On Some General Inequalities Related to Operator AM-GM Inequality

Rahim Safshekan ${ }^{\text {a }}$, Ali Farokhinia ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran

1. Introduction

Let $\mathbb{B}(\mathcal{H})$ be the C^{*}-algebra of all bounded linear operators on a Hilbert space \mathcal{H}. As usual, we reserve m, M for scalars and I for the identity operator on \mathcal{H}. A self adjoint operator A is said to be positive (written $A \geq 0$) if $\langle A x, x\rangle \geq 0$ for all $x \in \mathcal{H}$, while it is said to be strictly positive (written $A>0$) if A is positive and invertible. If A and B are self adjoint, we write $B \geq A$ in case $B-A \geq 0$. The Gelfand map $f(t) \mapsto f(A)$ is an isometrical $*$-isomorphism between the C^{*}-algebra $C(\sigma(A))$ of continuous functions on the spectrum $\sigma(A)$ of a self adjoint operator A and the C^{*}-algebra generated by A and the identity operator I. This is called the functional calculus of A. If $f, g \in C(\sigma(A))$, then $f(t) \geq g(t)(t \in \sigma(A))$ implies $f(A) \geq g(A)$ (see [11, p. 3]). A linear $\operatorname{map} \Phi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ is positive if $\Phi(A) \geq 0$ whenever $A \geq 0$. It's said to be unital if $\Phi(I)=I$.

For any strictly positive operator $A, B \in \mathbb{B}(\mathscr{H})$ and $0 \leq v \leq 1$, we write

$$
A!_{v} B=\left(A^{-1} \nabla_{v} B^{-1}\right)^{-1}, A \nVdash_{v} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{v} A^{\frac{1}{2}}, A \nabla B=(1-v) A+v B .
$$

For the case $v=\frac{1}{2}$, we write $!, \sharp$, and ∇, respectively. We use the same notions for scalars.
It is well-known that the arithmetic-geometric mean inequality (in short, AM-GM inequality), with respect to operator order, says that

$$
\begin{equation*}
A \sharp_{v} B \leq A \nabla_{v} B . \tag{1}
\end{equation*}
$$

The Löwner-Heinz theorem $[11$, Theorem 1.8$]$ says that if $A, B \in \mathbb{B}(\mathcal{H})$ are positive, then for $0 \leq p \leq 1$,

$$
\begin{equation*}
A \leq B \Rightarrow A^{p} \leq B^{p} \tag{2}
\end{equation*}
$$

In general (2) is not true for $p>1$.
Lin [7] nicely reduced the study of squared operator inequalities to that of some norm inequalities. Actually, he found that a reverse of operator AM-GM inequality can be squared

$$
\begin{equation*}
(A \nabla B)^{2} \leq K(h)^{2}(A \sharp B)^{2} \tag{3}
\end{equation*}
$$

[^0]whenever $A, B \in \mathbb{B}(\mathcal{H})$ are two positive operators satisfying $m I \leq A, B \leq M I$ for some scalars $0<m<M$, and $K(h)=\frac{(h+1)^{2}}{4 h}$ with $h=\frac{M}{m}$. It follows from (2) and (3) that
\[

$$
\begin{equation*}
(A \nabla B)^{p} \leq K(h)^{p}(A \sharp B)^{p} \quad(0<p \leq 2) . \tag{4}
\end{equation*}
$$

\]

It is natural to ask whether inequality (4) is true for $p \geq 2$? Recently, an affirmative answer to this question has been given by Fu and He [2], where it has been proved that

$$
(A \nabla B)^{p} \leq\left(\frac{(M+m)^{2}}{4^{\frac{2}{p}} M m}\right)^{p}(A \sharp B)^{p} .
$$

The problem of squaring operator inequalities has been studied extensively in the literature. We refer the reader to $[4,8-10,12]$ as sample of this work.
As mentioned above, Lin's method was based on some observations about the operator norm and an arithmetic-geometric mean inequality of Bhatia and Kittaneh (see [7, Lemma 2.2]). This paper intends to square a reverse of operator AM-GM inequality in a different way. Moreover, we square the operator Pólya-Szegö inequality [6, 10].

