Before presenting our results, we start with two lemmas which are useful for our proofs. The first one is standard in matrix analysis.

Lemma 2.1. [1, p. 14] Let $B>0$. Then the block matrix $\left(\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right)$ is positive semidefinite if and only if $A \geq X B^{-1} X^{*}$.

The following result is due to Choi [2, Theorem 2].
Lemma 2.2. Let Φ be a linear map from \mathbb{M}_{n} to \mathbb{M}_{k}. Then Φ is completely positive if and only if $\left[\Phi\left(E_{i, j}\right)\right]_{i, j=1}^{n} \geq$ 0.

Remark 2.3. It is easy to see from Lemma 2.2 that Φ is completely PPT if and only if $\left[\Phi\left(E_{i, j}\right)\right]_{i, j=1}^{n} \geq 0$ and $\left[\Phi\left(E_{j, i}\right)\right]_{i, j=1}^{n} \geq 0$.

Lin proved the following theorem in [7]. Now, we provide an alternative proof for the result.

Theorem 2.4. Let $\Psi: X \mapsto 2 \operatorname{tr}(X) I_{n}-X$ be a linear map from \mathbb{M}_{n} to \mathbb{M}_{n} and $\left(\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right) \in \mathbb{M}_{2}\left(\mathbb{M}_{n}\right)$ be positive semidefinite. Then

$$
\left(\begin{array}{ll}
\Psi(A) & \Psi(X) \\
\Psi\left(X^{*}\right) & \Psi(B)
\end{array}\right)
$$

is PPT.
Proof. By Remark 2.3, it suffices to show that

$$
\left(\begin{array}{ll}
\Psi\left(E_{11}\right) & \Psi\left(E_{12}\right) \\
\Psi\left(E_{21}\right) & \Psi\left(E_{22}\right)
\end{array}\right) \geq 0 \text { and }\left(\begin{array}{ll}
\Psi\left(E_{11}\right) & \Psi\left(E_{21}\right) \\
\Psi\left(E_{12}\right) & \Psi\left(E_{22}\right)
\end{array}\right) \geq 0
$$

Since

$$
\left(\begin{array}{ll}
\Psi\left(E_{11}\right) & \Psi\left(E_{12}\right) \\
\Psi\left(E_{21}\right) & \Psi\left(E_{22}\right)
\end{array}\right)=\left(\begin{array}{cc}
2 I_{n}-E_{11} & -E_{12} \\
-E_{21} & 2 I_{n}-E_{22}
\end{array}\right)
$$

then it is easy to compute

$$
\begin{aligned}
& 2 I_{n}-E_{22}-\left(-E_{21}\right)\left(2 I_{n}-E_{11}\right)^{-1}\left(-E_{12}\right) \\
& =2 I_{n}-E_{22}-E_{21}\left(2 I_{n}-E_{11}\right)^{-1} E_{12} \\
& =2 I_{n}-E_{22}-E_{22} \\
& =2 I_{n}-2 E_{22} \geq 0 .
\end{aligned}
$$

Hence by Lemma 2.1,

$$
\left(\begin{array}{ll}
\Psi\left(E_{11}\right) & \Psi\left(E_{12}\right) \\
\Psi\left(E_{21}\right) & \Psi\left(E_{22}\right)
\end{array}\right) \geq 0
$$

In a similar way, we can have

$$
\left(\begin{array}{ll}
\Psi\left(E_{11}\right) & \Psi\left(E_{21}\right) \\
\Psi\left(E_{12}\right) & \Psi\left(E_{22}\right)
\end{array}\right) \geq 0
$$

So Ψ is completely PPT.
Remark 2.5. Lin [7] proved Theorem 2.4 by using the approach in [3].
Next, we prove a result which is related to [7, Example 3.6.].
Theorem 2.6. Let $\Psi: X \mapsto 2(\operatorname{tr} X) I_{n}-X, \Phi: C \mapsto(\operatorname{tr} X) I_{n}+X$ be both linear maps from \mathbb{M}_{n} to \mathbb{M}_{n} and $\left(\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right) \in \mathbb{M}_{2}\left(\mathbb{M}_{n}\right)$ be positive semidefinite. Then

$$
2 s_{j}(\Phi(\Psi(X))) \leq s_{j}(\Phi(\Psi(A)+\Psi(B))), \quad j=1, \ldots, n
$$

and

$$
s_{j}(\Phi(\Psi(X))) \leq s_{j}(\Phi(\Psi(A)) \sharp \Phi(\Psi(B))), \quad j=1, \ldots, n
$$

