Filomat 34:11 (2020), 3705–3709 https://doi.org/10.2298/FIL2011705Y

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some Singular Value Inequalities Related to Linear Maps

Junjian Yang^{a,b,c,d}, Linzhang Lu^{a,e}, Zhen Chen^a

^a School of Mathematical Sciences, Guizhou Normal University, Guiyang, P. R. China
 ^b School of Mathematics and Statistics, Hainan Normal University, Haikou, P. R. China
 ^c Key Laboratory Of Data Science And Intelligence Education, Hainan Normal University, Ministry of Education
 ^d Key Laboratory of Computational Science and Application of Hainan Province
 ^e School of Mathematical Sciences, Xiamen University, Xiamen, P. R. China

Abstract. If $\begin{pmatrix} A & X \\ X^* & B \end{pmatrix} \in \mathbb{M}_2(\mathbb{M}_n)$ is positive semidefinite, Lin [7] conjectured that

$$2s_j(\Psi(X)) \leq s_j(\Psi(A) + \Psi(B)), \quad j = 1, \dots, n_j$$

and

$$s_j(\Psi(X)) \leq s_j(\Psi(A) \sharp \Psi(B)), \quad j = 1, \dots, n,$$

where the linear map $\Psi : X \mapsto 2tr(X)I_n - X$ and $s_j(\cdot)$ means the *j*-th largest singular value. In this paper, we reprove that

 $\left(\begin{array}{cc} \Psi(A) & \Psi(X) \\ \Psi(X^*) & \Psi(B) \end{array}\right)$

is PPT by using an alternative approach and prove the above singular value inequalities hold for the linear map $\Psi_1 : X \mapsto (2n + 1)tr(X)I_n - X$.

1. Introduction

We denote by $\mathbb{M}_n(\mathbb{M}_k)$ the set of $n \times n$ block matrices with each block in \mathbb{M}_k . By convention, the $n \times n$ identity matrix is denoted by I_n . We use $E_{j,k}$ to denote the $n \times n$ matrix with 1 at the *i*, *k* component and zeros elsewhere. A positive semidefinite matrix *A* will be expressed as $A \ge 0$. Likewise, we write A > 0 to refer that *A* is a positive definite matrix. For any $n \times n$ matrix *A*, the singular values $s_j(A)$ are nonincreasingly arranged, $s_1(A) \ge s_2(A) \ge \cdots \ge s_n(A)$. If *A* is Hermitian, we also arrange its eigenvalues $\lambda_j(A)$ in nonincreasing order $\lambda_1(A) \ge \lambda_2(A) \ge \cdots \ge \lambda_n(A)$. The geometric mean of two positive definite matrices $A, B \in \mathbb{M}_n$, denoted by $A \ B$, is the positive definite solution of the Ricatti equation $XB^{-1}X = A$ and

²⁰¹⁰ Mathematics Subject Classification. 15A45, 15A60.

Keywords. Block matrices, Singular value inequalities, Linear maps.

Received: 24 November 2019; Revised: 20 December 2019; Accepted: 14 May 2020

Communicated by Fuad Kittaneh

Research supported by Hainan Provincial Natural Science Foundation for High-level Talents grant no. 2019RC171, the Ministry of Education of Hainan grant no. Hnky2019ZD-13, the Provincial Key Laboratory, Hainan Normal University grant no. JSKX201904, Hainan Provincial Natural Science Foundation of China grant no. 120MS032.

Email addresses: junjianyang1981@163.com (Junjian Yang), llz@gznu.edu.cn, lzlu@xmu.edu.cn (Linzhang Lu), zchen@gznu.edu.cn (Zhen Chen)

it has the explicit expression $A \# B = A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^{\frac{1}{2}} A^{\frac{1}{2}}$. More details on the matrix geometric mean can be found in [1, Chapter 4].

A matrix $H = [H_{i,j}]_{i,j=1}^n \in \mathbb{M}_n(\mathbb{M}_k)$ is said to be positive partial transpose (i.e., PPT) if H is positive semidefinite and its partial transpose $H^{\tau} = [H_{j,i}]_{i,j=1}^n$ is also positive semidefinite.