2. Main Results

To prove our generalized operator AM-GM inequalities, we need several well known lemmas. The first lemma is a simple consequence of the Jensen inequality concerning the convexity of certain power function [11, Theorem 1.4].

Lemma 2.1. (Hölder-McCarthy inequality) Let $A \in \mathbb{B}(\mathcal{H})$ be a positive operator. Then for any unit vector $x \in \mathcal{H}$,

$$
\langle A x, x\rangle^{p} \leq\left\langle A^{p} x, x\right\rangle \quad(p \geq 1)
$$

The second lemma is the converses of Hölder-McCarthy inequality [11, Theorem 1.29].
Lemma 2.2. Let $A \in \mathbb{B}(\mathcal{H})$ such that $m I \leq A \leq M I$ for some scalars $0<m<M$. Then for any unit vector $x \in \mathcal{H}$,

$$
\left\langle A^{2} x, x\right\rangle \leq K(h)\langle A x, x\rangle^{2}
$$

where $K(h)=\frac{(h+1)^{2}}{4 h}$ with $h=\frac{M}{m}$.
The third lemma is a reverse of operator AM-GM inequality, which has been proved in [5, Theorem 1].
Lemma 2.3. Let $A, B \in \mathbb{B}(\mathcal{H})$ such that $m I \leq A, B \leq M I$ for some scalars $0<m<M$. Then for any $0 \leq v \leq 1$,

$$
A \nabla_{v} B \leq \frac{m \nabla_{\lambda} M}{m \sharp_{\lambda} M} A \sharp_{v} B,
$$

where $\lambda=\min \{v, 1-v\}$. In particular,

$$
A \nabla B \leq \sqrt{K(h)} A \sharp B,
$$

where $K(h)=\frac{(h+1)^{2}}{4 h}$ with $h=\frac{M}{m}$.
Our first result is a generalization of the inequality (3).
Theorem 2.4. Let $A, B \in \mathbb{B}(\mathcal{H})$ such that $m I \leq A, B \leq M I$ for some scalars $0<m<M$. Then for any $0 \leq v \leq 1$,

$$
\begin{equation*}
\left(A \nabla_{v} B\right)^{2} \leq K(h)\left(\frac{m \nabla_{\lambda} M}{m \sharp_{\lambda} M}\right)^{2}\left(A \sharp_{v} B\right)^{2}, \tag{5}
\end{equation*}
$$

where $K(h)=\frac{(h+1)^{2}}{4 h}$ with $h=\frac{M}{m}$, and $\lambda=\min \{v, 1-v\}$. In particular,

$$
(A \nabla B)^{2} \leq K(h)^{2}(A \sharp B)^{2} .
$$

Proof. One can see that Lemma 2.3 implies

$$
\begin{equation*}
\left\langle A \nabla_{v} B x, x\right\rangle \leq\left\langle\frac{m \nabla_{\lambda} M}{m \sharp_{\lambda} M} A \sharp_{v} B x, x\right\rangle \tag{6}
\end{equation*}
$$

for any unit vector $x \in \mathcal{H}$. Taking the square in (6), we have

$$
\begin{align*}
\left\langle A \nabla_{v} B x, x\right\rangle^{2} & \leq\left\langle\frac{m \nabla_{\lambda} M}{m \sharp_{\lambda} M} A \sharp_{v} B x, x\right\rangle^{2} \\
& =\left(\frac{m \nabla_{\lambda} M}{m \sharp_{\lambda} M}\right)^{2}\left\langle A \sharp_{v} B x, x\right\rangle^{2} \tag{7}\\
& \leq\left(\frac{m \nabla_{\lambda} M}{m \sharp_{\lambda} M}\right)^{2}\left\langle\left(A \sharp_{v} B\right)^{2} x, x\right\rangle \quad \text { (by Lemma 2.1). }
\end{align*}
$$

On the other hand, $m I \leq A, B \leq M I$ implies

$$
\begin{equation*}
(1-v) m I \leq(1-v) A \leq(1-v) M I, \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
v m I \leq v B \leq v M I \tag{9}
\end{equation*}
$$

