
Filomat 34:11 (2020), 3639–3654
https://doi.org/10.2298/FIL2011639Y

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we gave a new Young type inequality and the relevant Heinz mean inequality.
Furthermore, we also improved some inequalities with Kantorovich constant or Specht’s ratio. Meanwhile,
on the base of our scalars results, we obtain some new corresponding operator inequalities and matrix
versions including Hilbert-Schmidt norm, unitarily invariant norm and related trace versions, which can
be regarded as the application of our scalar results.

1. Introduction

It has been universally acknowledged that the classical Young inequality for scalars says that if a, b ≥ 0
and v ∈ [0, 1], then

avb1−v
≤ va + (1 − v)b. (1.1)

with equality if and only if a = b. Simple as it is, what the inequality (1.1) conveys to us is not only
interesting in itself but also significant in operator theory. Refining this inequality has taken great attention
of a considerable number of researchers in this field, as a consequence, where adding a positive term or
multiplying a coefficient which is greater or equal to the number 1 to the left side is possible. If v = 1

2 ,
particularly, we can get the arithmetic-geometric mean inequality

√

ab ≤
a + b

2

Among the first refinements and reverses in [9, 10] of this inequality were proved by Kittaneh and
Manasrah, which can be stated in the following form

avb1−v + r0(
√

a −
√

b)2
≤ va + (1 − v)b ≤ avb1−v + R0(

√
a −
√

b)2. (1.2)
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where r0 = min{v, 1 − v}, R0 = max{v, 1 − v}, a, b ≥ 0, v ∈ [0, 1]. The other improvements and reverses in [16]
were presented by Zhao and Wu as follows:

avb1−v + v(
√

a −
√

b)2 + r0(
4√

ab −
√

b)2
≤ va + (1 − v)b

≤ avb1−v + (1 − v)(
√

a −
√

b)2
− r0(

4√

ab −
√

a)2, 0 ≤ v ≤
1
2

(1.3)

and

avb1−v + (1 − v)(
√

a −
√

b)2 + r0(
4√

ab −
√

a)2
≤ va + (1 − v)b

≤ avb1−v + v(
√

a −
√

b)2
− r0(

4√

ab −
√

b)2.
1
2
≤ v ≤ 1 (1.4)

where r = min{v, 1 − v}, r0 = min{2r, 1 − 2r}.
Also, Furuichi and Tominaga obtained respectively the other interesting multiplicative refinement and

reverse with Specht’s ratio in [5, 14]

S((
b
a

)r)avb1−v
≤ va + (1 − v)b ≤ S(

b
a

)avb1−v (1.5)

for a, b > 0, v ∈ [0, 1] and r = min{v, 1 − v}, where the Specht’s ratio [5, 6, 14] was defined by

S(h) =


h

1
h−1

e ln
(

h
1

h−1

) if h ∈ (0, 1) ∪ (1,∞),

1 if h = 1.
(1.6)

The function S(·) has the following properties:
i) S(·) is decreasing on (0, 1) and increasing on (1,∞);
ii) limh→1 S(h) = 1, S(h) = S( 1

h ) > 1 for any h > 0, h , 1.
In addition, the inequality (1.1) was refined and reversed respectively with Kantorovich constant by

Zuo and Liao [12, 17] as follows:

Kr(
b
a
, 2)avb1−v

≤ va + (1 − v)b ≤ KR(
b
a
, 2)avb1−v. (1.7)

for a, b > 0, v ∈ [0, 1], where r = min{v, 1 − v}, R = max{v, 1 − v}, K(h, 2) is the Kantorovich constant defined
by

K(h, 2) =
(h + 1)2

4h
, h > 0. (1.8)

Likely, the function K(·, 2) has the following properties:
i) K(·, 2) is decreasing on (0, 1) and increasing on (1,∞);
ii) K(h, 2) = K( 1

h , 2) ≥ 1 for any h > 0.
It is obvious that a common fact that it refers to (1.5) and (1.7) which are the refinements and reverses of

(1.1) is multiplying one coefficient.
Several years later, Hu in [8] gave the following Young type inequality

(v2a)vb1−v + v2(
√

a −
√

b)2
≤ v2a + (1 − v)2b, 0 ≤ v ≤

1
2

(1.9)

av[(1 − v)2b]1−v + (1 − v)2(
√

a −
√

b)2
≤ v2a + (1 − v)2b.

1
2
≤ v ≤ 1 (1.10)

for a, b ≥ 0, v ∈ [0, 1].
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Afterwards, Burqan and Khandaqji in [2] presented the reverse of (1.9) and (1.10), which can be stated
in the following form

v2a + (1 − v)2b ≤ av[(1 − v)2b]1−v + (1 − v)2(
√

a −
√

b)2, 0 ≤ v ≤
1
2

(1.11)

v2a + (1 − v)2b ≤ (v2a)vb1−v + v2(
√

a −
√

b)2.
1
2
≤ v ≤ 1 (1.12)

In a recent work, Ghazanfari, Malekinejad and Talebi in [7] gave a new inequality, which can be stated
that if a, b ≥ 0 and v ∈ (0, 1], then

(1 − v2 + v3)a + (1 − v2)b ≤ vv−2avb1−v + (
√

a −
√

b)2. (1.13)

Throughout the paper, Mn denotes the space of all n×n complex matrices. M+
n denotes the set of all pos-

itive semidefinite matrices in Mn, X ≥ Y for X,Y ∈Mn means that X and Y are Hermitians and X − Y ∈M+
n .

The set of all strictly positive definite matrices in Mn is denoted by M++
n . The unitarily invariance of the ||.||

on Mn means that ||UAV|| = ||A|| for all A ∈Mn and for all the unitary matrices U,V ∈Mn. For A = [ai j] ∈Mn,
the Hilbert-Schmidt (or Frobenius) norm and the trace norm of A are defined by

||A||2 =

√√√ n∑
j=1

s2
j (A), ||A||1 =

n∑
j=1

s j(A),

respectively, where s1(A) ≥ s2(A) ≥ ... ≥ sn(A) are the singular values of A, that is, the eigenvalues of
the positive matrix |A| = (A∗A)

1
2 , arranged in decreasing order and repeated according to multiplicity.