A linear map Φ : $\mathbb{M}_k \mapsto \mathbb{M}_m$ is said to be *n*-positive if for $A = [A_{i,j}]_{i,j=1}^n \in \mathbb{M}_n(\mathbb{M}_k)$,

$$[A_{i,j}]_{i,j=1}^n \ge 0 \quad \Rightarrow \quad [\Phi(A_{i,j})]_{i,j=1}^n \ge 0. \tag{1}$$

It is said to be completely positive if (1) is true for any positive integer. On the other hand, a linear map $\Phi : \mathbb{M}_k \mapsto \mathbb{M}_m$ is said to be *n*-copositive if

$$[A_{i,j}]_{i,j=1}^{n} \ge 0 \quad \Rightarrow \quad [\Phi(A_{j,i})]_{i,j=1}^{n} \ge 0, \tag{2}$$

and Φ is said to be completely copositive if (2) is true for any positive integer *n*. Furthermore, Φ is called a completely PPT map if $[\Phi(A_{i,j})]_{i,j=1}^n$ and $[\Phi(A_{j,i})]_{i,j=1}^n$ are both positive semidefinite.

Lin [7] left the following inequalities unsolved:

Conjecture 1.1. Let
$$H = \begin{pmatrix} A & X \\ X^* & B \end{pmatrix} \in \mathbb{M}_2(\mathbb{M}_n)$$
 be positive semidefinite. Then
 $2s_j(\Psi(X)) \leq s_j(\Psi(A) + \Psi(B)), \quad j = 1, \dots, n,$
(3)

and

$$s_j(\Psi(X)) \leq s_j(\Psi(A) \sharp \Psi(B)), \quad j = 1, \dots, n, \tag{4}$$

where $\Psi : X \mapsto 2tr(X)I_n - X$.

Actually, Lin [5] has showed that (3) holds for the linear map $\Phi : X \mapsto tr(X)I_n + X$. However, (4) has not been proven for the linear map $\Phi : X \mapsto tr(X)I_n + X$.

In this paper, we first prove that

 $\left(\begin{array}{cc} \Psi(A) & \Psi(X) \\ \Psi(X^*) & \Psi(B) \end{array}\right)$

is PPT for $\Psi : X \mapsto 2tr(X)I_n - X$ by a new approach which is different from that in [7, Example 3.6] and then show (3) and (4) hold for linear map $\Psi_1 : X \mapsto (2n + 1)tr(X)I_n - X$.

2. Auxilliary results and proofs

Before presenting our results, we start with two lemmas which are useful for our proofs. The first one is standard in matrix analysis.

Lemma 2.1. [1, p. 14] Let B > 0. Then the block matrix $\begin{pmatrix} A & X \\ X^* & B \end{pmatrix}$ is positive semidefinite if and only if $A \ge XB^{-1}X^*$.

The following result is due to Choi [2, Theorem 2].

Lemma 2.2. Let Φ be a linear map from \mathbb{M}_n to \mathbb{M}_k . Then Φ is completely positive if and only if $[\Phi(E_{i,j})]_{i,j=1}^n \ge 0$.

Remark 2.3. It is easy to see from Lemma 2.2 that Φ is completely PPT if and only if $[\Phi(E_{i,j})]_{i,j=1}^n \ge 0$ and $[\Phi(E_{j,i})]_{i,j=1}^n \ge 0$.

Lin proved the following theorem in [7]. Now, we provide an alternative proof for the result.

Theorem 2.4. Let $\Psi : X \mapsto 2\text{tr}(X)I_n - X$ be a linear map from \mathbb{M}_n to \mathbb{M}_n and $\begin{pmatrix} A & X \\ X^* & B \end{pmatrix} \in \mathbb{M}_2(\mathbb{M}_n)$ be positive semidefinite. Then

$$\left(\begin{array}{cc} \Psi(A) & \Psi(X) \\ \Psi(X^*) & \Psi(B) \end{array}\right)$$

is PPT.