It follows from (8) and (9) that

$$
m I \leq A \nabla_{v} B \leq M I
$$

By applying Lemma 2.2, we get

$$
\begin{equation*}
\frac{1}{K(h)}\left\langle\left(A \nabla_{v} B\right)^{2} x, x\right\rangle \leq\left\langle A \nabla_{v} B x, x\right\rangle^{2} . \tag{10}
\end{equation*}
$$

Combining (7) and (10) we infer

$$
\left\langle\left(A \nabla_{v} B\right)^{2} x, x\right\rangle \leq K(h)\left(\frac{m \nabla_{\lambda} M}{m \#_{\lambda} M}\right)^{2}\left\langle\left(A \sharp_{v} B\right)^{2} x, x\right\rangle
$$

for any unit vector $x \in \mathcal{H}$. This completes the proof.
Another result of this type is the following one:
Corollary 2.5. Let $A, B \in \mathbb{B}(\mathcal{H})$ such that $m I \leq A, B \leq M I$ for some scalars $0<m<M$. Then for any $0 \leq v \leq 1$,

$$
\left(A \nabla_{v} B\right)^{2} \leq\left(K(h)\left(\frac{m \nabla_{\lambda} M}{m \sharp_{\lambda} M}\right)^{2}-1\right) M^{2} I+\left(A \sharp_{v} B\right)^{2},
$$

where $\lambda=\min \{v, 1-v\}$.
Proof. It follows from (5) that

$$
\begin{aligned}
\left(A \nabla_{v} B\right)^{2}-\left(A \sharp_{v} B\right)^{2} & \leq\left(K(h)\left(\frac{m \nabla_{\lambda} M}{m \sharp_{\lambda} M}\right)^{2}-1\right)\left(A \sharp_{v} B\right)^{2} \\
& \leq\left(K(h)\left(\frac{m \nabla_{\lambda} M}{m \sharp_{\lambda} M}\right)^{2}-1\right) M^{2} I,
\end{aligned}
$$

where the second inequality follows from the fact that

$$
A, B \leq M I \quad \Rightarrow \quad A \sharp_{v} B \leq M I \sharp_{v} M I=M I .
$$

As pointed out by Fujii and Nakamura in their paper [3, Theorem 2], if $A \in \mathbb{B}(\mathcal{H})$ is a positive operator such that $m I \leq A \leq M I$ for some scalars $0<m<M$, and $x \in \mathcal{H}$ is a unit vector, then for any $p \geq 1$,

$$
\begin{equation*}
\left\langle A^{p} x, x\right\rangle \leq K(m, M, p)\langle A x, x\rangle^{p}, \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
K(m, M, p)=\frac{m M^{p}-M m^{p}}{(p-1)(M-m)}\left(\frac{p-1}{p} \cdot \frac{M^{p}-m^{p}}{m M^{p}-M m^{p}}\right)^{p} \tag{12}
\end{equation*}
$$

We note that $K(m, M,-1)=K(m, M, 2)=\frac{(M+m)^{2}}{4 M m}$ is the original Kantorovich constant.
Now, by employing (11) and applying a same arguments as in the proof of Theorem 2.4 we reach the following result.
Corollary 2.6. Let $A, B \in \mathbb{B}(\mathcal{H})$ such that $m I \leq A, B \leq M I$ for some scalars $0<m<M$. Then for any $p \geq 1$ and $0 \leq v \leq 1$,

$$
\left(A \nabla_{v} B\right)^{p} \leq K(m, M, p)\left(\frac{m \nabla_{\lambda} M}{m \sharp_{\lambda} M}\right)^{p}\left(A \sharp_{v} B\right)^{p},
$$

where $K(m, M, p)$ is defined as in (12), and $\lambda=\min \{v, 1-v\}$.
Since $A^{-1} \nabla_{v} B^{-1} \leq \frac{m \nabla_{\lambda} M}{m \sharp_{\lambda} M} A^{-1} \sharp_{v} B^{-1}$ and $\left(A^{-1} \sharp_{v} B^{-1}\right)^{-1}=A \sharp_{v} B$, it follows that

$$
\begin{equation*}
A \sharp_{v} B \leq \frac{m \nabla_{\lambda} M}{m \sharp_{\lambda} M} A!_{v} B . \tag{13}
\end{equation*}
$$

