The Turán Number of the Graph $3 P_{5}$

Liquan Feng ${ }^{\text {a }}$, Yumei $\mathbf{H u}^{\text {a }}$
${ }^{\text {a }}$ School of Mathematics, Tianjin University, Tianjin 300072, China

Abstract

The Turán number $e x(n, H)$ of a graph H, is the maximum number of edges in a graph of order n which does not contain H as a subgraph. Let $E x(n, H)$ denote all H-free graphs on n vertices with $e x(n, H)$ edges. Let P_{i} denote a path consisting of i vertices, and $m P_{i}$ denote m disjoint copies of P_{i}. In this paper, we give the Turán number $e x\left(n, 3 P_{5}\right)$ for all positive integers n, which partly solve the conjecture proposed by L. Yuan and X. Zhang [7]. Moreover, we characterize all extremal graphs of $3 P_{5}$ denoted by $\operatorname{Ex}\left(n, 3 P_{5}\right)$.

1. Introduction

The graphs considered in this paper are simple and undirected. For a graph $G=(V(G), E(G))$, where $V(G)$ is the vertex set and $E(G)$ is the edge set. Let the Turán number ex (n, H) denote the maximum number of edges in a simple graph of order n which does not contain H as a subgraph. Let P_{i} denote a path of order i and C_{q} denote a cycle of order $q, m P_{i}$ denote m disjoint copies of P_{i}. For two vertex disjoint graphs G and F by $G \cup F$ we denote the vertex disjoint union of G and F, and by $G+F$ the graph obtained from $G \cup F$ by joining all vertices between G and F. By \bar{G} we denote the complement of the graph G. We denote by $N_{G}(v)$ the set of vertices adjacent to v in G, if $V^{\prime} \subseteq V(G)$, then $N_{G}\left(V^{\prime}\right)=\bigcup_{v \in V^{\prime}} N_{G}(v)$, and $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$. For $u, v \in V(G)$, (u, v) is the edge between u and v, and for $A, B \subseteq V(G)$ with $A \cap B=\emptyset$, let $E(A, B)=\{e \in E(G) \mid e \cap A \neq \emptyset, e \cap B \neq \emptyset\}$, $\left.G\right|_{A}$ denote the subgraph of G induced by A. For $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} \subseteq V(G), u$ is adjacent to $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ means that u is adjacent to each vertex in $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$. The basic notions not defined in this paper can be found in [1].

In 1941, Turán [2] proved that the Turán graph $T_{r-1}(n)$ (balanced complete ($r-1$)-partite graph on n vertices) is the extremal graph without containing K_{r} as a subgraph. Later, Moon [3] and Simonovits [4] showed that $K_{k-1}+T_{r-1}(n-k+1)$ is the unique extremal graph containing no $k K_{r}$ for sufficient large n. In 1959, Erdős and Gallai [5] proved that ex $\left(n, P_{k}\right) \leq(k-2) n(1 / 2)$ with equality if and only if $n=(k-1) t$. In 2011, N. Bushaw and N. Kettle [6] determined $\operatorname{ex}\left(n, k P_{l}\right)$ for arbitrary l, and n appropriately large relative to k and l.

For $F_{m}=P_{k_{1}} \cup P_{k_{2}} \cup \cdots \cup P_{k_{m}}, k_{1} \geq k_{2} \geq \cdots \geq k_{m}$, Liu, Lidický and Palmer [7] extended N. Bushaw and N . Kettle's result and determined ex n, F_{m}) for n sufficiently large. But they didn't solve the case for n with minor conditions. In 2014, H. Bielak and S. Kieliszek [8] determined ex $\left(n, 3 P_{4}\right)$ for all n. L. Yuan and X. Zhang [9,10] determined the value of $e x\left(n, k P_{3}\right)$ for all n, and characterized all extremal graphs. Later, for

[^0]small n, they determined $\operatorname{ex}\left(n, F_{m}\right)$ for $k_{1}, k_{2}, \ldots, k_{m}$ are all even or there is at most one odd. If there are two odds, they just obtained a result for $e x\left(n, P_{2 l+1} \cup P_{3}\right)$. Finally, they proposed an important conjecture.

