A Classification of 3-Dimensional η-Einstein Paracontact Metric Manifolds

Simeon Zamkovoy ${ }^{\text {a }}$, Assen Bojilov ${ }^{\text {a }}$
${ }^{a}$ University of Sofia "St. Kl. Ohridski", Faculty of Mathematics and Informatics, Blod. James Bourchier 5, 1164 Sofia, Bulgaria

Abstract

We show that a 3-dimensional η-Einstein paracontact metric manifold is either a manifold with $\operatorname{tr} h^{2}=0$, flat or of constant ξ-sectional curvature $k \neq-1$ and constant φ-sectional curvature $-k \neq 1$.

1. Introduction

The assumption that $\left(M^{2 n+1}, \varphi, \xi, \eta, g\right)$ is a paracontact metric manifold is very weak, since the set of metrics associated to the paracontact form η is huge. Even if the structure is η-Einstein we do not have a complete classification. It is known very little for the geometry of manifolds with $n=1$ (see [5]). On the other hand if the structure is para-Sasakian, the Ricci operator Q commutes with φ (see [5]), but in general $Q \varphi \neq \varphi Q$ and the problem of the characterization of paracontact metric manifolds with $Q \varphi=\varphi Q$ is open. In [2] Tanno defined a special family of paracontact metric manifolds by the requirement that ξ belongs to the k-nullity distribution of g. These manifolds are not well studied also (see [5]). In this paper, we show that a 3-dimensional paracontact manifold on which $Q \varphi=\varphi Q$ is either a manifold with $\operatorname{tr} h^{2}=0$, flat or of constant ξ-sectional curvature $k \neq-1$ and constant φ-sectional curvature $-k \neq 1$.

2. Preliminaries

First we will give some known definitons and facts which we use in the next section. A C^{∞} manifold $M^{(2 n+1)}$ is said to be paracontact manifold, if it carries a global 1 -form η such that $\eta \wedge(d \eta)^{n} \neq 0$ everywhere. We assume throughout that all manifolds are connected. Given a paracontact form η, it is well known that there exists a unique vector field ξ, called characteristic vector field of η, satisfying $\eta(\xi)=1$ and $d \eta(\xi, X)=0$ for all vector fields X. A pseudo-Riemannian metric g is said to be an associated metric if there exists a tensor field φ of type $(1,1)$ such that

$$
\begin{equation*}
d \eta(X, Y)=g(X, \varphi Y), \quad \eta(X)=g(X, \xi), \quad \varphi^{2}=I d-\eta \otimes \xi \tag{2.1}
\end{equation*}
$$

[^0]Using these conditions it is easily obtained that

$$
\begin{equation*}
\varphi \xi=0, \quad \eta \circ \varphi=0, \quad g(\varphi X, \varphi Y)=-g(X, Y)+\eta(X) \eta(Y) \tag{2.2}
\end{equation*}
$$

The structure (φ, ξ, η, g) is called a paracontact metric structure, and a manifold $M^{2 n+1}$ with paracontact metric structure (φ, ξ, η, g) is said to be a paracontact metric manifold.

Let $£$ and R be the Lie differentiation and the curvature tensor respectively. Using $£$ and R we define the operators l and h are defined in the following way

$$
\begin{equation*}
l X=R(X, \xi) \xi, \quad h=\frac{1}{2} £_{\xi} \varphi . \tag{2.3}
\end{equation*}
$$

The tensors h and l of $(1,1)$-type are symmetric and satisfy all of the subsequent conditions

$$
\begin{equation*}
l \xi=0, \quad h \xi=0, \quad \operatorname{tr} h=0, \quad \operatorname{tr} h \varphi=0, \quad h \varphi=-\varphi h . \tag{2.4}
\end{equation*}
$$

For a paracontact manifold the following statements are fulfilled:

$$
\begin{equation*}
\nabla_{X} \xi=-\varphi X+\varphi h X\left(\nabla_{\xi} \xi=0\right) \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{\xi} \varphi=0 \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{tr} l=g(Q \xi, \xi)=-2 n+\operatorname{tr}^{2} \tag{2.7}
\end{equation*}
$$

$$
\begin{align*}
& \varphi l \varphi+l=-2\left(\varphi^{2}-h^{2}\right) \tag{2.8}\\
& \nabla_{\xi} h=-\varphi-\varphi l+\varphi h^{2} \tag{2.9}
\end{align*}
$$

where tr is the trace of the operator, Q is the Ricci operator and ∇ is the Levi-Civita connection of g. Detailed proof of these formulas can be found in [4].