Proof. By Remark 2.3, it suffices to show that

$$\begin{pmatrix} \Psi(E_{11}) & \Psi(E_{12}) \\ \Psi(E_{21}) & \Psi(E_{22}) \end{pmatrix} \ge 0 \text{ and } \begin{pmatrix} \Psi(E_{11}) & \Psi(E_{21}) \\ \Psi(E_{12}) & \Psi(E_{22}) \end{pmatrix} \ge 0.$$

Since

$$\begin{pmatrix} \Psi(E_{11}) & \Psi(E_{12}) \\ \Psi(E_{21}) & \Psi(E_{22}) \end{pmatrix} = \begin{pmatrix} 2I_n - E_{11} & -E_{12} \\ -E_{21} & 2I_n - E_{22} \end{pmatrix},$$

then it is easy to compute

$$2I_n - E_{22} - (-E_{21})(2I_n - E_{11})^{-1}(-E_{12})$$

= $2I_n - E_{22} - E_{21}(2I_n - E_{11})^{-1}E_{12}$
= $2I_n - E_{22} - E_{22}$
= $2I_n - 2E_{22} \ge 0.$

Hence by Lemma 2.1,

$$\begin{pmatrix} \Psi(E_{11}) & \Psi(E_{12}) \\ \Psi(E_{21}) & \Psi(E_{22}) \end{pmatrix} \geq 0.$$

In a similar way, we can have

$$\begin{pmatrix} \Psi(E_{11}) & \Psi(E_{21}) \\ \Psi(E_{12}) & \Psi(E_{22}) \end{pmatrix} \geq 0.$$

So Ψ is completely PPT. \Box

Remark 2.5. Lin [7] proved Theorem 2.4 by using the approach in [3].

Next, we prove a result which is related to [7, Example 3.6.].

Theorem 2.6. Let $\Psi : X \mapsto 2(\operatorname{tr} X)I_n - X$, $\Phi : C \mapsto (\operatorname{tr} X)I_n + X$ be both linear maps from \mathbb{M}_n to \mathbb{M}_n and $\begin{pmatrix} A & X \\ X^* & B \end{pmatrix} \in \mathbb{M}_2(\mathbb{M}_n)$ be positive semidefinite. Then

$$2s_j(\Phi(\Psi(X))) \leq s_j(\Phi(\Psi(A) + \Psi(B))), \quad j = 1, \dots, n,$$

and

$$s_j(\Phi(\Psi(X))) \leq s_j(\Phi(\Psi(A)) \sharp \Phi(\Psi(B))), \quad j = 1, \dots, n.$$

Proof. By Theorem 2.4, we know that

$$\left(\begin{array}{cc} \Psi(A) & \Psi(X) \\ \Psi(X^*) & \Psi(B) \end{array}\right)$$

is PPT.

So the inequalities below follow from [5, (1.1)]

$$2s_j(\Phi(\Psi(X))) \leq s_j(\Phi(\Psi(A) + \Psi(B))), \quad j = 1, \dots, n,$$
(5)

3707

which means that

$$2s_{j}(\Phi(\Psi(X))) = 2s_{j}(\Psi(X) + tr(\Psi(X))I_{n})$$

= $2s_{j}((2n + 1)tr(X)I_{n} - X)$
 $\leq s_{j}((\Psi(A) + \Psi(B)) + tr(\Psi(A) + \Psi(B))I_{n})$
= $s_{j}((2n + 1)tr(A + B)I_{n} - (A + B)), j = 1, ..., n.$

Now setting the linear map $\Psi_1 : X \mapsto (2n + 1)tr(X)I_n - X$ in (5) yields

$$2s_j(\Psi_1(X)) \leq s_j(\Psi_1(A) + \Psi_1(B)), \quad j = 1, ..., n.$$

Moreover, by [5, (1.1)] and [4, Lemma 4.2], we have the stronger inequalities below:

$$s_j(\Phi(\Psi(X))) \leq s_j(\Phi(\Psi(A) \sharp \Psi(B))), \quad j = 1, \dots, n.$$

Compute

$$s_{j}(\Phi(\Psi(X))) = s_{j}((2n + 1)\operatorname{tr}(X)I_{n} - X)$$

$$= s_{j}(\Psi_{1}(X))$$

$$\leq s_{j}(\Phi(\Psi(A))\sharp\Phi(\Psi(B)))$$

$$= s_{j}(((2n + 1)\operatorname{tr}(A)I_{n} - A)\sharp((2n + 1)\operatorname{tr}(B)I_{n} - B))$$

$$\leq s_{j}(\Psi_{1}(A)\sharp\Psi_{1}(B))$$

$$= s_{j}(\Phi(\Psi(A))\sharp\Phi(\Psi(B))), \quad j = 1, ..., n.$$

Finally, we show that the inequality (3) holds for n = 2.