Moreover, it is well known that ||.||2 is unitarily invariant.
What is more, let B(H) denotes the C∗-algebra of all bounded linear operators on a complex Hilbert space

H. In the case of dim H = n, we identify B(H) with the matrix Algebra of all n × n matrices with entries in
the complex field. A operator A ∈ B(H) is called positive, if

〈Ax, x〉 ≥ 0

for all x ∈ H, and we write A ≥ 0. The set of all positive operators on a complex Hilbert space H is denoted
by B+(H). Also, the set of all positive invertible operators on a complex Hilbert space H is denoted with
B++(H). If A ∈ B++(H), we write A > 0.

For the notations adopted in this paper, moreover, we defined v−weighted arithmetic mean, geometric
mean for scalars and operators

a∇vb = (1 − v)a + vb, a]vb = a1−vbv;

A∇vB = (1 − v)A + vB, A]vB = A
1
2 (A−

1
2 BA−

1
2 )vA

1
2

for a, b ≥ 0, v ∈ [0, 1] and A,B ∈ B++(H). In particular, denoted by a∇b and a]b, A∇B and A]B for brevity
respectively when v = 1

2 .
Also, Heinz means for scalars and operators introduced in [3] were defined as

Hv(a, b) =
a]vb + a]1−vb

2
, a, b ≥ 0, v ∈ [0, 1]

Hv(A,B) =
A]vB + A]1−vB

2
, A,B ∈ B++(H), v ∈ [0, 1]

which can be interpolated between arithmetic and geometric means. Put another way,

a]b ≤ Hv(a, b) ≤ a∇b, A]B ≤ Hv(A,B) ≤ A∇B

were called Heinz means inequalities.
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This paper is organized in the following way: In Section 2, we first give the reverse of a new Young
type inequality for scalar, and then we refine this inequality with Specht’s ratio and Kantorovich constant.
Subsequently, we obtain the new corresponding Heinz mean inequalities. In Section 2, on the basis of
our main scalar results, we obtained the related Heinz operator mean version, including the refinement of
(3.1). In the last Section, as an application, we establish some relevant inequalities including Heinz mean or
Young type of matrix version for Hilbert-Schmidt norm, unitarily invariant norm, and trace versions based
on the conclusion of part one.

2. Reverse of Young Type and Heinz mean Inequality with Kantorovich Constant or Specht’s ratio

First of all, we prove the reverse of a new Young type inequality, then we get the new Heinz mean
inequality and give some discussions for the new Young type inequality (2.2). Because this part is mainly
researched Heinz mean, it does not take (2.2), (2.4), (2.8) as a theorem respectively to prove. However, these
conclusions are also our main results. For convenience, let R denote the field of real numbers.

Theorem 2.1 Suppose that a, b ≥ 0, N1,N2 ∈ R and v ∈ (0, 1], then

[
vN1+1(v − 1) − vN2+2

]
(a∇b) + 2(a]b) ≤ v−(1−v)N1−vN2−1Hv(a, b). (2.1)

Proof. Now, we prove the following new Young type inequality which can be regard as one of our main
results in the first place.

(1 − vN1+1 + vN1+2)a + (1 − vN2+2)b ≤ v−(1−v)N1−vN2−1avb1−v + (
√

a −
√

b)2. (2.2)

By (1.1) and simple calculation, then we have
(
√

a −
√

b)2
− (1 − vN1+1 + vN1+2)a − (1 − vN2+2)b + v−(1−v)N1−vN2−1avb1−v

= (1 − v)vN1+1a + vN2+2b − 2
√

ab + v−(1−v)N1−vN2−1avb1−v

≥ (vN1+1a)1−v(vN2+1b)v
− 2
√

ab + v−(1−v)N1−vN2−1avb1−v

= v(1−v)N1+vN2+1a1−vbv
− 2
√

ab + v−(1−v)N1−vN2−1avb1−v

= (v
(1−v)N1+vN2+1

2 a
1−v

2 b
v
2 − v

−(1−v)N1−vN2−1
2 a

v
2 b

1−v
2 )2

≥ 0
So (2.2) holds.
And then, if we replace a by b, b by a and add the resulting inequality to (2.2), we get the desired result (2.1).
This completes the proof.

Remark 2.2 For one thing, it’s obvious that (1.13) is a special case of inequality (2.2) for N1 = 1,N2 = 0,
which implies that (2.2) is a generalization of (1.13). And for any N1,N2 ≥ 0, it’s not difficult to find that both
the left hand side and the right hand side in inequality (2.2) are greater than or equal to the corresponding
sides in the second inequalities of (1.3) and (1.4) respectively, which indicates that (2.2) can be regarded as
a new Young type inequality.

By the similar way in Theorem 2.1, we obtain Young type inequality with Specht’s ratio or Kantorovich
constant which is the refinement of (2.2) and get the new relevant Heniz mean inequality.

Theorem 2.3 For a, b > 0, v ∈ (0, 1] and N1,N2 ∈ R, then

S−1(hr)Hv(a, b)

≥
1
2

[
(v − 1)v(2−v)N1+vN2+2

− v(1+v)N1+(1−v)N2+3
]
a

+
1
2

[
(v − 1)vvN1+(2−v)N2+2

− v(1−v)N1+(1+v)N2+3
]
b

+ (v(1−v)N1+vN2+1 + vvN1+(1−v)N2+1)(a]b), (2.3)
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where r = min{v, 1 − v}, h = vN1−N2 a
b , 1 and S(.) is the Specht’s ratio.