A paracontact metric manifold for which ξ is Killing is called a K-paracontact manifold. A paracontact structure on $M^{(2 n+1)}$ naturally gives rise to an almost paracomplex structure on the product $M^{(2 n+1)} \times \mathbb{R}$. If this almost paracomplex structure is integrable, the given paracontact metric manifold is said to be a para-Sasakian. Equivalently, (see [4]) a paracontact metric manifold is a para-Sasakian if and only if

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=-g(X, Y) \xi+\eta(Y) X \tag{2.10}
\end{equation*}
$$

is satisfied for all vector fields X and Y.
It can be easily shown that a 3-dimentional paracontact manifold is para-Sasakian if and only if $h=0$. For further details we refer to [3],[4].

A paracontact metric structure is said to be η-Einstein if

$$
\begin{equation*}
Q=a . i d+b \cdot \eta \otimes \xi \tag{2.11}
\end{equation*}
$$

where a, b are smooth functions on $M^{(2 n+1)}$. We also recall that the k-nullity distribution $N(k)$ of a pseudoRiemannian manifold (M, g), for a real number k, is the distribution

$$
\begin{equation*}
N_{p}(k)=\left\{Z \in T_{p} M: R(X, Y) Z=k(g(Y, Z) X-g(X, Z) Y)\right\} \tag{2.12}
\end{equation*}
$$

for any $X, Y \in T_{p} M$ (see [2]).
Finally, we call ξ-sectional curvature the sectional curvature

$$
K(\xi, X)=\epsilon_{X} R(X, \xi, \xi, X)
$$

where $|X|=\epsilon_{X}= \pm 1$, of a plane section spanned by ξ and the vector X orthogonal to ξ. Moreover the sectional curvature $K(X, \varphi X)=-R(X, \varphi X, \varphi X, X)$, where $|X|=-|\varphi X|= \pm 1$, of a plane section spanned by vectors X and φX orthogonal to ξ is called a φ-sectional curvature.

3. Main result

In this section we introduce our main results. Firstly we state the following lemma.
Lemma 1. Let M^{3} be a paracontact metric manifold with a paracontact metric structure (φ, ξ, η, g) such that $\varphi Q=Q \varphi$. Then the function trl is constant everywhere on M^{3}.

Although it was previously proven in [5], we include this complete proof in this paper for completeness and since we use many of the formulas which appear in it.
Proof. Let us recall that the curvature tensor of a 3-dimensional pseudo-Riemannian manifold is given by

$$
\begin{align*}
R(X, Y) Z=g(Y, Z) Q X-g(X, Z) Q Y & +g(Q Y, Z) X-g(Q X, Z) Y- \tag{3.13}\\
& -\frac{s c a l}{2}[g(Y, Z) X-g(X, Z) Y]
\end{align*}
$$

where scal is the scalar curvature of the manifold.
Using $\varphi Q=Q \varphi,(2.7)$ and $\varphi \xi=0$ we have that

$$
\begin{equation*}
Q \xi=(\operatorname{tr} l) \xi . \tag{3.14}
\end{equation*}
$$