Theorem 2.7. Let $H = \begin{pmatrix} A & X \\ X^* & B \end{pmatrix} \in \mathbb{M}_2(\mathbb{M}_2)$ be positive semidefinite. Then $2s_j(\Psi(X)) \leq s_j(\Psi(A) + \Psi(B)), \quad j = 1, 2,$

where $\Psi: X \mapsto 2tr(X)I_2 - X$.

Proof. Since the linear map $\overline{\Psi}$: X \mapsto tr(X) I_2 – X is completely copositive [6, Proposition 2.1], then

$$\begin{pmatrix} \overline{\Psi}(A) & \overline{\Psi}(X^*) \\ \overline{\Psi}(X) & \overline{\Psi}(B) \end{pmatrix} = \begin{pmatrix} \operatorname{tr}(A)I_2 - A & \operatorname{tr}(X^*)I_2 - X^* \\ \operatorname{tr}(X)I_2 - X & \operatorname{tr}(B)I_2 - B \end{pmatrix} \ge 0.$$

Thus, by [5, (1.1)], we have

$$2s_j(\Phi(\operatorname{tr}(X^*)I_2 - X^*)) \le s_j(\Phi(\operatorname{tr}(A)I_2 - A) + \Phi(\operatorname{tr}(B)I_2 - B)), \quad j = 1, 2,$$

where $\Phi : X \mapsto tr(X)I_2 + X$. Notice that $tr(tr(X)I_2 - X) = tr(X)$ for any $X \in \mathbb{M}_2$. Then for each *j*, a simple calculation gives

$$\begin{aligned} 2s_{j}(\Phi(\operatorname{tr}(X^{*})I_{2} - X^{*})) &= 2s_{j}(\operatorname{tr}(\operatorname{tr}(X^{*})I_{2} - X^{*})I_{2} + (\operatorname{tr}(X^{*})I_{2} - X^{*})) \\ &= 2s_{j}(2\operatorname{tr}(X^{*})I_{2} - X^{*}) \\ &= 2s_{j}(\Psi(X^{*})) \\ &= 2s_{j}(\Psi(X)) \\ &\leq s_{j}(\operatorname{tr}(\operatorname{tr}(A)I_{2} - A)I_{2} + (\operatorname{tr}(A)I_{2} - A) + \operatorname{tr}(\operatorname{tr}(B)I_{2} - B)I_{2} + (\operatorname{tr}(B)I_{2} - B)) \\ &= s_{j}(2\operatorname{tr}(A)I_{2} - A + 2\operatorname{tr}(B)I_{2} - B) \\ &= s_{j}(\Psi(A + B)). \end{aligned}$$

Hence, the result follows. \Box

Remark 2.8. Although we have not solved Lin's conjecture in Theorem 2.7, our result is a step closer to the solution of the conjecture.

References

- [1] R. Bhatia, Positive Definite Matrices, Princeton University Press, Princeton, 2007.
- [2] M. D. Choi, Completely positive linear maps on complex matrices, Linear Algebra Appl. 10 (1975) 285-290.
 [3] M. Lin, A completely PPT map, Linear Algebra Appl. 459 (2014) 404-410.
- [4] M. Lin, Inequalities related to 2 × 2 block PPT matrices, Oper Matrices 94 (2015) 917-924.
- [5] M. Lin, A singular value inequality related to a linear map, Electron. J. Linear Algebra 31 (2016) 120-124.
 [6] M. Lin, A determinantal inequality involving partial traces, Canad. Math. Bull. 59 (2016) 585-591.
- [7] M. Lin, New properties for certain positive semidefinite matrices, Linear Algebra Appl. 520 (2017) 32-43.