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An Inverse Problem in Estimating the Time Dependent Source Term
and Initial Temperature Simultaneously by the Polynomial Regression

and Conjugate Gradient Method
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aKocaeli University, Faculty of Arts and Sciences, Department of Mathematics, Umuttepe Campus, 41380, Kocaeli - TURKEY

Abstract. From the final and interior temperature measurements identifying the source term with initial
temperature simultaneously is an inverse heat conduction problem which is a kind of ill-posed. The optimal
control framework has been found to be effective in dealing with these problems. However, they require
to find the gradient information. This idea has been employed in this research. We derive the gradient of
Tikhonov functional and establish the stability of the minimizer from the necessary condition. The stability
and effectiveness of evolutionary algorithm are presented for various test examples.

1. Introduction

In recent years, several researchers have reported for the solvability of the parabolic inverse problems of
finding a solution with an unknown right-hand side. For instance, the inverse source problem when the final
and (or) integral overdetermination condition are given have been studied in [7, 18, 19, 24–26]. Borukhov
and Vabishchevich [8] have reconstructed the right-hand side of a parabolic equation using a solution
specified at internal points. Abasheeva [1] has proved the existence and uniqueness of the solution to the
inverse source problem. Ashyralyev, Erdogan and Demirdag [3] have presented a stable difference schemes
of first and second orders of accuracy for the inverse source problem. A numerical method by employing
a new idea of fictitious time integration method for backward heat conduction problem has been given by
Chang and Liu [10]. The unknown initial condition for a parabolic system has been concerned by Tadi [23].
Masooda K. and Yousufa [21] have proposed a class of numerical schemes based on positivity-preserving
Padé approximations to solve initial inverse problems in the heat equation. The initial temperature and a
boundary coefficient have been simultaneously determined from the final overdetermination and a priori
known in a small sub-domain in [11]. Erdem [13] study two inverse problems relating to reconstruction
of the diffusion coefficient k(x), appearing in a linear partial parabolic equation ut = (k(x)ux)x concerned
through overposed data u(x,T) and non-local boundary condition

∫ T

0 u(x, t)dt. An inverse source problem
of identification of F(t) function in the linear parabolic equation ut = uxx +F(t) and u0(x) function as the initial
condition from the measured final data and local boundary data based on the optimal control framework
by Green’s function has been presented in [4–6, 14]. Source terms w := {F(x, t), p(t)} in the linear parabolic
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equation ut = uxx + F(x, t) and Robin boundary condition −ux(l, t) = ν[u(l, t) − p(t)] from the measured final
data and the measurement of the temperature in a subregion has been investigated in [15] based on the
minimization of Tikhonov functional.

We consider one-dimensional heat conduction specified by the differential equation:

∂u
∂t

=
∂2u
∂x2 + F(t), (x, t) ∈ (0,L) × (0, t f ), (1)

where u(x, t) describes the temperature field depending on the spacewise variable x and the time t, F(t) is
the internal heat source, L and t f are given positive constants . The initial temperature are set as

u(x, 0) = u0(x), x ∈ (0,L), (2)

and two boundary conditions are defined:

u(0, t) = u(L, t) = 0, t ∈ (0, t f ]. (3)

When the internal heat source F(t) and initial temperature u0(x) are given, the problem (1)-(3) is referred
as the direct problem. The problem of identifying the unknown internal heat source F(t) and initial
temperature u0(x) through the following additional information is considered as the inverse problem:

u f (x) = u(x, t f ), x ∈ (0,L), (4)
u∗(t) = u(x∗, t), t ∈ (0,T], (5)

where x∗ is an interior point.
By the method of separation of variables, the solution of (1)-(3) can be written as

u(x, t) =

∫ L

0
u0(ξ)G(x, ξ, t)dξ +

∫ t

0
F(τ)H(x, t − τ)dτ,

where the form of the Green’s function is given by

G(x, ξ, t) =
2
L

∞∑
n=1

sin(λnx) sin(λnξ) exp(−λ2
nt),

with λn = nπ
L and the function H(x, t) is expressed in terms of Green’s function as

H(x, t) =

∫ L

0
G(x, ξ, t)dξ =

4
L

∞∑
n=1

1
λ2n−1

sin(λ2n−1x) exp(−λ2
2n−1t),

For any given u0(x) ∈ H2+l(0,L), f (t) ∈ Hl/2(0,T), α ∈ (0, 1) and the consistency condition u0(0) = u0(L) =
0 is satisfied, there exists a unique solution u(x, t) ∈ H2+l,1+l/2([0,L] × [0,T]), to the problem (1)-(3), [20].