From $\sqrt{3.13}$ and using (2.3) and $\sqrt{3.14}$, we have that for any X,

$$
\begin{equation*}
l X=Q X+\left(\operatorname{tr} l-\frac{s c a l}{2}\right) X+\eta(X)\left(\frac{s c a l}{2}-2 \operatorname{trl}\right) \xi \tag{3.15}
\end{equation*}
$$

and hence $\varphi Q=Q \varphi$ and $\varphi \xi=0$ give

$$
\begin{equation*}
\varphi l=l \varphi . \tag{3.16}
\end{equation*}
$$

As a result of (3.16), (2.8) and (2.9), we obtain

$$
\begin{equation*}
-l=\varphi^{2}-h^{2} \tag{3.17}
\end{equation*}
$$

and hence $\nabla_{\xi} h=0$.
By differentiating (3.17) along ξ and using formula (2.6) and $\nabla_{\xi} h=0$, we find that $\nabla_{\xi} l=0$ and therefore $\xi(\operatorname{tr} l)=0$. If there exists $X \in T_{p} M, X \neq \xi$ at point $p \in M^{3}$ such that $l X=0$, then $l=0$ at the point p. In fact if Y is the projection of X on $\mathbb{D}=k e r \eta$, we have $l Y=0$, since $l \xi=0$. Using 3.16 we have $l \varphi Y=0$. So $l=0$ at the point p (and thus $\operatorname{tr} l=0$ at the point p). Let us suppose that $l \neq 0$ on a neighborhood U of the point P. Using (3.16) and that φ is antisymmetric, we get $g(\varphi X, l X)=0$. Hence $l X$ is parallel to X for any X orthogonal to ξ. It is not hard to see that $l X=\frac{\operatorname{tr} l}{2} X$ for any X orthogonal to ξ. Thus for any X, we have

$$
\begin{equation*}
l X=\frac{\operatorname{trl}}{2} \varphi^{2} X \tag{3.18}
\end{equation*}
$$

If we use (3.18) and substitute it in (3.15) we receive

$$
\begin{equation*}
Q X=a X+b \eta(X) \xi \tag{3.19}
\end{equation*}
$$

where $a=\frac{\text { scal-trl }}{2}$ and $b=\frac{3 \operatorname{trl} l-s c a l}{2}$. Differentiating (3.19) with respect to Y and using (3.19) and the fact that $\nabla_{\xi} \xi=0$ we find

$$
\begin{equation*}
\left(\nabla_{Y} Q\right) X=(Y a) X+\left[(Y b) \eta(X)+b g\left(X, \nabla_{Y} \xi\right)\right] \xi+b \eta(X) \nabla_{Y} \xi . \tag{3.20}
\end{equation*}
$$

So using $\xi(\operatorname{trl})=0$ and $\nabla_{\xi} \xi=0$, from (3.20) with $X=Y=\xi$, we have $\left(\nabla_{\xi} Q\right) \xi=0$. Also using $h \varphi=-\varphi h$, and (2.5), from (3.20) with $X=Y$ orthogonal to ξ, we get

$$
\begin{equation*}
g\left(\left(\nabla_{X} Q\right) X-\left(\nabla_{\varphi X} Q\right) \varphi X, \xi\right)=0 \tag{3.21}
\end{equation*}
$$

But it is well known that

$$
\left(\nabla_{X} Q\right) X-\left(\nabla_{\varphi X} Q\right) \varphi X+\left(\nabla_{\xi} Q\right) \xi=\frac{1}{2} \operatorname{grad}(s c a l)
$$

for any unit vector X orthogonal to ξ. Hence, we easily get from the last two equations that $\xi($ scal $)=0$, and thus $\nabla_{\xi} Q=0$. Therefore, differentiating (3.13) with respect to ξ and using $\nabla_{\xi} Q=0$, we have $\nabla_{\xi} R=0$. So from the second identity of Bianchi, we get

$$
\begin{equation*}
\left(\nabla_{X} R\right)(Y, \xi, Z)=\left(\nabla_{Y} R\right)(X, \xi, Z) \tag{3.22}
\end{equation*}
$$