The following result concerning (13) may be stated:
Corollary 2.7. Let $A, B \in \mathbb{B}(\mathcal{H})$ such that $m I \leq A, B \leq M I$ for some scalars $0<m<M$. Then for any $p \geq 1$ and $0 \leq v \leq 1$,

$$
\left(A \sharp_{v} B\right)^{p} \leq K(m, M, p)\left(\frac{m \nabla_{\lambda} M}{m \sharp_{\lambda} M}\right)^{p}\left(A!_{v} B\right)^{p},
$$

where $K(m, M, p)$ is defined as in (12), and $\lambda=\min \{v, 1-v\}$.
The following result is interesting in itself as well.
Proposition 2.8. Let $A \in \mathbb{B}(\mathcal{H})$ be a positive operator with the spectra contained in the interval J. If $f: J \rightarrow \mathbb{R}$ is a convex function, then for any unit vector $x \in \mathcal{H}$

$$
\left\langle A^{p} x, x\right\rangle \leq\langle A x, x\rangle^{p}+p \alpha
$$

where

$$
\alpha=\sup _{\substack{x \in \mathcal{H} \\\|x\|=1}}\left\{\left\langle A^{p} x, x\right\rangle-\langle A x, x\rangle\left\langle A^{p-1} x, x\right\rangle\right\} .
$$

Proof. It is well known that if f is a convex function on an interval J, then for each point $(s, f(s))$, there exists a real number C_{s} such that

$$
f(s)+C_{s}(t-s) \leq f(t)
$$

for all $t \in J$. If f is a differentiable at s, then

$$
\begin{equation*}
f(s)+f^{\prime}(s)(t-s) \leq f(t) \tag{14}
\end{equation*}
$$

Since $f(t)=t^{p}(p \geq 1)$ is a convex and differentiable function, then from (14) we obtain

$$
s^{p}+p s^{p-1}(t-s) \leq t^{p}
$$

Applying functional calculus we get

$$
A^{p}+\left(p t A^{p-1}-p A^{p}\right) \leq t^{p} I
$$

Hence for any unit vector $x \in \mathcal{H}$,

$$
\begin{equation*}
\left\langle A^{p} x, x\right\rangle+\left(p t\left\langle A^{p-1} x, x\right\rangle-p\left\langle A^{p} x, x\right\rangle\right) \leq t^{p} \tag{15}
\end{equation*}
$$

Now, since the spectra of $\langle A x, x\rangle$, contained in the interval J, by replacing t by $\langle A x, x\rangle$ in (15), we infer (see also [1, Theorem 2.1])

$$
\left\langle A^{p} x, x\right\rangle+\left(p\langle A x, x\rangle\left\langle A^{p-1} x, x\right\rangle-p\left\langle A^{p} x, x\right\rangle\right) \leq\langle A x, x\rangle^{p}
$$

On the other hand, by Lemma 2.1, we know that

$$
\left\langle A^{p} x, x\right\rangle-\langle A x, x\rangle\left\langle A^{p-1} x, x\right\rangle \geq 0
$$

Therefore,

$$
\left\langle A^{p} x, x\right\rangle-\langle A x, x\rangle\left\langle A^{p-1} x, x\right\rangle \leq \sup _{\substack{x \in \mathcal{H} \\\|x\| \|=1}}\left\{\left\langle A^{p} x, x\right\rangle-\langle A x, x\rangle\left\langle A^{p-1} x, x\right\rangle\right\}
$$

Consequently,

$$
\left\langle A^{p} x, x\right\rangle \leq\langle A x, x\rangle^{p}+p \alpha
$$

which completes the proof of this proposition.
We now present our next main result.
Theorem 2.9. Let $A, B \in \mathbb{B}(\mathcal{H})$ such that $m I \leq A, B \leq M I$ for some scalars $0<m<M$. Then for any $p \geq 1$ and $0 \leq v \leq 1$,

$$
\left(A \nabla_{v} B\right)^{p} \leq\left(\frac{m \nabla_{\lambda} M}{m \#_{\lambda} M}\right)^{p}\left(A \sharp_{v} B\right)^{p}+p \beta I,
$$

where $\lambda=\min \{v, 1-v\}$ and

$$
\beta=\sup _{\substack{x \in \mathcal{H} \\\|x\|=1}}\left\{\left\langle\left(A \nabla_{v} B\right)^{p} x, x\right\rangle-\left\langle A \nabla_{v} B x, x\right\rangle\left\langle\left(A \nabla_{v} B\right)^{p-1} x, x\right\rangle\right\} .
$$