Proof. First of all, we prove

(1 − vN1+1 + vN1+2)a + (1 − vN2+2)b ≤ S−1(hr)v−(1−v)N1−vN2−1avb1−v + (
√

a −
√

b)2. (2.4)

According to the first inequality of (1.5), we have
S−1(hr)v−(1−v)N1−vN2−1avb1−v + (

√
a −
√

b)2
− (1 − vN1+1 + vN1+2)a − (1 − vN2+2)b

= S−1(hr)v−(1−v)N1−vN2−1avb1−v + vN1+1(1 − v)a + vN2+2b − 2
√

ab
≥ S−1(hr)v−(1−v)N1−vN2−1avb1−v + S(hr)(vN1+1a)1−v(vN2+1b)v

− 2
√

ab
= S−1(hr)v−(1−v)N1−vN2−1avb1−v

− 2
√

ab + S(hr)v(1−v)N1+vN2+1a1−vbv

=
(
S−

1
2 (hr)v

−(1−v)N1−vN2−1
2 a

v
2 b

1−v
2 − S

1
2 (hr)v

(1−v)N1+vN2+1
2 a

1−v
2 b

v
2

)2

≥ 0
So we get the required inequality (2.4).
Now, by exchanging a for b, N1 for N2 in (2.4) and applying the property S(h) = S(h−1), we have

(1 − vN2+1 + vN2+2)b + (1 − vN1+2)a ≤ S−1(hr)v−(1−v)N2−vN1−1a1−vbv + (
√

a −
√

b)2.

That is

v(1−v)N2+vN1+1[vN2+1(v − 1)b − vN1+2a] ≤ S−1(hr)a1−vbv
− 2v(1−v)N2+vN1+1

√

ab. (2.5)

Similarly, the inequality (2.4) can be restated as

v(1−v)N1+vN2+1[vN1+1(v − 1)a − vN2+2b] ≤ S−1(hr)avb1−v
− 2v(1−v)N1+vN2+1

√

ab.

Finally, if we add (2.5) to the above inequality, we get

S−1(hr)(avb1−v + a1−vbv)

≥

[
(v − 1)v(2−v)N1+vN2+2

− v(1+v)N1+(1−v)N2+3
]
a +

[
(v − 1)vvN1+(2−v)N2+2

− v(1−v)N1+(1+v)N2+3
]
b + 2(v(1−v)N1+vN2+1 + vvN1+(1−v)N2+1)

√

ab

which is equivalent to the desired result (2.3). This completes the proof.

The Corollary 2.4 is a special case of Theorem 2.3.

Corollary 2.4 Let all assumptions of Theorem 2.3 be satisfied and N1 = N2 = N ∈ R, then

S−1(hr)Hv(a, b) + v2(N+1)(a∇b) ≥ 2vN+1(a]b). (2.6)

Theorem 2.5 Let a, b > 0, v ∈ (0, 1] and N1,N2 ∈ R, then

K−r(h, 2)Hv(a, b)

≥
1
2

[
(v − 1)v(2−v)N1+vN2+2

− v(1+v)N1+(1−v)N2+3
]
a

+
1
2

[
(v − 1)vvN1+(2−v)N2+2

− v(1−v)N1+(1+v)N2+3
]
b

+ (v(1−v)N1+vN2+1 + vvN1+(1−v)N2+1)(a]b), (2.7)

where r = min{v, 1 − v}, h = vN1−N2 a
b and K(·, 2) is Kantorovich constants.
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Proof. By the first inequality of (1.7), we have
K−r(h, 2)v−(1−v)N1−vN2−1avb1−v + (

√
a −
√

b)2
− (1 − vN1+1 + vN1+2)a − (1 − vN2+2)b

= K−r(h, 2)v−(1−v)N1−vN2−1avb1−v + vN1+1(1 − v)a + vN2+2b − 2
√

ab
≥ K−r(h, 2)v−(1−v)N1−vN2−1avb1−v + Kr(h, 2)(vN1+1a)1−v(vN2+1b)v

− 2
√

ab
= K−r(h, 2)v−(1−v)N1−vN2−1avb1−v

− 2
√

ab + Kr(h, 2)v(1−v)N1+vN2+1a1−vbv

=
(
K−

r
2 (h, 2)v

−(1−v)N1−vN2−1
2 a

v
2 b

1−v
2 − K

r
2 (h, 2)v

(1−v)N1+vN2+1
2 a

1−v
2 b

v
2

)2

≥ 0
That is

(1 − vN1+1 + vN1+2)a + (1 − vN2+2)b ≤ K−r(h, 2)v−(1−v)N1−vN2−1avb1−v + (
√

a −
√

b)2. (2.8)

Now, if we interchange a for b and N1 for N2 in (2.8), and then adding the resulting inequality to (2.8), we
get the required result (2.7).

Corollary 2.6 Let all assumptions of Theorem 2.5 be satisfied and N1 = N2 = N ∈ R, then

K−r(h, 2)Hv(a, b) + v2(N+1)(a∇b) ≥ 2vN+1(a]b). (2.9)

By replacing a by a2 and b by b2 in inequalities (2.2), (2.4) and (2.8) respectively, we obtain the following
corollary.

Corollary 2.7 With the assumptions of Theorem 2.5 we have

(1 − vN1+1 + vN1+2)a2 + (1 − vN2+2)b2
≤ v−(1−v)N1−vN2−1(avb1−v)2 + (a − b)2. (2.10)

(1 − vN1+1 + vN1+2)a2 + (1 − vN2+2)b2
≤ S−1(tr)v−(1−v)N1−vN2−1(avb1−v)2 + (a − b)2 (2.11)

and

(1 − vN1+1 + vN1+2)a2 + (1 − vN2+2)b2
≤ K−r(t, 2)v−(1−v)N1−vN2−1(avb1−v)2 + (a − b)2. (2.12)

where r = min{v, 1 − v}, t = vN1−N2 a2

b2 , 1.

To achieve our further results, we need the following lemma.

Lemma 2.8 Let φ be a strictly increasing convex function defined on an interval D. If x, y, z and w are points
in D such that

z − w ≤ x − y,

where w ≤ z ≤ x and y ≤ x, then
(0 ≤) φ(z) − φ(w) ≤ φ(x) − φ(y).

We can see [13] for more details.

Proposition 2.9 Let φ : (0,+∞) −→ R be a strictly increasing convex function, if a, b > 0, and v ∈ (0, 1],
N1,N2 ∈ R, then

φ
(
(1 + (1 − v)v(2−v)N1+vN2+2 + v(1−v)N1+(1+v)N2+3)(a∇b)

)
− φ(2v(1−v)N1+vN2+1(a]b)) ≥ φ(a∇b) − φ(Hv(a, b)). (2.13)

Proof. Let x = [1 + (1 − v)v(2−v)N1+vN2+2 + v(1−v)N1+(1+v)N2+3](a∇b), y = 2v(1−v)N1+vN2+1(a]b), z = a∇b, w = Hv(a, b).
Now, we just need to prove z − w ≤ x − y and w ≤ z ≤ x.
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According to (2.1), we have

z − w ≤ x − y.