Now, substituting (3.19) in (3.13), we obtain

$$
\begin{array}{r}
R(X, Y) Z=[\gamma g(Y, Z)+b \eta(Y) \eta(Z)] X-[\gamma g(X, Z)+b \eta(X) \eta(Z)] Y+ \tag{3.23}\\
+b[\eta(X) g(Y, Z)-\eta(Y) g(X, Z)] \xi
\end{array}
$$

where $\gamma=\frac{\text { scal }}{2}-\operatorname{trl}$. For $Z=\xi$, 3.23) gives

$$
\begin{equation*}
R(X, Y) \xi=\frac{\operatorname{tr} l}{2}[\eta(Y) X-\eta(X) Y] \tag{3.24}
\end{equation*}
$$

Using (3.24), we obtain $\left(\nabla_{X} R\right)(Y, \xi, \xi)=\frac{X(\operatorname{tr})}{2} Y$, for X, Y orthogonal to ξ. From this and (3.22) for $Z=\xi$, we get $X(\operatorname{trl} l) Y=Y(\operatorname{tr} l) X$. Therefore $X(\operatorname{tr} l)=0$ for X orthogonal to ξ, but $\xi(\operatorname{tr} l)=0$, so the function $\operatorname{tr} l$ is constant and this completes the proof of the Lemma.

Remark 1. When $l=0$ everywhere, then using (3.13, 3.14 and 3.15 we get $R(X, Y) \xi=0$. This together with Theorem 3.3 in [6] gives that M^{3} is flat.

Now we can state the following proposition
Proposition 1. [5] Let M^{3} be a paracontact metric manifold with paracontact metric structure (φ, ξ, η, g). Then the following conditions are equivalent:
i) M^{3} is a η-Einstein;
ii) $Q \varphi=\varphi Q$;
iii) ξ belongs to the k-nullity distribution.

Next we present our main theorem.
Theorem 1. Let M^{3} be a paracontact metric manifold with paracontact metric structure (φ, ξ, η, g) on which $Q \varphi=$ φQ. Then M^{3} is either a manifold with trh ${ }^{2}=0$, flat or of constant ξ-sectional curvature $k \neq-1$ and constant φ-sectional curvature $-k \neq 1$.

Proof. From the proof of Lemma 1 and Remark 1 it follows straightforward that if $\operatorname{tr} l=0, l=0$ it turns out that M^{3} is flat. By the proof of Lemma 1 it is easy to show that if $k=-1$, then $\operatorname{tr} l=-2$ and by using (2.7), we have that M^{3} is a manifold with $\operatorname{tr} h^{2}=0$.

Let us firstly consider the case where $\operatorname{trl}=0$. From Proposition 1 and 2.12 it follows that

$$
\begin{equation*}
R(X, Y) \xi=k(\eta(Y) X-\eta(X) Y) \tag{3.25}
\end{equation*}
$$

where $k=\frac{\mathrm{tr} l}{2} \neq-1$ and $k \neq 0$. This implies that

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=-g(X-h X, Y) \xi+\eta(Y)(X-h X) \tag{3.26}
\end{equation*}
$$

as was pointed out by S. Zamkovoy in ([4]). In fact this is true for any 3-dimensional paracontact manifold ([3]). Computing $R(X, Y) \xi$ from (2.5) we receive

$$
R(X, Y) \xi=-\left(\nabla_{X} \varphi\right) Y+\left(\nabla_{Y} \varphi\right) X+\left(\nabla_{X} \varphi h\right) Y-\left(\nabla_{Y} \varphi h\right) X=
$$

$$
=-\left(\nabla_{X} \varphi\right) Y+\left(\nabla_{Y} \varphi\right) X+\left(\nabla_{X} \varphi\right) h Y-\left(\nabla_{Y} \varphi\right) h X+\varphi\left(\nabla_{X} h\right) Y-\varphi\left(\nabla_{Y} h\right) X
$$