Furthermore,

$$
\left(A \sharp_{v} B\right)^{p} \leq\left(\frac{m \nabla_{\lambda} M}{m \sharp_{\lambda} M}\right)^{p}\left(A!_{v} B\right)^{p}+\gamma p I,
$$

where

$$
\gamma=\sup _{\substack{x \in \mathcal{H} \\\|x\|=1}}\left\{\left\langle\left(A \sharp_{0} B\right)^{p} x, x\right\rangle-\left\langle A \sharp_{0} B x, x\right\rangle\left\langle\left(A \sharp_{0} B\right)^{p-1} x, x\right\rangle\right\} .
$$

Proof. Employing Proposition 2.8 for two inequalities

$$
\left\langle A \nabla_{v} B x, x\right\rangle^{p} \leq\left(\frac{m \nabla_{\lambda} M}{m \sharp_{\lambda} M}\right)^{p}\left\langle\left(A \sharp_{v} B\right)^{p} x, x\right\rangle,
$$

and

$$
\left\langle A \sharp_{v} B x, x\right\rangle^{p} \leq\left(\frac{m \nabla_{\lambda} M}{m \sharp_{\lambda} M}\right)^{p}\left\langle\left(A!_{v} B\right)^{p} x, x\right\rangle .
$$

It has been shown in [6], that if $A, B \in \mathbb{B}(\mathcal{H})$ are two positive operators satisfying $m I \leq A, B \leq M I$ for some scalars $0<m<M$, and $\Phi: \mathbb{B}(\mathcal{H}) \rightarrow \mathbb{B}(\mathcal{H})$ is a unital positive linear map, then

$$
\begin{equation*}
\Phi(A) \sharp \Phi(B) \leq \sqrt{K(h)} \Phi(A \sharp B) . \tag{16}
\end{equation*}
$$

Remark 2.10. We give a simple proof of (16). One can write

$$
\begin{aligned}
\Phi(A) \sharp \Phi(B) & \leq \Phi(A) \nabla \Phi(B) \quad(\text { by }(1)) \\
& =\Phi(A \nabla B) \\
& \leq \Phi(\sqrt{K(h)} A \sharp B) \quad(\text { by Lemma 2.3 }) \\
& =\sqrt{K(h)} \Phi(A \sharp B)
\end{aligned}
$$

i.e.,

$$
\Phi(A) \sharp \Phi(B) \leq \Phi(A) \nabla \Phi(B) \leq \sqrt{K(h)} \Phi(A \sharp B)
$$

which actually refines the inequality (16).
We next present the generalizations of (16).
Theorem 2.11. Let $A, B \in \mathbb{B}(\mathcal{H})$ such that $m I \leq A, B \leq M I$ for some scalars $0<m<M$. Then for any $p \geq 1$,

$$
\begin{equation*}
(\Phi(A) \sharp \Phi(B))^{p} \leq K(h)^{\frac{p}{2}} K(m, M, p) \Phi(A \sharp B)^{p}, \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
(\Phi(A) \sharp \Phi(B))^{p}-\Phi(A \sharp B)^{p} \leq\left(K(h)^{\frac{p}{2}} K(m, M, p)-1\right) M^{p} I, \tag{18}
\end{equation*}
$$

where $K(m, M, p)$ is defined as in (12).
Proof. It follows from (16) that

$$
\begin{align*}
\langle\Phi(A) \sharp \Phi(B) x, x\rangle^{p} & \leq K(h)^{\frac{p}{2}}\langle\Phi(A \sharp B) x, x\rangle^{p} \tag{19}\\
& \leq K(h)^{\frac{p}{2}}\left\langle\Phi(A \sharp B)^{p} x, x\right\rangle
\end{align*}
$$