For convenience, we introduce the following definitions first.
Definition 1.1. [12] Let $n \geq m \geq l \geq 3$ be given three positive integers. Then n can be written as $n=$ $(m-1)+t(l-1)+r$, where $t \geq 0$ and $0 \leq r<l-1$. Denote by

$$
[n, m, l] \equiv\binom{m-1}{2}+t\binom{l-1}{2}+\binom{r}{2}
$$

Moreover, if $n \leq m-1$, denote by $[n, m, l] \equiv\binom{n}{2}$.
Definition 1.2. [12] Let $s=\sum_{i=1}^{m}\left\lfloor\frac{k_{i}}{2}\right\rfloor$ and k_{i} be positive integers. If $n \geq s$, then we denote

$$
[n, s] \equiv\binom{s-1}{2}+(s-1)(n-s+1)
$$

Conjecture 1.3. [10] Let $k_{1} \geq k_{2} \geq \cdots \geq k_{m} \geq 3$ and $k_{1}>3$. $F_{m}=P_{k_{1}} \cup P_{k_{2}} \cup \cdots \cup P_{k_{m}}$, then

$$
e x\left(n, F_{m}\right)=\max \left\{\left[n, k_{1}, k_{1}\right],\left[n, k_{1}+k_{2}, k_{2}\right], \ldots,\left[n, \sum_{i=1}^{m} k_{i}, k_{m}\right],\left[n, \sum_{i=1}^{m}\left\lfloor\frac{k_{i}}{2}\right\rfloor\right]+c\right\}
$$

where $c=1$ if all of $k_{1}, k_{2}, \ldots, k_{m}$ are odd, and $c=0$ for otherwise. Moreover, the extremal graphs are

$$
E x\left(n, P_{k_{1}}\right), \ldots, K_{\sum_{i=1}^{m} k_{i}-1} \cup E x\left(n-\sum_{i=1}^{m} k_{i}+1, P_{k_{m}}\right)
$$

and

$$
\begin{aligned}
& K_{\sum_{i=1}^{m} 1 k_{\left.\frac{k_{j}}{2}\right\rfloor-1}}+\left(K_{2} \cup \bar{K}_{\left.n-\sum_{i=1}^{m}=1 \frac{k_{i}}{2}\right\rfloor-1}\right) \text { if all of } k_{1}, k_{2}, \ldots, k_{m} \text { are odd, } \\
& K_{\left.\sum_{i=1}^{m} L_{2}^{k_{j}}\right\rfloor-1}+\left(\bar{K}_{\left.n-\sum_{i=1}^{m}=\frac{k_{i}^{j} j+1}{}\right) \quad \text { otherwise. }}\right.
\end{aligned}
$$

Later, H. Bielak and S. Kieliszek [11] partly confirmed the conjecture 1.3, they determined ex $\left(n, 2 P_{5}\right)$ for all positive integers n and gave the extremal graph. In 2017, ex $\left(n, 2 P_{7}\right)$ was determined by Y. Lan, Z . Qin and Y. Shi [12]. And ex($\left.n, P_{5} \cup P_{2 l+1}\right)$ was proved by Y. Hu and H. Tian [13] recently. However, all of them studied two disjoint paths with odd vertices. In this paper, we consider three disjoint odd paths, and propose the result as follows.

Theorem 1.4. Let n be a positive integer.

$$
e x\left(n, 3 P_{5}\right)=\max \{[n, 15,5], 5 n-14\} .
$$

Moreover, the extremal graphs are K_{n} for $n<15, K_{14} \cup H$ where $H \subset E x\left(n-14, P_{5}\right)$ for $15 \leq n<24$ and $K_{5}+\left(K_{2} \cup \overline{K_{n-7}}\right)$ for $n \geq 24$.

