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Abstract.
If

(
A X
X∗ B

)
∈M2(Mn) is positive semidefinite, Lin [7] conjectured that

2s j(Ψ(X)) ≤ s j(Ψ(A) + Ψ(B)), j = 1, . . . ,n,

and

s j(Ψ(X)) ≤ s j(Ψ(A)]Ψ(B)), j = 1, . . . ,n,

where the linear map Ψ : X 7→ 2tr(X)In − X and s j(·) means the j-th largest singular value.
In this paper, we reprove that (

Ψ(A) Ψ(X)
Ψ(X∗) Ψ(B)

)
is PPT by using an alternative approach and prove the above singular value inequalities hold for the linear
map Ψ1 : X 7→ (2n + 1)tr(X)In − X.

1. Introduction

We denote by Mn(Mk) the set of n × n block matrices with each block in Mk. By convention, the
n × n identity matrix is denoted by In. We use E j,k to denote the n × n matrix with 1 at the i, k component
and zeros elsewhere. A positive semidefinite matrix A will be expressed as A ≥ 0. Likewise, we write
A > 0 to refer that A is a positive definite matrix. For any n × n matrix A, the singular values s j(A) are
nonincreasingly arranged, s1(A) ≥ s2(A) ≥ · · · ≥ sn(A). If A is Hermitian, we also arrange its eigenvalues
λ j(A) in nonincreasing order λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). The geometric mean of two positive definite
matrices A,B ∈Mn , denoted by A]B, is the positive definite solution of the Ricatti equation XB−1X = A and
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it has the explicit expression A]B = A
1
2 (A−

1
2 BA−

1
2 )

1
2 A

1
2 . More details on the matrix geometric mean can be

found in [1, Chapter 4].
A matrix H = [Hi, j]n

i, j=1 ∈ Mn(Mk) is said to be positive partial transpose (i.e., PPT) if H is positive
semidefinite and its partial transpose Hτ = [H j,i]n

i, j=1 is also positive semidefinite.
A linear map Φ :Mk 7→Mm is said to be n-positive if for A = [Ai, j]n

i, j=1 ∈Mn(Mk),

[Ai, j]n
i, j=1 ≥ 0 ⇒ [Φ(Ai, j)]n

i, j=1 ≥ 0. (1)

It is said to be completely positive if (1) is true for any positive integer. On the other hand, a linear map
Φ :Mk 7→Mm is said to be n-copositive if

[Ai, j]n
i, j=1 ≥ 0 ⇒ [Φ(A j,i)]n

i, j=1 ≥ 0, (2)

and Φ is said to be completely copositive if (2) is true for any positive integer n. Furthermore, Φ is called a
completely PPT map if [Φ(Ai, j)]n

i, j=1 and [Φ(A j,i)]n
i, j=1 are both positive semidefinite.

Lin [7] left the following inequalities unsolved:

Conjecture 1.1. Let H =

(
A X
X∗ B

)
∈M2(Mn) be positive semidefinite. Then

2s j(Ψ(X)) ≤ s j(Ψ(A) + Ψ(B)), j = 1, . . . ,n, (3)

and

s j(Ψ(X)) ≤ s j(Ψ(A)]Ψ(B)), j = 1, . . . ,n, (4)

where Ψ : X 7→ 2tr(X)In − X.

Actually, Lin [5] has showed that (3) holds for the linear map Φ : X 7→ tr(X)In + X. However, (4) has not
been proven for the linear map Φ : X 7→ tr(X)In + X.

In this paper, we first prove that (
Ψ(A) Ψ(X)
Ψ(X∗) Ψ(B)

)
is PPT for Ψ : X 7→ 2tr(X)In −X by a new approach which is different from that in [7, Exampe 3.6] and then
show (3) and (4) hold for linear map Ψ1 : X 7→ (2n + 1)tr(X)In − X.

2. Auxilliary results and proofs

Before presenting our results, we start with two lemmas which are useful for our proofs. The first one
is standard in matrix analysis.

Lemma 2.1. [1, p. 14] Let B > 0. Then the block matrix
(

A X
X∗ B

)
is positive semidefinite if and only if

A ≥ XB−1X∗.

The following result is due to Choi [2, Theorem 2].

Lemma 2.2. Let Φ be a linear map fromMn toMk. Then Φ is completely positive if and only if [Φ(Ei, j)]n
i, j=1 ≥

0.

Remark 2.3. It is easy to see from Lemma 2.2 that Φ is completely PPT if and only if [Φ(Ei, j)]n
i, j=1 ≥ 0 and

[Φ(E j,i)]n
i, j=1 ≥ 0.

Lin proved the following theorem in [7]. Now, we provide an alternative proof for the result.



J. Yang et al. / Filomat 34:11 (2020), 3705–3709 3707

Theorem 2.4. Let Ψ : X 7→ 2tr(X)In − X be a linear map from Mn to Mn and
(

A X
X∗ B

)
∈ M2(Mn) be

positive semidefinite. Then (
Ψ(A) Ψ(X)
Ψ(X∗) Ψ(B)

)
is PPT.