for any unit vector $x \in \mathcal{H}$.
Since $m I \leq A, B \leq M I$ and Φ is a unital positive linear mapping, then $m I \leq \Phi(A), \Phi(B) \leq M I$. Thus, $m I \leq \Phi(A) \sharp \Phi(B) \leq M I$. Hence from (11),

$$
\begin{equation*}
\left\langle(\Phi(A) \sharp \Phi(B))^{p} x, x\right\rangle \leq K(m, M, p)\langle\Phi(A) \sharp \Phi(B) x, x\rangle^{p} \tag{20}
\end{equation*}
$$

for any unit vector $x \in \mathcal{H}$. Combining (19) and (20), we get the desired inequality (17). For (18),

$$
\begin{aligned}
(\Phi(A) \sharp \Phi(B))^{p}-\Phi(A \sharp B)^{p} & \leq\left(K(h)^{\frac{p}{2}} K(m, M, p)-1\right) \Phi(A \sharp B)^{p} \\
& \leq\left(K(h)^{\frac{p}{2}} K(m, M, p)-1\right) M^{p} I .
\end{aligned}
$$

where we have used the fact that

$$
m I \leq \Phi(A \sharp B) \leq M I
$$

It is immediate to see from (17) and (18) that

$$
(\Phi(A) \sharp \Phi(B))^{2} \leq K(h)^{2} \Phi(A \sharp B)^{2},
$$

and
$(\Phi(A) \sharp \Phi(B))^{2}-\Phi(A \sharp B)^{2} \leq\left(K(h)^{2}-1\right) M^{2} I$.

References

[1] S. S. Dragomir, Some reverses of the Jensen inequality for functions of selfadjoint operators in Hilbert spaces, J. Inequal. Appl., 2010.1 (2010): 496821
[2] X. Fu and C. He, Some operator inequalities for positive linear maps, Linear Multilinear Algebra., 63(3) (2015), 571-577.
[3] M. Fujii and M. Nakamura, Jensen inequality is a complement to Kantorovich inequality, Sci. Math. Jpn., 18 (2005), 91-97.
[4] S. Furuichi, H. R. Moradi and M. Sababheh, New sharp inequalities for operator means, Linear Multilinear Algebra., 67(8) (2019), 1567-1578.
[5] I. H. Gümüş, H. R. Moradi and M. Sababheh, More accurate operator means inequalities, J. Math. Anal. Appl., 465(1) (2018), 267-280.
[6] E. Y. Lee, A matrix reverse Cauchy-Schwarz inequality, Linear Algebra Appl., 430(2) (2009), 805-810.
[7] M. Lin, Squaring a reverse AM-GM inequality, Studia Math., 215 (2013), 187-194.
[8] H. R. Moradi, M. Omidvar, Complementary inequalities to improved AM-GM inequality, Acta Math. Sin., 33 (2017), 1609-1616.
[9] H. R. Moradi, M. E. Omidvar, I. H. Gümüş and R. Naseri, A note on some inequalities for positive linear maps, Linear Multilinear Algebra., 66(7) (2018), 1449-1460.
[10] M. S. Moslehian, and X. Fu, Squaring operator Pólya-Szegö and Diaz-Metcalf type inequalities, Linear Algebra Appl., 491 (2016), 73-82.
[11] J. Pečarić, T. Furuta, J. Mićić Hot and Y. Seo, Mond-Pečarić method in operator inequalities, Element, Zagreb, 2005.
[12] M. Sababheh, H. R. Moradi and Z. Heydarbeygi, New inequalities for the generalized Karcher mean, Linear Algebra Appl., 580 (2019), 184-199.

[^0]: 2010 Mathematics Subject Classification. Primary 47A63; Secondary 47A30, 47B20
 Keywords. Operator inequality, Jensen's inequality, convex functions, self adjoint operators, positive operators
 Received: 13 November 2019; Revised: 23 December 2019; Accepted: 03 January 2020
 Communicated by Fuad Kittaneh
 Corresponding author: Ali Farokhinia
 Email addresses: ra_safshekan@yahoo.com (Rahim Safshekan), farokhinia@iaushiraz.ac.ir (Ali Farokhinia)