This result determine the value of $e x\left(n, 3 P_{5}\right)$ for all positive integers n that partly confirm the conjecture 1.3 , and characterize all extremal graphs of $3 P_{5}$ denoted by $\operatorname{Ex}\left(n, 3 P_{5}\right)$. We will prove it detailedly in the next section.

2. Proof of Theorem 1.4

For convenience, we first present the following important lemma which is used to prove our result.
Lemma 2.1. (Faudree and Schelp [14]). If G is a graph with $|V(G)|=k n+r(0 \leq k, 0 \leq r<n)$ and G contains no P_{n+1}, then $|E(G)| \leq k n(n-1) / 2+r(r-1) / 2$ with equality if and only if $G=k K_{n} \cup K_{r}$ or $G=t K_{n} \cup\left(K_{(n-1) / 2}+\bar{K}_{(n+1) / 2+(k-t-1) n+r}\right)$, for some $0 \leq t<k$, where n is odd, and $k>0, r=(n \pm 1) / 2$.

Corollary 2.2. Let n be a positive integer and $n \equiv r(\bmod 4)$. Then ex $\left(n, P_{5}\right)=\left\lfloor\frac{n}{4}\right\rfloor\binom{ 4}{2}+\binom{r}{2}=\frac{3 n+r(r-4)}{2}$.
Lemma 2.3. (Erdős, Gallai [5]). Suppose that $|V(G)|=n$. If the following inequality

$$
\frac{(n-1)(l-1)}{2}+1 \leq|E(G)|
$$

is satisfied for some $l \in N$, then there exists a cycle $C_{q} \subset G$ for some $q \geq l$.
Proof. [Proof of Theorem 1.4] Obviously, the extremal graph K_{n} gives the lower and upper bounds of $\operatorname{ex}\left(n, 3 P_{5}\right)$ for $n<15$. Thus, $\operatorname{ex}\left(n, 3 P_{5}\right)=\binom{n}{2}$ for $n<15$.

For $15 \leq n<24$ (see Table 1), \mathcal{H} does not contain $3 P_{5}$ as a subgraph, so $E(\mathcal{H})$ gives the lower bounds on $e x\left(n, 3 P_{5}\right)$ for respective n. For $n \geq 24$, note that the graph $G=K_{5}+\left(K_{2} \cup \overline{K_{n-7}}\right)$ dose not contain $3 P_{5}$ as a subgraph, this also gives us the lower bounds, ex $\left(n, 3 P_{5}\right) \geq 5 n-14$. Let $\delta=|E(\mathcal{H})|-(5 n-14)$, and $\delta=0$ for $n \geq 24$.

Therefore, we would like to prove that $5 n-14+\delta$ is the upper bound for $n \geq 15$. Let us assume that there exists a graph G such that $|V(G)|=n,|E(G)|=5 n-13+\delta$ and without a subgraph $3 P_{5}$. Applying Lemma 2.3 to the graph G, we obtain

$$
\begin{gathered}
\frac{(n-1)(l-1)}{2}+1 \leq 5 n-13+\delta \\
l \leq 11-\frac{18-2 \delta}{n-1}
\end{gathered}
$$

We get G contains a C_{q}, table 1 gives the value of q for $15 \leq n<24$; for $n \geq 24, \delta=0$, we get $l \leq 10$, then $q \geq 10$. Let $0,1,2, \ldots, q-1$ be the consecutive vertices in C_{q}.