In this paper, the unknown internal heat source F(t) and initial temperature u0(x) are represented a
simplified version of the polynomial regression model:

F(t) =

Nt∑
k=1

φktk−1, 0 ≤ t ≤ t f , (6)

u0(x) =

Nx∑
m=1

θmxm−1, 0 ≤ x ≤ L (7)

We aim to find the parameters φ = [φ1, φ2, ..., φNt ]
T and θ = [θ1, θ2, ..., θNx ]T which response best matches

the recorded data. The solution of present inverse problem is to be sought in such a way that the Tikhonov
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objective function Sα(φ,θ) is minimized:

Sα(φ,θ) =

Ix∑
i=1

[
u f (xi) − u(xi, t f ;φ,θ)

]2
+

It∑
j=1

[
u∗(t j) − u(x∗, t j;φ,θ)

]2

+α
Ix∑

i=1

 Nx∑
m=1

θmxm−1
i


2

+ α
It∑

j=1

 Nt∑
k=1

φktk−1
j


2

(8)

where α > 0 is the regularization parameter.
Here, we present an efficient solution for the inverse problem (1)-(5). It combines the iterative-type

and Tikhonov regularization methods. The solution method aims to minimize the objective functional (8).
Further, the gradient of (8) is defined, explicitly. Then the Conjugate Gradient method is proposed to solve
resulting minimization problem.

The paper is organized as follows. In Section 2, the gradient of the Tikhonov objective functional has
been obtained. The necessity condition has been presented for the stability of solutions in the presence of
measurement noise in Section 3. In Section 4, we design the algorithm and the obtained theoretical results
will be tested practically in terms of numerical experiments.

2. Mathematical relations

The analytical solution of (1)-(3) is obtained as

u(x, t) =

∫ L

0
u0(ξ)G(x, ξ, t)dξ +

∫ t

0
F(τ)H(x, t − τ)dτ (9)

where Green’s function with eigenvalue λn = nπ/L is given by

G(x, ξ, t) =
2
L

∞∑
n=1

sin (λnx) sin (λnξ) exp
(
−λ2

nt
)

(10)

The functions H is represented in terms of Green’s function given by

H (x, t) =

∫ L

0
G(x, ξ, t)dξ =

4
L

∞∑
n=1

1
λ2n−1

sin(λ2n−1x) exp(−λ2
2n−1t), (11)

By substituting (6) and (7) into the analytical solution at the measurement points we have

u(x, t f ;φ,θ) =

Nx∑
m=1

θm

∫ l

0
ξm−1G(x, ξ, t f )dξ +

Nt∑
k=1

φk

∫ t f

0
τk−1H(x, t f − τ)dτ, (12)

u(x∗, t;φ,θ) =

Nx∑
m=1

θm

∫ l

0
ξm−1G(x∗, ξ, t)dξ +

Nt∑
k=1

φk

∫ t

0
τk−1H(x∗, t − τ)dτ, (13)

and differentiating the above result with respect to φk and θm we obtain the following expression for the
sensitivity coefficients for the parameters φk, k = 1, 2, ...,Nt and θm,m = 1, 2, ...,Nx :

J1,1
m (x) =

∂u(x, t f ;φ,θ)
∂θm

=

∫ l

0
ξm−1G(x, ξ, t f )dξ, (14)

J2,1
m (t) =

∂u(x∗, t;φ,θ)
∂θm

=

∫ l

0
ξm−1G(x∗, ξ, t)dξ, (15)