And it’s clear that the second inequalities hold by applying Heinz mean inequality for scalars. So by Lemma
2.8, we have the intended result (2.13). This completes the proof.

Corollary 2.10 Let φ(x) = xp, p ∈ R, p ≥ 1, if a, b > 0, v ∈ (0, 1] and N1,N2 ∈ R, then we have(
1 + (1 − v)v(2−v)N1+vN2+2 + v(1−v)N1+(1+v)N2+3

)p
(a + b)p

−

(
4v(1−v)N1+vN2+1

)p
(
√

ab)p
≥ (a + b)p

− (avb1−v + a1−vbv)p. (2.14)

3. Reversed versions for Heinz operator mean

In this section, we will give some new reversed versions for Heinz operator mean by the monotonic
property of operator functions. However, we need to recall the following lemma that is necessary to obtain
our main results.

Lemma 3.1 ([4]) For X ∈ B(H) be self-adjoint and f , 1 be continuous real functions such that f (t) ≥ 1(t) for
all t ∈ Sp(X) (the Spectrum of X). Then f (X) ≥ 1(X).

According to (2.1), now, we get the new Heinz operator inequalities as follows.

Theorem 3.2 Let A,B ∈ B++(H) and N1,N2 ∈ R, if v ∈ (0, 1], then

[
vN1+1(v − 1) − vN2+2

]
(A∇B) + 2(A]B) ≤ v−(1−v)N1−vN2−1Hv(A,B). (3.1)

Proof. Let a = 1, b = t > 0 in (2.1), then the inequality becomes

[
vN1+1(v − 1) − vN2+2

]
(1 + t) + 4

√
t ≤ v−(1−v)N1−vN2−1(tv + t1−v). (3.2)

For the operator X = A−
1
2 BA−

1
2 has a positive spectrum, I be the identity operator, then according to Lemma

3.1 and insert A−
1
2 BA−

1
2 in (3.2), we have[

vN1+1(v − 1) − vN2+2
]
(I + A−

1
2 BA−

1
2 ) + 4(A−

1
2 BA−

1
2 )

1
2

≤ v−(1−v)N1−vN2−1
(
(A−

1
2 BA−

1
2 )v + (A−

1
2 BA−

1
2 )1−v

)
. (3.3)

Finally, if we multiply the inequality (3.3) by A
1
2 on both sides, we get[

vN1+1(v − 1) − vN2+2
]
(A + B) + 4(A]B) ≤ v−(1−v)N1−vN2−1(A]vB + A]1−vB) (3.4)

which implies the required result (3.1).

On the basis of (2.3), in addition, we obtain the following theorem whose proof method is similar to the
way presented by Theorem 3.2 if we take Specht’s ratio into account.

Theorem 3.3 Suppose that A,B ∈ B++(H), v ∈ (0, 1] and positive real numbers m,m′, M,M′ satisfying either
of the following conditions
i) 0 < vN1−N2 m′I ≤ A ≤ vN1−N2 mI < MI ≤ B ≤M′I;
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ii) 0 < vN2−N1 m′I ≤ B ≤ vN2−N1 mI < MI ≤ A ≤M′I.
with h = M

m > 1 and h′ = M′
m′ , then

S−1(hr)Hv(A,B)

≥
1
2

[
(v − 1)vvN1+(2−v)N2+2

− v(1−v)N1+(1+v)N2+3
]
A

+
1
2

[
(v − 1)v(2−v)N1+vN2+2

− v(1+v)N1+(1−v)N2+3
]
B

+ (v(1−v)N1+vN2+1 + vvN1+(1−v)N2+1)(A]B). (3.5)

In particular, if N1 = N2 = N, then

S−1(hr)Hv(A,B) + v2(N+1)(A∇B) ≥ 2vN+1(A]B). (3.6)

where r = min{v, 1 − v}, N1,N2 ∈ R and S(·) is the Specht’s ratio.

Proof. Let b = 1, a = x > 0 in (2.3), we have

S−1((vN1−N2 x)r)(xv + x1−v)

≥

[
(v − 1)v(2−v)N1+vN2+2

− v(1+v)N1+(1−v)N2+3
]
x + 2(v(1−v)N1+vN2+1

+ vvN1+(1−v)N2+1)
√

x + (v − 1)vvN1+(2−v)N2+2
− v(1−v)N1+(1+v)N2+3 (3.7)

for any x > 0.
For the positive operator X such that 0 < αI ≤ X ≤ βI. Therefore, by Lemma 3.1, we have(

min
α≤x≤β

S
(
(vN1−N2 x)r

))−1
(Xv + X1−v)

≥

[
(v − 1)v(2−v)N1+vN2+2

− v(1+v)N1+(1−v)N2+3
]
X +

[
(v − 1)vvN1+(2−v)N2+2

− v(1−v)N1+(1+v)N2+3
]
I + 2(v(1−v)N1+vN2+1 + vvN1+(1−v)N2+1)X

1
2 .

Under the first condition, we get I < h
vN1−N2

I = M
vN1−N2 m I ≤ A−

1
2 BA−

1
2 ≤

M′
vN1−N2 m′ I = h′

vN1−N2
I, then Sp(X) ⊆

[ h
vN1−N2

, h′
vN1−N2

] ⊆ (1,+∞) and vN1−N2 Sp(X) ⊆ [h, h′] ⊆ (1,+∞). Let X = A−
1
2 BA−

1
2 , therefore

(
min

h
vN1−N2

≤x≤ h′

vN1−N2

S
(
(vN1−N2 x)r

))−1(
(A−

1
2 BA−

1
2 )v + (A−

1
2 BA−

1
2 )1−v

)
≥

[
(v − 1)v(2−v)N1+vN2+2

− v(1+v)N1+(1−v)N2+3
]
A−

1
2 BA−

1
2 +

[
(v − 1)vvN1+(2−v)N2+2

− v(1−v)N1+(1+v)N2+3
]
I + 2(v(1−v)N1+vN2+1 + vvN1+(1−v)N2+1)(A−

1
2 BA−

1
2 )

1
2 .