n	\mathcal{H}	$\|E(\mathcal{H})\|$	q	$5 n-14$	δ
15	$K_{14} \cup K_{1}$	91	14	61	30
16	$K_{14} \cup K_{2}$	92	13,14	66	26
17	$K_{14} \cup K_{3}$	94	$12,13,14$	71	23
18	$K_{14} \cup K_{4}$	97	$12,13,14$	76	21
19	$K_{14} \cup K_{4} \cup K_{1}$	97	$11,12,13,14$	81	16
20	$K_{14} \cup K_{4} \cup K_{2}$	98	$11,12,13,14$	86	12
21	$K_{14} \cup K_{4} \cup K_{3}$	100	$11,12,13,14$	91	9
22	$K_{14} \cup 2 K_{4}$	103	$10,11,12,13,14$	96	7
23	$K_{14} \cup 2 K_{4} \cup K_{1}$	103	$10,11,12,13,14$	101	2

Table 1: The lower bounds on $\operatorname{ex}\left(n, 3 P_{5}\right)$ for $15 \leq n<24$, with the cycle $C_{q} \subset G$.
We should consider the following cases:
case 1. $q \geq 15$. We have P_{15} in C_{q}, then $3 P_{5}$ is a subgraph of G, a contradiction.
case 2. $q=14$. Let $F=G-V\left(C_{14}\right)$. Note that there are no edges between C_{14} and F, otherwise for some $f \in V(F)$, without loss of generality, let $(f, 0) \in E(G)$, then we get a $P_{15}=f 012 \ldots 111213$, so $3 P_{5}$ is a
subgraph of G. The minimum number of edges in F is equal to $5 n-13+\delta-\binom{14}{2}=5 n-104+\delta$. By Corollary 2.2,

$$
e x\left(n-14, P_{5}\right)=\frac{3(n-14)+r(r-4)}{2},
$$

where $n-14 \equiv r(\bmod 4)$. We get $\operatorname{ex}\left(n-14, P_{5}\right)<5 n-104+\delta$ for $n>\frac{166}{7}-\frac{r(4-r)}{7}-\frac{2 \delta}{7}$. Therefore, for $n \geq 15$ with different δ, we get P_{5} in F, then there exists $3 P_{5}$ in G, a contradiction.

Remark 2.4 If we connect a vertex to two adjacent vertices in cycle simultaneously, we will get a longer cycle. For example, there is a cycle $C=v_{0} v_{1} \ldots v_{n} v_{0}$, without loss of generality, let the vertex u be adjacent to v_{0} and v_{1}, then we get a longer cycle $C^{\prime}=v_{0} u v_{1} \ldots v_{n} v_{0}$. When a vertex is adjacent to some vertices in a complete graph, some edges in complete graph should be deleted to avoid creating a longer cycle. For instance, there is a complete graph $K_{n}, V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, the longest cycle is C_{n}. Let the vertex u be adjacent to v_{i} and $v_{j}, i, j \in\{1,2, \ldots, n\}, j>i+1$. Then we need to delete the edge (v_{i+1}, v_{j+1}), since otherwise we get a longer cycle $C_{n+1}=u v_{i} v_{i-1} \ldots 0 \ldots v_{j+1} v_{i+1} v_{i+2} \ldots v_{j} u$. In the same way, the edge (v_{i-1}, v_{j-1}) also should be deleted.
case 3. $q=13$. By table 1 , for $n=15$ with 91 edges, G does not contain C_{13}, so we just consider the situation for $n \geq 16$. Let $F=G-V\left(C_{13}\right)$. If there does not exist any edge between C_{13} and F, then similar to the case $2,|E(F)| \geq 5 n-13+\delta-\binom{13}{2}>e x\left(n-13, P_{5}\right)$ for $n>\frac{143}{7}-\frac{r(4-r)}{7}-\frac{2 \delta}{7}$, where $(n-13) \equiv r(\bmod 4)$. Therefore, for $n \geq 16$ with different δ, there exists P_{5} in F, and we get $3 P_{5}$ in G, a contradiction.

Let V_{i} denote the vertex set that each vertex from V_{i} has exactly i neighbors in $C_{q}, i=0,1,2, \ldots, q-1$, $V_{>0}=V(F)-V_{0}$. Note that in this case, $V_{>0}$ is an independent set, and the vertices from V_{0} can be connected only between themselves.