Proof. By Remark 2.3, it suffices to show that(
Ψ(E11) Ψ(E12)
Ψ(E21) Ψ(E22)

)
≥ 0 and

(
Ψ(E11) Ψ(E21)
Ψ(E12) Ψ(E22)

)
≥ 0.

Since (
Ψ(E11) Ψ(E12)
Ψ(E21) Ψ(E22)

)
=

(
2In − E11 −E12
−E21 2In − E22

)
,

then it is easy to compute

2In − E22 − (−E21)(2In − E11)−1(−E12)

= 2In − E22 − E21(2In − E11)−1E12

= 2In − E22 − E22

= 2In − 2E22 ≥ 0.

Hence by Lemma 2.1, (
Ψ(E11) Ψ(E12)
Ψ(E21) Ψ(E22)

)
≥ 0.

In a similar way, we can have (
Ψ(E11) Ψ(E21)
Ψ(E12) Ψ(E22)

)
≥ 0.

So Ψ is completely PPT.

Remark 2.5. Lin [7] proved Theorem 2.4 by using the approach in [3].

Next, we prove a result which is related to [7, Example 3.6.].

Theorem 2.6. Let Ψ : X 7→ 2(trX)In − X, Φ : C 7→ (trX)In + X be both linear maps from Mn to Mn and(
A X
X∗ B

)
∈M2(Mn) be positive semidefinite. Then

2s j(Φ(Ψ(X))) ≤ s j(Φ(Ψ(A) + Ψ(B))), j = 1, . . . ,n,

and

s j(Φ(Ψ(X))) ≤ s j(Φ(Ψ(A))]Φ(Ψ(B))), j = 1, . . . ,n.

Proof. By Theorem 2.4, we know that (
Ψ(A) Ψ(X)
Ψ(X∗) Ψ(B)

)
is PPT.
So the inequalities below follow from [5, (1.1)]

2s j(Φ(Ψ(X))) ≤ s j(Φ(Ψ(A) + Ψ(B))), j = 1, . . . ,n, (5)
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which means that

2s j(Φ(Ψ(X))) = 2s j(Ψ(X) + tr(Ψ(X))In)
= 2s j((2n + 1)tr(X)In − X)
≤ s j((Ψ(A) + Ψ(B)) + tr(Ψ(A) + Ψ(B))In)
= s j((2n + 1)tr(A + B)In − (A + B)), j = 1, . . . ,n.

Now setting the linear map Ψ1 : X 7→ (2n + 1)tr(X)In − X in (5) yields

2s j(Ψ1(X)) ≤ s j(Ψ1(A) + Ψ1(B)), j = 1, . . . ,n.

Moreover, by [5, (1.1)] and [4, Lemma 4.2], we have the stronger inequalities below:

s j(Φ(Ψ(X))) ≤ s j(Φ(Ψ(A)]Ψ(B))), j = 1, . . . ,n.

Compute

s j(Φ(Ψ(X))) = s j((2n + 1)tr(X)In − X)
= s j(Ψ1(X))
≤ s j(Φ(Ψ(A))]Φ(Ψ(B)))
= s j(((2n + 1)tr(A)In − A)]((2n + 1)tr(B)In − B))
≤ s j(Ψ1(A)]Ψ1(B))
= s j(Φ(Ψ(A))]Φ(Ψ(B))), j = 1, . . . ,n.

Finally, we show that the inequality (3) holds for n = 2.

Theorem 2.7. Let H =

(
A X
X∗ B

)
∈M2(M2) be positive semidefinite. Then

2s j(Ψ(X)) ≤ s j(Ψ(A) + Ψ(B)), j = 1, 2,

where Ψ : X 7→ 2tr(X)I2 − X.

Proof. Since the linear map Ψ : X 7→ tr(X)I2 − X is completely copositive [6, Proposition 2.1], then(
Ψ(A) Ψ(X∗)
Ψ(X) Ψ(B)

)
=

(
tr(A)I2 − A tr(X∗)I2 − X∗

tr(X)I2 − X tr(B)I2 − B

)
≥ 0.

Thus, by [5, (1.1)], we have

2s j(Φ(tr(X∗)I2 − X∗)) ≤ s j(Φ(tr(A)I2 − A) + Φ(tr(B)I2 − B)), j = 1, 2,

where Φ : X 7→ tr(X)I2 + X.
Notice that tr(tr(X)I2 − X) = tr(X) for any X ∈M2. Then for each j, a simple calculation gives

2s j(Φ(tr(X∗)I2 − X∗))
= 2s j(tr(tr(X∗)I2 − X∗)I2 + (tr(X∗)I2 − X∗))
= 2s j(2tr(X∗)I2 − X∗)
= 2s j(Ψ(X∗))
= 2s j(Ψ(X))
≤ s j(tr(tr(A)I2 − A)I2 + (tr(A)I2 − A) + tr(tr(B)I2 − B)I2 + (tr(B)I2 − B))
= s j(2tr(A)I2 − A + 2tr(B)I2 − B)
= s j(Ψ(A + B)).

Hence, the result follows.
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Remark 2.8. Although we have not solved Lin’s conjecture in Theorem 2.7, our result is a step closer to the solution
of the conjecture.
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