J1,2
k (x) =

∂u(x, t f ;φ,θ)
∂φk

=

∫ t f

0
τk−1H(x, t f − τ)dτ, (16)

J2,2
k (t) =

∂u(x∗, t;φ,θ)
∂φk

=

∫ t

0
τk−1H(x∗, t − τ)dτ. (17)
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Figure 1: (a) shows the sensitivity coefficient J1,1
m (x) , m = 1, 2, 3, 4, 5, 6;

(b) shows the sensitivity coefficient J2,1
m (t) , m = 1, 2, 3, 4, 5, 6;

(c) shows the sensitivity coefficient J1,2
k (x) , k = 1, 2, 3, 4, 5;

(d) shows the sensitivity coefficient J2,2
k (t) , k = 1, 2, 3, 4, 5 where L = 2π, t f = 2, x∗ = π
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By differentiating equation (8) with respect to the unknown parameters θm,m = 1, 2, ...,Nx and φk, k =
1, 2, ...,Nt we obtain

∂Sα(φ,θ)
∂φk

= −2
Ix∑

i=1

[
u f (xi) − u(xi, t f ;φ,θ)

]
J1,2
k (xi)

−2
It∑

j=1

[
u∗(t j) − u(x∗, t j;φ,θ)

]
J2,2
k

(
t j

)
+ 2α

It∑
j=1

tk−1
j

 Nt∑
k=1

φktk−1
j

 (18)

∂Sα(φ,θ)
∂θm

= −2
Ix∑

i=1

[
u f (xi) − u(xi, t f ;φ,θ)

]
J1,1
m (xi)

−2
It∑

j=1

[
u∗(t j) − u(x∗, t j;φ,θ)

]
J2,1
m

(
t j

)
+ 2α

Ix∑
i=1

xm−1
i

 Nx∑
m=1

θmxm−1
i

 (19)

Then from (18) , (19) the expression of the gradient of the cost function (8) is

∇φSα(φ,θ) =

[
∂Sα(φ,θ)
∂φ1

, ...,
∂Sα(φ,θ)
∂φNt

]
(20)

∇θSα(φ,θ) =

[
∂Sα(φ,θ)
∂θ1

, ...,
∂Sα(φ,θ)
∂θNx

]
(21)

3. Stability Analysis

The next lemma gives a necessity condition for stabilization of the minimizer of the functional Sα(φ,θ)
given by (8).

Theorem 3.1. Letφ∗,θ∗ be the optimal solution for Sα(φ,θ) and u∗ (x, t) be a solution corresponding to these optimal
solution. If for any φ,θ, v (x, t) is the solution of the following problem:

∂v
∂t = ∂2v

∂x2 +
∑Nt

k=1

(
φk − φ∗k

)
tk−1, (x, t) ∈ (0,L) × (0, t f )

v(x, 0) =
∑Nx

m=1

(
θm − θ∗m

)
xm−1, x ∈ (0,L),

v(0, t) = v(L, t) = 0, t ∈ (0, t f ].
, (22)

then we have the following estimates:

2α

 Ix∑
i=1

Nx∑
m=1

θm
(
θm − θ

∗

m
)

x2m−2
i +

It∑
j=1

Nt∑
k=1

φk

(
φk − φ

∗

k

)
t2k−2

j

 ≥
2

Ix∑
i=1

[
u f (xi) − u(xi, t f ;φ∗,θ∗)

]
v
(
xi, t f

)
+

It∑
j=1

[
u∗(t j) − u(x∗, t j;φ∗,θ∗)

]
v
(
x∗, t j

)
. (23)

Proof. For any φ,θ, γ ∈ (0, 1), let us set the following parameters:

φγ =
(
1 − γ

)
φ∗ + γφ,

θγ =
(
1 − γ

)
θ∗ + γθ,

then

Sα(φγ,θγ) =

Ix∑
i=1

[
u f (xi) − u(xi, t f ;φγ,θγ)