Without loss of generality, let $(f, 0) \in E(G)$ for some $f \in V_{>0}$. Then for all $f^{\prime} \in V_{>0}-f, N_{C_{13}}\left(f^{\prime}\right) \subseteq$ $\{0,3,5,8,10\}$, otherwise, if f^{\prime} is adjacent to 1 or 4 , we get P_{5} with $\left\{f^{\prime}, 1,2,3,4\right\}$, and $P_{10}=56 \ldots 11120 f$; if $\left(f^{\prime}, 2\right) \in E(G)$, we get $P_{5}=f 012 f^{\prime}, P_{5}^{\prime}=34567, P_{5}^{\prime \prime}=89101112$; if $\left(f^{\prime}, 6\right) \in E(G)$, we get $P_{5}=12345, P_{5}^{\prime}=f^{\prime} 6789, P_{5}^{\prime \prime}=1011120 f$; the other situations are similar to above with symmetry. If f is adjacent to other vertex on cycle, the property is preserved, that is if f is adjacent to $v_{i}, v_{i} \in V\left(C_{13}\right)$, then $N_{C_{13}}\left(f^{\prime}\right) \subseteq S_{v_{i}}=\left\{v_{i}, v_{i+3}, v_{i+5}, v_{i+8}, v_{i+10}\right\}$ (If $i+3 \geq 13$, then f^{\prime} is adjacent to v_{i+3-13}, the rest may be deduced by analogy). With the property, if f is adjacent to $\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{t}}\right\} \subset V\left(C_{13}\right)$, then $N_{C_{13}}\left(f^{\prime}\right) \subseteq S_{v_{i_{1}}} \cap S_{v_{i_{2}}} \cap \cdots \cap S_{v_{i_{i}}}$. By Remark 2.4, f can be adjacent to nonadjacent vertices on C_{13}, so $\left|N_{C_{13}}(f)\right| \leq 6$. Now we consider the following subcases:
case 3.1. For all $f \in V_{>0},\left|N_{C_{13}}(f)\right| \leq 3$ (see Figure 1). To make the edges of G as more as possible, let $\left|N_{C_{13}}(f)\right|=3$, the only situation is that $N_{C_{13}}(f)=\{0,3,8\}$. By Remark 2.4 , there are at least 6 edges should be deleted from K_{13}, the dotted lines in the figure denote the edges in $E(\bar{G})$. We get

$$
|E(G)| \leq\binom{ 13}{2}+3\left|V_{>0}\right|-6+e x\left(\left|V_{0}\right|, P_{5}\right) \leq\binom{ 13}{2}+3(n-13)-6-\frac{3}{2}\left|V_{0}\right|-\frac{r(4-r)}{2}<5 n-13+\delta
$$

for $n>23-\frac{r(4-r)}{4}-\frac{\delta}{2}$, where $\left|V_{0}\right| \equiv r(\bmod 4)$. Therefore, for $n \geq 16$ with different δ, there exists $3 P_{5}$ in G, a contradiction.

Figure 1: A graph with C_{13}, and all vertices in $V_{>0}$ have three neighbors in C_{13}.
case 3.2. There exists some $f \in V_{>0}$ that $\left|N_{C_{13}}(f)\right|=4$ (see Figure 2). Then $\left|N_{C_{13}}\left(f^{\prime}\right)\right| \leq 2$ for all $f^{\prime} \in V_{>0}-f$, such as $N_{C_{13}}(f)=\{0,3,8,11\}$ (or $\{0,5,8,10\}$), $N_{C_{13}}\left(f^{\prime}\right)=\{3,8\}$ (or $\{0,5\}$). By Remark 2.4, there are at least 12 edges should be deleted from K_{13}. We get

$$
|E(G)| \leq\binom{ 13}{2}+2\left(\left|V_{>0}\right|-1\right)+4-12+e x\left(\left|V_{0}\right|, P_{5}\right) \leq\binom{ 13}{2}+2(n-13)-10-\frac{1}{2}\left|V_{0}\right|-\frac{r(4-r)}{2}<5 n-13+\delta
$$

for $n>\frac{55}{3}-\frac{r(4-r)}{6}-\frac{\delta}{3}$, where $\left|V_{0}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.