Since S(x) is an increasing function for x > 1, so we have

S−1(hr)
(
(A−

1
2 BA−

1
2 )v + (A−

1
2 BA−

1
2 )1−v

)
≥

[
(v − 1)v(2−v)N1+vN2+2

− v(1+v)N1+(1−v)N2+3
]
A−

1
2 BA−

1
2 +

[
(v − 1)vvN1+(2−v)N2+2

− v(1−v)N1+(1+v)N2+3
]
I + 2(v(1−v)N1+vN2+1 + vvN1+(1−v)N2+1)(A−

1
2 BA−

1
2 )

1
2 . (3.8)

Similarly, under the second condition, we also have vN2−N1

h′ I = vN2−N1 m′
M′ I ≤ A−

1
2 BA−

1
2 ≤

vN2−N1 m
M I = vN2−N1

h I < I,
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then Sp(X) ⊆ [ vN2−N1

h′ , vN2−N1

h ] ⊆ (0, 1) and vN1−N2 Sp(X) ⊆ [ 1
h′ ,

1
h ] ⊆ (0, 1). Therefore(

min
vN2−N1

h′ ≤x≤ vN2−N1
h

S
(
(vN1−N2 x)r

))−1(
(A−

1
2 BA−

1
2 )v + (A−

1
2 BA−

1
2 )1−v

)
≥

[
(v − 1)v(2−v)N1+vN2+2

− v(1+v)N1+(1−v)N2+3
]
A−

1
2 BA−

1
2 +

[
(v − 1)vvN1+(2−v)N2+2

− v(1−v)N1+(1+v)N2+3
]
I + 2(v(1−v)N1+vN2+1 + vvN1+(1−v)N2+1)(A−

1
2 BA−

1
2 )

1
2 .

Since S(x) is a decreasing function on (0, 1), so we have

S−1
((1

h

)r)(
(A−

1
2 BA−

1
2 )v + (A−

1
2 BA−

1
2 )1−v

)
≥

[
(v − 1)v(2−v)N1+vN2+2

− v(1+v)N1+(1−v)N2+3
]
A−

1
2 BA−

1
2 +

[
(v − 1)vvN1+(2−v)N2+2

− v(1−v)N1+(1+v)N2+3
]
I + 2(v(1−v)N1+vN2+1 + vvN1+(1−v)N2+1)(A−

1
2 BA−

1
2 )

1
2 . (3.9)

And then, by the property S(x) = S( 1
x ) for x > 0, we have that the inequality (3.9) is same to the inequality

(3.8).
Finally, if we multiply A

1
2 from the both sides to the inequalities (3.8) or (3.9), then we get the required

inequality (3.5).

Also, using the same technique presented by Theorem 3.3 and (2.7), we get the following result with
Kantorovich constants. The reader can refer to Theorem 3.3 to get the proof of the following theorem.

Theorem 3.4 For A,B ∈ B++(H) and I < h
vN1−N2

I ≤ A−
1
2 BA−

1
2 ≤

h′
vN1−N2

I or 0 < vN2−N1

h′ I ≤ A−
1
2 BA−

1
2 ≤

vN2−N1

h I < I
with h > 1, then

K−r(h, 2)Hv(A,B)

≥
1
2

[
(v − 1)vvN1+(2−v)N2+2

− v(1−v)N1+(1+v)N2+3
]
A

+
1
2

[
(v − 1)v(2−v)N1+vN2+2

− v(1+v)N1+(1−v)N2+3
]
B

+ (v(1−v)N1+vN2+1 + vvN1+(1−v)N2+1)(A]B). (3.10)

In particular, if N1 = N2 = N, then

K−r(h, 2)Hv(A,B) + v2(N+1)(A∇B) ≥ 2vN+1(A]B). (3.11)

for all v ∈ (0, 1], where r = min{v, 1 − v}, N1,N2 ∈ R and K(·, 2) is Kantorovich constants .

In order to achieve our further results, furthermore, we need the following lemma [18].

Lemma 3.5 If A,B are positive operators on a Hilbert space and τ, ω ∈ [0, 1], then

A∇τ(A]ωB) = A∇τωB − τ(A∇ωB − A]ωB).

A]τ(A]ωB) = A]τωB

Proof.

A∇τ(A]ωB) = (1 − τ)A + τ(A]ωB)
= A − τA + τωB − τωB + τωA − τωA + τ(A]ωB)
= τωB + (1 − τω)A − τ[(1 − ω)A + ωB − A]ωB]
= A∇τωB − τ(A∇ωB − A]ωB).
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A]τ(A]ωB)

= A]τ(A
1
2 (A−

1
2 BA−

1
2 )ωA

1
2 )

= A
1
2 [A−

1
2 (A

1
2 (A−

1
2 BA−

1
2 )ωA

1
2 )A−

1
2 ]τA

1
2

= A
1
2 (A−

1
2 BA−

1
2 )τωA

1
2

= A]τωB

At the end of this section, we establish the following theorem by applying Lemma 3.5 and (3.1).

Theorem 3.6 For A,B ∈ B++(H), N1,N2 ∈ R and v ∈ (0, 1).
i)If v ∈ (0, 1

2 ], then

[(2r)N1+1(2r − 1) − (2r)N2+2][A∇ 1
4
B −

1
2

(A∇B − A]B)] + 2(A] 1
4
B)

≤
1
2

(2r)−(1−2r)N1−2rN2−1(A]vB + A] 1
2−vB). (3.12)

ii) If v ∈ [ 1
2 , 1), then

[(2r)N1+1(2r − 1) − (2r)N2+2][A∇ 3
4
B −

1
2

(A∇B − A]B)] + 2(A] 3
4
B)

≤
1
2

(2r)−(1−2r)N1−2rN2−1(A]vB + A] 3
2−vB), (3.13)

where r = min{v, 1 − v}.