Then using (3.25) and (3.26) we obtain either

$$
k(\eta(Y) X-\eta(X) Y)=\eta(X)(Y-h Y)-\eta(Y)(X-h X)+\varphi\left(\left(\nabla_{X} h\right) Y-\left(\nabla_{Y} h\right) X\right)
$$

or

$$
\begin{equation*}
(k+1)(\eta(Y) X-\eta(X) Y)=-\eta(X) h Y+\eta(Y) h X+\varphi\left(\left(\nabla_{X} h\right) Y-\left(\nabla_{Y} h\right) X\right) \tag{3.27}
\end{equation*}
$$

Next we consider the case in which $k>-1$. In this case the operator h is diagonalizable (see [1]). Now let X be a unit eigenvector of h (i.e. $|X|=\epsilon_{X}= \pm 1$), say $h X=\lambda X, X \perp \xi$. Since $\operatorname{tr} h^{2}=2(k+1), \lambda= \pm \sqrt{k+1}$ and hence is a constant. Setting $Y=\varphi X$, 3.27) yields

$$
\varphi\left(\left(\nabla_{X} h\right) \varphi X-\left(\nabla_{\varphi X} h\right) X\right)=0
$$

From which we receive the following equation

$$
\begin{equation*}
\varphi\left(-\lambda \nabla_{X} \varphi X-h \nabla_{X} \varphi X-\lambda \nabla_{\varphi X} X+h \nabla_{\varphi X} X\right)=0 \tag{3.28}
\end{equation*}
$$

Let us recall that $\varphi h+h \varphi=0$. Now we take the inner product of 3.28 with X and obtain

$$
\lambda g\left(\nabla_{\varphi X} X, \varphi X\right)=0
$$

Since $\lambda \neq 0(k>-1)$ and X is unit, $\nabla_{\varphi X} X$ is orthogonal to both X and φX and hence collinear with ξ. Now

$$
\eta\left(\nabla_{\varphi X} X\right)=g\left(\nabla_{\varphi X} X, \xi\right)=-g\left(X, \nabla_{\varphi X} \xi\right)=-g(-X-h X, X)=\epsilon_{X}(\lambda+1)
$$

Therefore we receive

$$
\nabla_{\varphi X} X=\epsilon_{X}(\lambda+1) \xi
$$

Similarly if we take the inner product of 3.28 with φX it follows that

$$
\nabla_{X} \varphi X=\epsilon_{X}(\lambda-1) \xi
$$

and in turn $\nabla_{X} X=0$ and

$$
[X, \varphi X]=-2 \epsilon_{X} \xi
$$

Now from the form of the curvature tensor (3.23), we have

$$
R(X, \varphi X) \varphi X=-\epsilon_{X}\left(\frac{s c a l}{2}-\operatorname{tr} l\right) \varphi X
$$

and by direct computation using $\nabla_{X} \xi=(\lambda-1) \varphi X$,

$$
\begin{gathered}
R(X, \varphi X) X=\nabla_{X} \nabla_{\varphi X} X-\nabla_{\varphi X} \nabla_{X} X-\nabla_{[X, \varphi X]} X= \\
=\epsilon_{X}(\lambda+1) \nabla_{X} \xi+2 \epsilon_{X} \nabla_{\xi} X=\epsilon_{X}\left(\lambda^{2}-1\right) \nabla_{X} \xi+2 \epsilon_{X} \nabla_{\xi} X .
\end{gathered}
$$

Thus

$$
\nabla_{\xi} X=\left(\frac{\lambda^{2}-1}{2}-\frac{s c a l}{4}\right) \varphi X
$$

and hence

$$
[\xi, X]=\left(\frac{(\lambda-1)^{2}}{2}-\frac{s c a l}{4}\right) \varphi X
$$