]2
+

It∑
j=1

[
u∗(t j) − u(x∗, t j;φγ,θγ)

]2

+α
Ix∑

i=1

 Nx∑
m=1

θγmxm−1
i


2

+ α
It∑

j=1

 Nt∑
k=1

φγk tk−1
j


2
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Since φ∗,θ∗ are optimal

dSα(φγ,θγ)
dγ

∣∣∣∣∣
γ=0

= −2
Ix∑

i=1

[
u f (xi) − u(xi, t f ;φ∗,θ∗)

] ∂u(xi, t f ;φγ,θγ)
∂γ

∣∣∣∣∣∣
γ=0

−2
It∑

j=1

[
u∗(t j) − u(x∗, t j;φ∗,θ∗)

] u(x∗, t j;φγ,θγ)
∂γ

∣∣∣∣∣∣
γ=0

+2α
Ix∑

i=1

Nx∑
m=1

θm
(
θm − θ

∗

m
)

x2m−2
i + 2α

It∑
j=1

Nt∑
k=1

φk

(
φk − φ

∗

k

)
t2k−2

j ≥ 0.

Let us denote v (x, t) =
∂uγ(x,t)
∂γ

∣∣∣∣
γ=0

which is the solution of (22) and using in the above inequality:

dSα(φγ,θγ)
dγ

∣∣∣∣∣
γ=0

= −2
Ix∑

i=1

[
u f (xi) − u(xi, t f ;φ∗,θ∗)

]
v
(
xi, t f

)
+ 2α

Ix∑
i=1

Nx∑
m=1

θm
(
θm − θ

∗

m
)

x2m−2
i

−2
It∑

j=1

[
u∗(t j) − u(x∗, t j;φ∗,θ∗)

]
v
(
x∗, t j

)
+ 2α

It∑
j=1

Nt∑
k=1

φk

(
φk − φ

∗

k

)
t2k−2

j ≥ 0,

which is the required result.

4. Conjugate Gradient Method

Here, we use the Conjugate Gradient Method which is an iterative process to estimate the parameters{
φ,θ

}
by minimizing the cost function Sα(φ,θ) given in (8) .We establish the new iterate

{
φ(n+1),θ(n+1)

}
from

the previous iteration
{
φ(n),θ(n)

}
as follows:

φ(n+1) = φ(n)
− βφd(n)

φ (24)

θ(n+1) = θ(n)
− βθd(n)

θ (25)

where βφ, βθ are the search step size, n shows the iteration number, d(n)
φ is the direction of descent for φ

given as

d(n)
φ =

 ∇φSα(φ(n),θ(n)), if n = 0
∇φSα(φ(n),θ(n)) + γ(n)

φ d(n−1)
φ , if n > 0 , (26)

d(n)
θ is the direction of descent for φ,as well,i.e.

d(n)
θ =

{
∇θSα(φ(n),θ(n)), if n = 0
∇θSα(φ(n),θ(n)) + γ(n)

θ d(n−1)
θ , if n > 0

. (27)

Here γ(n)
φ and γ(n)

θ are the conjugate coefficients obtained by the direction of descent d(n)
φ and d(n)

θ conjugated

to the previous one d(n−1)
φ and d(n−1)

θ ,respectively. In the literature, different kind of the conjugate coefficients
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can be found. The most common conjugation is the Fletcher–Reeve’s (FR) version [16] given by:

γ(0)
φ = 0, γ(n)

φ =

∑Nt
k=1

[
∂Sα(φ(n),θ(n))

∂φk

]2

∑Nt
k=1

[
∂Sα(φ(n−1),θ(n−1))

∂φk

]2 ,n > 0, (28)

γ(0)
θ = 0, γ(n)

θ =

∑Nx
m=1

[
∂Sα(φ(n),θ(n))

∂θm

]2

∑Nx
m=1

[
∂Sα(φ(n−1),θ(n−1))

∂θm

]2 ,n > 0. (29)

The search step size βφ appearing in equation (24) is obtained by minimizing the function Sα
(
φ(n+1),θ(n)