Proof. i) If v ∈ (0, 1
2 ], then 2v ∈ (0, 1]. By substituting B by A]B and v by 2v in (3.1), now, then it follows that

[(2v)N1+1(2v − 1) − (2v)N2+2](A∇(A]B)) + 2(A](A]B))

≤
1
2

(2v)−(1−2v)N1−2vN2−1(A]2v(A]B) + A]1−2v(A]B)).

Then by Lemma 3.5, we have
A∇(A]B) = A∇ 1

4
B − 1

2 (A∇B − A]B), A](A]B) = A] 1
4
B.

Therefore, we get

[(2r)N1+1(2r − 1) − (2r)N2+2][A∇ 1
4
B −

1
2

(A∇B − A]B)] + 2(A] 1
4
B)

≤
1
2

(2r)−(1−2r)N1−2rN2−1(A]vB + A] 1
2−vB).

So (3.12) holds.
ii)If v ∈ [ 1

2 , 1), then 1 − v ∈ (0, 1
2 ] and r = 1 − v.

Exchanging A for B and v for 1 − v in the above inequality, we have

[(2r)N1+1(2r − 1) − (2r)N2+2][B∇ 1
4
A −

1
2

(B∇A − B]A)] + 2(B] 1
4
A)

≤
1
2

(2r)−(1−2r)N1−2rN2−1(B]1−vA + B]v− 1
2
A).
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It is shown in [4] that B]1−vA = A]vB, thus the above inequality becomes

[(2r)N1+1(2r − 1) − (2r)N2+2][A∇ 3
4
B −

1
2

(A∇B − A]B)] + 2(A] 3
4
B)

≤
1
2

(2r)−(1−2r)N1−2rN2−1(A]vB + A] 3
2−vB).

So (3.13) holds, this completes the proof.

Corollary 3.7 Let A,B ∈ B++(H), then[
(2r)N1+1(2r − 1) − (2r)N2+2

][
A∇ 2[2v]+1

4
B −

1
2

(A∇B − A]B)
]

+ 2(A] 2[2v]+1
4

B)

≤
1
2

(2r)−(1−2r)N1−2rN2−1
(
A]vB + A] 2[2v]−2v+1

2
B
)
. (3.14)

for all v ∈ (0, 1), where r = min{v, 1 − v}, N1,N2 ∈ R and [x] is the greatest integer less than or equal to x.

Theorem 3.8 Assume that A,B ∈ B++(H), v ∈ (0, 1), N ∈ R and positive real numbers m,m′,M,M′ satisfy
either 0 < m′I ≤ A ≤ mI < MI ≤ B ≤M′I or 0 < m′I ≤ B ≤ mI < MI ≤ A ≤M′I.
i) If v ∈ (0, 1

2 ], then

1
2

K−R(
√

h, 2)(A]vB + A] 1
2−vB) + (2r)2(N+1)[A∇ 1

4
B −

1
2

(A∇B − A]B)]

≥ 2N+2rN+1(A] 1
4
B). (3.15)

ii) If v ∈ [ 1
2 , 1), then

1
2

K−R(
√

h, 2)(A]vB + A] 3
2−vB) + (2r)2(N+1)[A∇ 3

4
B −

1
2

(A∇B − A]B)]

≥ 2N+2rN+1(A] 3
4
B), (3.16)

where r = min{v, 1 − v}, R = min{2r, 1 − 2r}, h = M
m > 1, h′ = M′

m′ and K(·, 2) is Kantorovich constants.

Proof. In the case of 0 < m′I ≤ A ≤ mI < MI ≤ B ≤ M′I, we have I < hI ≤ A−
1
2 BA−

1
2 ≤ h′I, I <

√
hI ≤

A−
1
2 (A]B)A−

1
2 ≤
√

h′I.
In the case of 0 < m′I ≤ B ≤ mI < MI ≤ A ≤ M′I, we have 0 < 1

h′ I ≤ A−
1
2 BA−

1
2 ≤

1
h I < I, 1

√
h′

I ≤

A−
1
2 (A]B)A−

1
2 ≤

1
√

h
I < I.

And then, using the same method presented in Theorem 3.6 and (3.11), we can get the desired inequalities
(3.15) and (3.16). This completes the proof.

Corollary 3.9 Let all assumptions of Theorem 3.8 be satisfied, then

1
2

K−R(
√

h, 2)(A]vB + A] 2[2v]−2v+1
2

B) + (2r)2(N+1)[A∇ 2[2v]+1
4

B −
1
2

(A∇B − A]B)]

≥ 2N+2rN+1(A] 2[2v]+1
4

B). (3.17)

4. The reverse of matrix inequalities for Heinz mean and Young type

In this section, we establish some interesting matrix versions related to Heinz and Young type for
Hilbert-Schmidt norm, unitarily invariant norm, trace norm and trace. To do these, we need the following
lemmas. However, it is worth mentioning that the second lemma is a Heinz-Kato type inequality for
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unitarily invariant norms.

Lemma 4.1 ([1]) Let A,B ∈Mn, then

n∑
j=1

s j(AB) ≤
n∑

j=1

s j(A)s j(B).

Lemma 4.2. ( [11]) Suppose A,B,X ∈Mn such that A,B are positive semidefinite matrices.
If 0 ≤ v ≤ 1, then

|||AvXB1−v
||| ≤ |||AX|||v|||XB|||1−v.

In particular,

tr|AvB1−v
| ≤ (trA)v(trB)1−v.

We first establish the following Heinz matrix mean version for Hilbert-Schmidt norm, now, whose proof
is depended on the spectral theorem and (2.1).

Theorem 4.3 Assume that A,B,X ∈Mn such that A,B ∈M+
n , if v ∈ (0, 1], then

||4(A
1
2 XB

1
2 )||2

≤ ||v−(1−v)N1−vN2−1(AvXB1−v + A1−vXBv) − ((v − 1)vN1+1
− vN2+2)(AX + XB)||2

≤ v−(1−v)N1−vN2−1
||AvXB1−v + A1−vXBv

||2 + [(1 − v)vN1+1 + vN2+2]||AX + XB||2, (4.1)

where N1,N2 ∈ R, I represents an identity matrix.