Proof. By Theorem 2.4, we know that

$$
\left(\begin{array}{ll}
\Psi(A) & \Psi(X) \\
\Psi\left(X^{*}\right) & \Psi(B)
\end{array}\right)
$$

is PPT.
So the inequalities below follow from [5, (1.1)]

$$
\begin{equation*}
2 s_{j}(\Phi(\Psi(X))) \leq s_{j}(\Phi(\Psi(A)+\Psi(B))), \quad j=1, \ldots, n \tag{5}
\end{equation*}
$$

which means that

$$
\begin{aligned}
2 s_{j}(\Phi(\Psi(X))) & =2 s_{j}\left(\Psi(X)+\operatorname{tr}(\Psi(X)) I_{n}\right) \\
& =2 s_{j}\left((2 n+1) \operatorname{tr}(X) I_{n}-X\right) \\
& \leq s_{j}\left((\Psi(A)+\Psi(B))+\operatorname{tr}(\Psi(A)+\Psi(B)) I_{n}\right) \\
& =s_{j}\left((2 n+1) \operatorname{tr}(A+B) I_{n}-(A+B)\right), j=1, \ldots, n
\end{aligned}
$$

Now setting the linear map $\Psi_{1}: X \mapsto(2 n+1) \operatorname{tr}(X) I_{n}-X$ in (5) yields

$$
2 s_{j}\left(\Psi_{1}(X)\right) \leq s_{j}\left(\Psi_{1}(A)+\Psi_{1}(B)\right), \quad j=1, \ldots, n
$$

Moreover, by [5, (1.1)] and [4, Lemma 4.2], we have the stronger inequalities below:

$$
s_{j}(\Phi(\Psi(X))) \leq s_{j}(\Phi(\Psi(A) \sharp \Psi(B))), \quad j=1, \ldots, n
$$

Compute

$$
\begin{aligned}
s_{j}(\Phi(\Psi(X))) & =s_{j}\left((2 n+1) \operatorname{tr}(X) I_{n}-X\right) \\
& =s_{j}\left(\Psi_{1}(X)\right) \\
& \leq s_{j}(\Phi(\Psi(A)) \sharp \Phi(\Psi(B))) \\
& =s_{j}\left(\left((2 n+1) \operatorname{tr}(A) I_{n}-A\right) \sharp\left((2 n+1) \operatorname{tr}(B) I_{n}-B\right)\right) \\
& \leq s_{j}\left(\Psi_{1}(A) \sharp \Psi_{1}(B)\right) \\
& =s_{j}(\Phi(\Psi(A)) \sharp \Phi(\Psi(B))), \quad j=1, \ldots, n .
\end{aligned}
$$

Finally, we show that the inequality (3) holds for $n=2$.
Theorem 2.7. Let $H=\left(\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right) \in \mathbb{M}_{2}\left(\mathbb{M}_{2}\right)$ be positive semidefinite. Then

$$
2 s_{j}(\Psi(X)) \leq s_{j}(\Psi(A)+\Psi(B)), \quad j=1,2
$$

where $\Psi: X \mapsto 2 \operatorname{tr}(X) I_{2}-X$.
Proof. Since the linear map $\bar{\Psi}: X \mapsto \operatorname{tr}(X) I_{2}-X$ is completely copositive [6, Proposition 2.1], then

$$
\left(\begin{array}{cc}
\bar{\Psi}(A) & \bar{\Psi}\left(X^{*}\right) \\
\bar{\Psi}(X) & \bar{\Psi}(B)
\end{array}\right)=\left(\begin{array}{cc}
\operatorname{tr}(A) I_{2}-A & \operatorname{tr}\left(X^{*}\right) I_{2}-X^{*} \\
\operatorname{tr}(X) I_{2}-X & \operatorname{tr}(B) I_{2}-B
\end{array}\right) \geq 0
$$