)
with respect to φ(n+1), that is,

βφ =
Eφ
Fφ

(30)

where

Eφ =

Ix∑
i=1

[
u
(
xi, t f ;φ(n),θ(n)

)
− u f (xi)

]
u
(
xi, t f ; d(n)

φ ,θ
(n)

)
+

It∑
j=1

[
u
(
x∗, t j;φ(n),θ(n)

)
− u∗(t j)

]
u
(
x∗, t j; d(n)

φ ,θ
(n)

)

+α
It∑

j=1

 Nt∑
k=1

φ(n)
k tk−1

j


 Nt∑

k=1

(
d(n)
φ

)
k

tk−1
j

 (31)

Fφ =

Ix∑
i=1

u2
(
xi, t f ; d(n)

φ ,θ
(n)

)
+

It∑
j=1

u2
(
x∗, t j; d(n)

φ ,θ
(n)

)
+ α

It∑
j=1

 Nt∑
k=1

(
d(n)
φ

)
k

tk−1
j


2

(32)

and βθ appearing in equation (25) is obtained by minimizing the function Sα
(
φ(n),θ(n+1)

)
with respect to

θ(n+1), that is,

βθ =
Eθ
Fθ

(33)

where

Eθ =

Ix∑
i=1

[
u
(
xi, t f ;φ(n),θ(n)

)
− u f (xi)

]
u
(
xi, t f ;φ(n), d(n)

θ

)
+

It∑
j=1

[
u
(
x∗, t j;φ(n),θ(n)

)
− u∗(t j)

]
u
(
x∗, t j;φ(n), d(n)

θ

)
+α

It∑
j=1

 Nt∑
k=1

φ(n)
k tk−1

j


 Nt∑

k=1

(
d(n)
θ

)
k

tk−1
j

 (34)

Fφ =

Ix∑
i=1

u2
(
xi, t f ;φ(n), d(n)

θ

)
+

It∑
j=1

u2
(
x∗, t j;φ(n), d(n)

θ

)

+α
It∑

j=1

 Nt∑
k=1

(
d(n)
θ

)
k

tk−1
j


2

(35)
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4.1. Algorithm model for iteratively gradient method:

The computational procedure for the solution of this inverse problem (1)-(5) using the conjugate gradient
method is introduced as follows:

Step 1 Choose φ(0),θ(0), and set n = 0,

Step 2 Calculate u
(
xi, t f ;φ(n),θ(n)

)
, i = 1, 2, ..., Ix in (12) and u

(
x∗, t j;φ(n),θ(n)

)
, j = 1, 2, ...., It in (13),

Step 3 Compute ∂Sα(φ(n),θ(n))
∂φk

, k = 1, 2, ...,Nt in (18) and ∂Sα(φ(n),θ(n))
∂θm

,m = 1, 2, ...,Nx in (19) ,

Step 4 Knowing ∂Sα(φ(n),θ(n))
∂θm

,m = 1, 2, ...,Nx and ∂Sα(φ(n),θ(n))
∂φk

, k = 1, 2, ...,Nt, compute the conjugate coefficients

γ(n)
φ in (28) and γ(n)

θ in (29),

Step 5 Compute d(n)
φ in (26) and d(n)

θ in (27),

Step 6 By setting d(n)
φ instead ofφ(n). calculate u

(
xi, t f ; d(n)

φ ,θ
(n)

)
, i = 1, 2, ..., Ix in (12) and u

(
x∗, t j; d(n)

φ ,θ
(n)

)
, j =

1, 2, ...., It in (13) and putting d(n)
θ instead of θ(n) calculate u

(
xi, t f ;φ(n), d(n)

θ

)
, i = 1, 2, ..., Ix in (12) and

u
(
x∗, t j;φ(n), d(n)

θ

)
, j = 1, 2, ...., It in (13)

Step 7 Compute the step size βφ form (30) by using (31) and (32) and the step size βθ form (33) by using
(34) and (35),

Step 8 Update φ(n+1),θ(n+1) from (24) and (25),

Step 9 Stop computing if the stopping criterion

Sα
(
φ(n+1),θ(n+1)

)
< ε

is satisfied. Otherwise set n = n + 1 and go to Step 2.