Now computing $R(\xi, X) \xi$, by ($\sqrt[3.25]{ }$) and by direct computation, we have

$$
-\left(\lambda^{2}-1\right) X=\nabla_{\xi}(-\varphi X+\varphi h X)-\nabla_{\left(\frac{(\lambda-1)^{2}}{2}-\frac{s c a l}{4}\right) \varphi X} \xi=
$$

$$
\begin{gathered}
=(\lambda-1) \varphi \nabla_{\xi} X+\left(\frac{(\lambda-1)^{2}}{2}-\frac{s c a l}{4}\right)(X+h X)= \\
=\left((\lambda-1)^{2}(\lambda+1)-\lambda \frac{s c a l}{2}\right) X
\end{gathered}
$$

from which

$$
\text { scal }=2\left(\lambda^{2}-1\right)=2 k .
$$

From (3.25 and (3.23) it follows that for the ξ-sectional curvature $K(X, \xi)$ and φ-sectional curvature $K(X, \varphi X)$ are equal to

$$
K(X, \xi)=k \quad \text { and } \quad K(X, \varphi X)=-k
$$

respectively as was desired.
Let us now consider the case in which $k<-1$. As it was shown in (see [1]) the operator φh is diagonalizable. Now let X be a unit eigenvector of φh (i.e. $|X|=\epsilon_{X}= \pm 1$), say $\varphi h X=\lambda X, X \perp \xi$. Since $\operatorname{tr} h^{2}=2(k+1), \lambda= \pm \sqrt{-(k+1)}$ and hence is a constant. We denote $Y=\varphi X$ (3.27). Hence

$$
\left(\nabla_{X} \varphi h\right) \varphi X-\left(\nabla_{\varphi X} \varphi h\right) X=0
$$

from which we receive

$$
\begin{equation*}
-\lambda \nabla_{X} \varphi X-\varphi h \nabla_{X} \varphi X-\lambda \nabla_{\varphi X} X+\varphi h \nabla_{\varphi X} X=0 \tag{3.29}
\end{equation*}
$$

Taking the inner product of 3.29 with φX and recalling that $\varphi h+h \varphi=0$, we have

$$
\lambda g\left(\nabla_{\varphi X} X, \varphi X\right)=0
$$

Since $\lambda \neq 0(k<-1)$ and X is unit, $\nabla_{\varphi X} X$ is orthogonal to both X and φX and hence collinear with ξ. Now

$$
\eta\left(\nabla_{\varphi X} X\right)=g\left(\nabla_{\varphi X} X, \xi\right)=-g\left(X, \nabla_{\varphi X} \xi\right)=-g\left(-\varphi^{2} X+\varphi h \varphi X, X\right)=\epsilon_{X} .
$$

Therefore

$$
\nabla_{\varphi X} X=\epsilon_{X} \xi
$$

Similarly taking the inner product of 3.29 with X yields

$$
\nabla_{X} \varphi X=-\epsilon_{X} \xi
$$

and in turn $\nabla_{X} X=-\epsilon_{X} \lambda \xi$ and

$$
[X, \varphi X]=-2 \epsilon_{X} \xi
$$

Now from the form of the curvature tensor (3.23, we have

$$
R(X, \varphi X) \varphi X=-\epsilon_{X}\left(\frac{s c a l}{2}-\operatorname{trl}\right) \varphi X
$$

and by direct computation using $\nabla_{X} \xi=-\varphi X+\lambda X$,

$$
R(X, \varphi X) X=\nabla_{X} \nabla_{\varphi X} X-\nabla_{\varphi X} \nabla_{X} X-\nabla_{[X, \varphi X]} X
$$

Thus

$$
\nabla_{\xi} X=-\left(\frac{\lambda^{2}+1}{2}+\frac{s c a l}{4}\right) \varphi X
$$

and hence

$$
[\xi, X]=-\lambda X-\left(\frac{\lambda^{2}-1}{2}+\frac{s c a l}{4}\right) \varphi X .
$$