Thus, by [5, (1.1)], we have

$$
2 s_{j}\left(\Phi\left(\operatorname{tr}\left(X^{*}\right) I_{2}-X^{*}\right)\right) \leq s_{j}\left(\Phi\left(\operatorname{tr}(A) I_{2}-A\right)+\Phi\left(\operatorname{tr}(B) I_{2}-B\right)\right), \quad j=1,2
$$

where $\Phi: X \mapsto \operatorname{tr}(X) I_{2}+X$.
Notice that $\operatorname{tr}\left(\operatorname{tr}(X) I_{2}-X\right)=\operatorname{tr}(X)$ for any $X \in \mathbb{M}_{2}$. Then for each j, a simple calculation gives

$$
\begin{aligned}
& 2 s_{j}\left(\Phi\left(\operatorname{tr}\left(X^{*}\right) I_{2}-X^{*}\right)\right) \\
& =2 s_{j}\left(\operatorname{tr}\left(\operatorname{tr}\left(X^{*}\right) I_{2}-X^{*}\right) I_{2}+\left(\operatorname{tr}\left(X^{*}\right) I_{2}-X^{*}\right)\right) \\
& =2 s_{j}\left(2 \operatorname{tr}\left(X^{*}\right) I_{2}-X^{*}\right) \\
& =2 s_{j}\left(\Psi\left(X^{*}\right)\right) \\
& =2 s_{j}(\Psi(X)) \\
& \leq s_{j}\left(\operatorname{tr}\left(\operatorname{tr}(A) I_{2}-A\right) I_{2}+\left(\operatorname{tr}(A) I_{2}-A\right)+\operatorname{tr}\left(\operatorname{tr}(B) I_{2}-B\right) I_{2}+\left(\operatorname{tr}(B) I_{2}-B\right)\right) \\
& =s_{j}\left(2 \operatorname{tr}(A) I_{2}-A+2 \operatorname{tr}(B) I_{2}-B\right) \\
& =s_{j}(\Psi(A+B)) .
\end{aligned}
$$

Hence, the result follows.

Remark 2.8. Although we have not solved Lin's conjecture in Theorem 2.7, our result is a step closer to the solution of the conjecture.

References

[1] R. Bhatia, Positive Definite Matrices, Princeton University Press, Princeton, 2007.
[2] M. D. Choi, Completely positive linear maps on complex matrices, Linear Algebra Appl. 10 (1975) 285-290.
[3] M. Lin, A completely PPT map, Linear Algebra Appl. 459 (2014) 404-410.
[4] M. Lin, Inequalities related to 2×2 block PPT matrices, Oper Matrices 94 (2015) 917-924.
[5] M. Lin, A singular value inequality related to a linear map, Electron. J. Linear Algebra 31 (2016) 120-124.
[6] M. Lin, A determinantal inequality involving partial traces, Canad. Math. Bull. 59 (2016) 585-591.
[7] M. Lin, New properties for certain positive semidefinite matrices, Linear Algebra Appl. 520 (2017) 32-43.

[^0]: 2010 Mathematics Subject Classification. 15A45, 15A60.
 Keywords. Block matrices, Singular value inequalities, Linear maps.
 Received: 24 November 2019; Revised: 20 December 2019; Accepted: 14 May 2020
 Communicated by Fuad Kittaneh
 Research supported by Hainan Provincial Natural Science Foundation for High-level Talents grant no. 2019RC171, the Ministry of Education of Hainan grant no. Hnky2019ZD-13, the Provincial Key Laboratory, Hainan Normal University grant no. JSKX201904, Hainan Provincial Natural Science Foundation of China grant no. 120MS032.

 Email addresses: junjianyang1981@163.com (Junjian Yang), llz@gznu.edu.cn, lzlu@xmu.edu.cn (Linzhang Lu), zchen@gznu.edu. cn (Zhen Chen)