4.2. Results

Now using the above proposal algorithm we will reconstruct the unknown internal heat source F(t)
performed on the mesh wht := {t j : t0 = 0, t j = jht, j = 1, 2, ..., It, ht = t f /It} and initial temperature u0(x)
performed on the mesh whx := {xi : x0 = 0, xi = ihx, j = 1, 2, ..., Ix, hx = L/Ix}. We use the stopping criteria as

ε := 10−3. The root mean square errors are computed by EF =

√∑It
j=0(F(t j)−Fht (t j))2

It
and Eu0 =

√∑Ix
i=0(u0(xi)−uhx

0 (xi))2

Ix

where F(t j) and u0(xi) are exact solution of the inverse problem and Fht (t j) and uhx
0 (xi) are numerical solution

of the inverse problem.

Example 4.1. In the first numerical experiment we take the exact solution u(x, t) = (sin(x) + 1) exp(−t), (x, t) ∈(
−
π
2 ,

3π
2

)
× (0, 2), with the internal heat source F(t) = − exp(−t) and initial temperature u0(x) = sin(x) + 1. Figure 2

shows the solutions obtained with the iterative algorithm. Table 1 gives the comparison of the results with respect to
Nt, Nx and the interior point x∗. It is also observed from Table 1 that for Nt = 9 and Nx = 12 the lowest errors values
of EF and Eu0 are determined in case of x∗ = 2.97 which is close to the right boundary.



A. E. Coşkun / Filomat 34:10 (2020), 3507–3516 3515

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

t

F
(t

)

Exact

Numerical

(a)

−2 −1 0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

x

Exact

Numerical

(b)

Figure 2: (a) shows the analytical and numerical solutions of F(t); (b) presents the analytical and numerical
solutions of u0(x) when Nt = 9, Nx = 12 and x∗ = 2.97.

Nx ×Nt x∗ EF Eu0

6 × 5
−1.34 8.09 × 10−3 7.14 × 10−2

−0.17 7.62 × 10−3 7.12 × 10−2

0.99 7.64 × 10−3 6.69 × 10−2

2.15 7.59 × 10−3 5.82 × 10−2

2.97 7.37 × 10−3 4.93 × 10−2

12 × 9
−1.34 7.44 × 10−3 5.23 × 10−2

−0.17 6.53 × 10−3 4.82 × 10−2

0.99 6.54 × 10−3 4.55 × 10−2

2.15 5.25 × 10−3 3.78 × 10−2

2.97 5.03 × 10−3 2.98 × 10−2

Table 1: Errors with various values of Nt, Nx and x∗ for Example 4.1.
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with Positivity-Preserving Padé Schemes, Numerical Heat Transfer, Part A: Applications: An International Journal of Computa-
tion and Methodology,2010,57(9), 691-708.

[22] Su, J. and Neto, A.-J.-S., Heat source estimation with the conjugate gradient method in inverse linear diffusive problems, J. Brazil.
Soc. Mech. Sci., 2001, 23(3), 321-334.

[23] Tadi, M., An iterative method for the solution of ill-posed parabolic systems, Applied Mathematics and Computation, 2008, 201,
843-851.

[24] Yang, L. and Deng, Z.-C. and Yu, J.-N. and Luo, G.-W., Optimization method for the inverse problem of reconstructing the source
term in a parabolic equation, Mathematics and Computers in Simulation, 2009, 80, 314-326.

[25] Yan, L. and Fu, C.-F. and Dou, F.-F., A computational method for identifying a spacewise-dependent heat source, International
Journal for Numerical Methods in Biomedical Engineering, 2010, 26(5), 597-608.

[26] Yan, L and Yang, F.-L. and Fu, C.-L., A new numerical method for the inverse source problem from a Bayesian perspective,
International Journal for Numerical Methods in Engineering, 2011, 85, 11, 1460-1474.