We compute $R(\xi, X) \xi$, using ($\sqrt{3.25})$ and by direct computation, we have

$$
\begin{gathered}
\left(\lambda^{2}+1\right) X=\nabla_{\xi}(-\varphi X+\lambda X)+\lambda \nabla_{X} \xi+\left(\frac{\lambda^{2}-1}{2}+\frac{s c a l}{4}\right) \nabla_{\varphi X} \xi= \\
=-\varphi \nabla_{\xi} X+\lambda \nabla_{\xi} X+\lambda \nabla_{X} \xi+\left(\frac{\lambda^{2}-1}{2}+\frac{s c a l}{4}\right)(-X-\lambda \varphi X)= \\
=\left(\lambda^{2}+1\right) X+\left(-\lambda-2 \lambda\left(\frac{\text { scal }}{4}+\frac{\lambda^{2}}{2}\right)\right) \varphi X
\end{gathered}
$$

from which

$$
\text { scal }=-2\left(\lambda^{2}+1\right)=2 k .
$$

As a conclusion from (3.25) and (3.23) we see that

$$
K(X, \xi)=k \quad \text { and } \quad K(X, \varphi X)=-k
$$

as desired.
Now we can state the following definition
Definition 1. A paracontact metric structure (φ, ξ, η, g) is said to be locally $\varphi-$ symmetric if $\varphi^{2}\left(\nabla_{W} R\right)(X, Y, Z)=0$, for all vector fields W, X, Y, Z orthogonal to ξ.

The next theorem was proved in detail in [5]
Theorem 2. Let M^{3} be a paracontact metric manifold with $Q \varphi=\varphi Q$. Then M^{3} is locally φ-symmetric if and only if the scalar curvature scal of M^{3} is constant.

Remark 2. Using (3.20) with $\operatorname{trl}=$ const., we obtain the following formula

$$
\begin{equation*}
2|\nabla Q|^{2}=\mid \text { gradscal| }\left.\right|^{2}-(3 \operatorname{tr} l-s c a l)^{2}(4+\operatorname{trl}) \tag{3.30}
\end{equation*}
$$

which is valid on any paracontact metric manifold M^{3} with $Q \varphi=\varphi Q$.
From Theorem 2, we get the following
Corollary 1. A locally φ-symmetric paracontact metric manifold M^{3} is a manifold with either scal $=3 \operatorname{trl}$, scal $=-12$ or $\operatorname{tr} l=-4$.

Acknowledgments

S.Z. is partially supported by Contract DN 12/3/12.12.2017 and Contract 80-10-12/18.03.2020 with the Sofia University "St.Kl.Ohridski".
A.B. is partially supported by Contract 80-10-209/17.04.2019 with the Sofia University "St.Kl.Ohridski".

References

[1] B. Cappelletti-Montano, I. Küpeli Erken, C. Murathan, Nullity conditions in paracontact geometry, Diff. Geom. Appl. 30 (2012), 665-693. 3571, 3572
[2] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J. 40:3, 441-448 (1988). 3567, 3568
[3] J.Welyczko, Para-CR Structures on almost Paracontact Metric Manifolds, Result. Math. 54, 377-387, (2009). 3568, 3570
[4] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann Glob Anal Geom. 36, 37-60, (2009). 3568||3570
[5] S. Zamkovoy, Notes on a class of paracontact metric 3-manifolds, arXiv:1707.05248, (2017). 3567, 3569, 3570 , 3573
[6] S. Zamkovoy, V. Tzanov, Non-existence of flat paracontact metric structures in dimension greater than or equal to five, Annuaire de l'universite de Sofia "St. Kl. Ohridski" faculte de mathematiques et informatique 100, 27-34, (2011). 3570

[^0]: 2010 Mathematics Subject Classification. Primary 53D15
 Keywords. 3-dimensional paracontact metric manifolds
 Received: 02 February 2020; Revised: 22 June 2020; Accepted: 10 July 2020
 Communicated by Ljubica Velimirović
 S.Z. is partially supported by Contract DN $12 / 3 / 12.12 .2017$ and Contract $80-10-12 / 18.03 .2020$ with the Sofia University "St.Kl.Ohridski".
 A.B. is partially supported by Contract 80-10-209/17.04.2019 with the Sofia University "St.Kl.Ohridski".

 Email addresses: zamkovoy@fmi.uni-sofia.bg (Simeon Zamkovoy), bojilov@fmi.uni-sofia.bg (Assen Bojilov)