Proof. Since A,B ∈M+
n , it follows by spectral theorem that there exist unitary matrices U,V ∈Mn such that

A = UΛ1U∗,B = VΛ2V∗,

where Λ1 = dia1(λ1, λ2, · · · , λn),Λ2 = dia1(µ1, µ2, · · · , µn), λm, µl ≥ 0,m, l = 1, 2, · · · ,n.
For our computations, let Y = U∗XV = [yml], then we have

AvXB1−v + A1−vXBv = U(Λv
1YΛ1−v

2 + Λ1−v
1 YΛv

2)V∗ = U[(λv
mµ

1−v
l + λ1−v

m µv
l )yml]V∗

AX + XB = U[(λm + µl)yml]V∗, A
1
2 XB

1
2 = U[(λmµl)

1
2 yml]V∗

and

v−(1−v)N1−vN2−1(AvXB1−v + A1−vXBv) − [(v − 1)vN1+1
− vN2+2](AX + XB)

= U
[Λv

1YΛ1−v
2 + Λ1−v

1 YΛv
2

v(1−v)N1+vN2+1
−

(
(v − 1)vN1+1

− vN2+2
)
(Λ1Y + YΛ2)

]
V∗

= U
[(λv

mµ
1−v
l + λ1−v

m µv
l

v(1−v)N1+vN2+1
−

(
(v − 1)vN1+1

− vN2+2
)
(λm + µl)

)
yml

]
V∗

Now, by (2.1) and the unitarily invariant of the Hilbert-Schmidt norm, then we have
||4(A

1
2 XB

1
2 )||22

=
n∑

m,l=1

[
4(λmµl)

1
2

]2
|yml|

2

≤

n∑
m,l=1

[
v−(1−v)N1−vN2−1(λv

mµ
1−v
l + λ1−v

m µv
l ) −

(
(v − 1)vN1+1

− vN2+2
)
(λm + µl)

]2

|yml|
2

= ||v−(1−v)N1−vN2−1(AvXB1−v + A1−vXBv) −
(
(v − 1)vN1+1

− vN2+2
)
(AX + XB)||22



C. Yang, Y. Li / Filomat 34:11 (2020), 3639–3654 3651

which implies that
||4(A

1
2 XB

1
2 )||2

≤ ||v−(1−v)N1−vN2−1(AvXB1−v + A1−vXBv) −
(
(v − 1)vN1+1

− vN2+2
)
(AX + XB)||2

≤ v−(1−v)N1−vN2−1
||AvXB1−v + A1−vXBv

||2 +
[
(1 − v)vN1+1 + vN2+2

]
(AX + XB)||2.

Here we complete the proof.

Similarly, we obtain the following results with Specht’s ratio and Kantorovich constants by applying
(2.12) and (2.11).

Theorem 4.4 Suppose that A,B,X ∈ Mn such that A,B ∈ M++
n and satisfy 0 <

√
MI ≤ A ≤

√
M′I, 0 <

√

vN1−N2 m′I ≤ B ≤
√

vN1−N2 mI or 0 <
√

m′I ≤ A ≤
√

mI, 0 <
√

M
vN2−N1

I ≤ B ≤
√

M′
vN2−N1

I, if v ∈ (0, 1], then

i) (1−vN1+1 + vN1+2)||AX||22 + (1 − vN2+2)||XB||22
≤ K−r(h, 2)v−(1−v)N1−vN2−1

||AvXB1−v
||

2
2 + ||AX − XB||22 (4.2)

ii) (1−vN1+1 + vN1+2)||AX||22 + (1 − vN2+2)||XB||22
≤ S−1(hr)v−(1−v)N1−vN2−1

||AvXB1−v
||

2
2 + ||AX − XB||22, (4.3)

where h = M
m with m < M, h′ = M′

m′ , r = min{v, 1 − v}, N1,N2 ∈ R, I represents an identity matrix and
m,m′,M,M′ ∈ R.

Proof. i) Since A,B ∈ M++
n , it follows by spectral theorem that there exist unitary matrices S,T ∈ Mn such

that
A = SΓ1S∗,B = TΓ2T∗,

where Γ1 = dia1(ξ1, ξ2, · · · , ξn),Γ2 = dia1(σ1, σ2, · · · , σn), ξi, σ j > 0, i, j = 1, 2, · · · ,n.
For our computations, let Y = S∗XT = [yi j], then we have

AvXB1−v = S(Γv
1YΓ1−v

2 )T∗ = S[(ξv
i σ

1−v
j )yi j]T∗

AX − XB = S[(ξi − σ j)yi j]T∗, AX = S(ξiyi j)T∗ and XB = S(σ jyi j)T∗.

By the unitarily invariant of Hilbert-Schmidt norm and (2.12) , now, we have

(1 − vN1+1 + vN1+2)||AX||22 + (1 − vN2+2)||XB||22
= (1 − vN1+1 + vN1+2)

n∑
i, j=1

ξ2
i |yi j|

2 + (1 − vN2+2)
n∑

i, j=1
σ2

j |yi j|
2

=
n∑

i, j=1

[
(1 − vN1+1 + vN1+2)ξ2

i + (1 − vN2+2)σ2
j

]
|yi j|

2

≤

n∑
i, j=1

[(
min K(vN1−N2 ti j, 2)

)−r
v−(1−v)N1−vN2−1(ξv

i σ
1−v
j )2

+ (ξi − σ j)2
]
|yi j|

2,

where ti j =
ξ2

i
σ2

j
, 1 ≤ i, j ≤ n.

By the case of 0 <
√

MI ≤ A ≤
√

M′I, 0 <
√

vN1−N2 m′I ≤ B ≤
√

vN1−N2 mI, we have ti j =
ξ2

i
σ2

j
∈ [ h

vN1−N2
, h′

vN1−N2
] and

vN1−N2 ti j ∈ [h, h′] ⊆ (1,+∞). So by the properties of the Kantorovich constant, we get min K(vN1−N2 ti j, 2) =

K(h, 2). Similarly, by the case 0 <
√

m′I ≤ A ≤
√

mI, 0 <
√

M
vN2−N1

I ≤ B ≤
√

M′
vN2−N1

I, we have ti j =
ξ2

i
σ2

j
∈

[ vN2−N1

h′ , vN2−N1

h ] and vN1−N2 ti j ∈ [ 1
h′ ,

1
h ] ⊆ (0, 1). By the properties of the Kantorovich constant, accordingly, we

also get min K(vN1−N2 ti j, 2) = K(h, 2).
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Therefore,

(1 − vN1+1 + vN1+2)||AX||22 + (1 − vN2+2)||XB||22
≤

n∑
i, j=1

[(
min K(vN1−N2 ti j, 2)

)−r
v−(1−v)N1−vN2−1(ξv

i σ
1−v
j )2

+ (ξi − σ j)2
]
|yi j|

2

= K−r(h, 2)v−(1−v)N1−vN2−1
n∑

i, j=1
(ξv

i σ
1−v
j )2
|yi j|

2 +
n∑

i, j=1
(ξi − σ j)2

|yi j|
2

= K−r(h, 2)v−(1−v)N1−vN2−1
||AvXB1−v

||
2
2 + ||AX − XB||22.

So (4.2) holds.
ii) Using the same method in (2.11), we can get (4.3). Thus we omit it.
Here we complete the proof.

Besides, by (2.8) and (2.12), we obtain some inequalities with Kantorovich constants for trace norm. As
with the Theorem 4.5, we get the similar conclusion with Specht’s ratio which refers to Corollary 4.6, thus
we omit the details.

Theorem 4.5 Let A,B ∈Mn such that A,B ∈M++
n and satisfy v ∈ (0, 1], then

i)tr
[
(1 − vN1+1 + vN1+2)A + (1 − vN2+2)B

]
≤ K−r

1 v−(1−v)N1−vN2−1
||Av
||2||B1−v

||2 + ||A||1 + ||B||1 − 2||A
1
2 B

1
2 ||1 (4.4)

ii) tr
[
(1 − vN1+1 + vN1+2)A2 + (1 − vN2+2)B2

]
≤ K−r

2 v−(1−v)N1−vN2−1
||Av
||

2
2 ||B

1−v
||

2
2 + ||A||22 + ||B||22 − 2||AB||1, (4.5)

where r = min{v, 1 − v}, N1,N2 ∈ R, K1 = min{K( vN1−N2 s j(A)
s j(B) , 2), 1 ≤ j ≤ n}, K2 = min{K(

vN1−N2 s2
j (A)

s2
j (B) , 2), 1 ≤ j ≤ n}

and K is the the Kantorovich constant.

Proof. i) By (2.8), Lemma 4.1 and Cauchy-Schwarz inequality, we have
tr
[
(1 − vN1+1 + vN1+2)A + (1 − vN2+2)B

]
=

n∑
j=1

[
(1 − vN1+1 + vN1+2)s j(A) + (1 − vN2+2)s j(B)

]
≤

n∑
j=1

[(
min K( vN1−N2 s j(A)

s j(B) , 2)
)−r

v−(1−v)N1−vN2−1sv
j (A)s1−v

j (B)

+
(√

s j(A) −
√

s j(B)
)2]

= K−r
1 v−(1−v)N1−vN2−1

n∑
j=1

s j(Av)s j(B1−v) +
n∑

j=1
s j(A) +

n∑
j=1

s j(B)

− 2
n∑

j=1

√
s j(A)s j(B)

≤ K−r
1 v−(1−v)N1−vN2−1

( n∑
j=1

s2
j (A

v)
) 1

2
(
s2

j (B
1−v)

) 1
2

+
n∑

j=1
s j(A) +

n∑
j=1

s j(B)

− 2
n∑

j=1
s j(A

1
2 B

1
2 )

= K−r
1 v−(1−v)N1−vN2−1

||Av
||2 ||B1−v

||2 + ||A||1 + ||B||1 − 2||A
1
2 B

1
2 ||1.
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So (4.4) holds.
ii) The proof of (4.5) is similar to the one presented in i) by applying the inequality (2.12), thus we omit
it.

Corollary 4.6 Let all assumptions of Theorem 4.5 be satisfied, then

i) tr
[
(1 − vN1+1 + vN1+2)A + (1 − vN2+2)B

]
≤ S−1

1 v−(1−v)N1−vN2−1
||Av
||2||B1−v

||2 + ||A||1 + ||B||1 − 2||A
1
2 B

1
2 ||1 (4.6)

ii) tr
[
(1 − vN1+1 + vN1+2)A2 + (1 − vN2+2)B2

]
≤ S−1

2 v−(1−v)N1−vN2−1
||Av
||

2
2 ||B

1−v
||

2
2 + ||A||22 + ||B||22 − 2||AB||1, (4.7)

where N1,N2 ∈ R, S1 = min{S
(( vN1−N2 s j(A)

s j(B)

)r)
, 1 ≤ j ≤ n}, S2 = min{S

(( vN1−N2 s2
j (A)

s2
j (B)

)r)
, 1 ≤ j ≤ n}, r = min{v, 1 − v} and S(·) is the Specht’s ratio.

By Lemma 4.2 and (2.8), finally, we have the following conclusions with Kantorovich constants for
unitarily invariant norm and trace. The reader can refer to Theorem 4.5 or [15] to get the process of proof.
Just like Corollary 4.7, of course, the reader can come to the similar conclusion with Specht’s ratio. Thus
we omit them.

Corollary 4.7 For A,B ∈Mn with A,B ∈M++
n and satisfy v ∈ (0, 1], then

i) (1 − vN1+1 + vN1+2)|||AX||| + (1 − vN2+2)|||XB||| ≤ K−r(vN1−N2 h1, 2)

v−(1−v)N1−vN2−1
|||AX|||v |||XB|||1−v + |||AX||| + |||XB||| − 2|||A

1
2 XB

1
2 ||| (4.8)

ii) tr
[
(1 − vN1+1 + vN1+2)A + (1 − vN2+2)B

]
≤ K−r( vN1−N2 h2, 2)

v−(1−v)N1−vN2−1(trA)v(trB)1−v + trA + trB − 2tr|A
1
2 B

1
2 |, (4.9)

where r = min{v, 1 − v}, N1,N2 ∈ R, h1 = |||AX|||
|||XB||| , h2 =

tr(A)
tr(B) .
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