Figure 2: A graph with C_{13}, and for some $f \in V_{>0},\left|N_{C_{13}}(f)\right|=4$.
case 3.3. There exists some $f \in V_{>0}$ that $\left|N_{C_{13}}(f)\right|=5$. Then $\left|N_{C_{13}}\left(f^{\prime}\right)\right| \leq 1$ for all $f^{\prime} \in V_{>0}-f$, such as $N_{C_{13}}(f)=\{0,2,5,7,10\}$ (or $\left.\{0,3,5,8,10\}\right), N_{C_{13}}\left(f^{\prime}\right)=10$ (or 0$)$. By Remark 2.4, there are at least 19 edges should be deleted from K_{13}. We get

$$
|E(G)| \leq\binom{ 13}{2}+\left|V_{>0}\right|-1+5-19+e x\left(\left|V_{0}\right|, P_{5}\right) \leq\binom{ 13}{2}+\frac{3}{2}(n-13)-15-\frac{r(4-r)}{2}<5 n-13+\delta
$$

for $n>\frac{113}{7}-\frac{r(4-r)}{7}-\frac{2 \delta}{7}$, where $\left|V_{0}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.
case 3.4. There exists some $f \in V_{>0}$ that $\left|N_{C_{13}}(f)\right|=6$. Then $N_{C_{13}}\left(f^{\prime}\right)=\emptyset$ for all $f^{\prime} \in V_{>0}-f$. By Remark 2.4 , there are at least 20 edges should be deleted from K_{13}, we get

$$
|E(G)| \leq\binom{ 13}{2}+6-20+e x\left(n-14, P_{5}\right) \leq\binom{ 13}{2}-14+\frac{3}{2}(n-14)-\frac{r(4-r)}{2}<5 n-13+\delta
$$

for $n>\frac{112}{7}-\frac{r(4-r)}{7}-\frac{2 \delta}{7}$, where $(n-14) \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.
case 4. $q=12$. By table 1 , we just consider the situation for $n \geq 17$. Let $F=G-V\left(C_{12}\right)$. Note that $V_{>0} \neq \emptyset$, since otherwise $E(F) \geq 5 n-13+\delta-\binom{12}{2}>\operatorname{ex}\left(n-12, P_{5}\right)$ for $n>\frac{122}{7}-\frac{r(4-r)}{7}-\frac{2 \delta}{7}$, where $(n-12) \equiv r$ $(\bmod 4)$. Therefore, for $n \geq 17$ with different δ, there exists P_{5} in F, and we get $3 P_{5}$ in G, a contradiction.
case 4.1. Suppose that there exists $P_{2}=f_{1} f_{2}$ in $\left.G\right|_{V_{>0}}$.
Since $f_{1}, f_{2} \in V_{>0}$, there are no more edges in $\left.G\right|_{V_{>0}}$. Without loss of generality, let $\left(f_{1}, 0\right) \in E(G)$. For $f^{\prime} \in V_{>0}-\left\{f_{1}, f_{2}\right\}, N_{C_{12}}\left(f^{\prime}\right) \subseteq\{0,2,5,7,10\}$, otherwise, if f^{\prime} is adjacent to 1 or 4 , we get P_{5} with $\left\{f^{\prime}, 1,2,3,4\right\}$, and $P_{10}=56 \ldots 110 f_{1} f_{2}$; if f^{\prime} is adjacent to 3 or 6 , we get P_{5} with $\left\{f^{\prime}, 3,4,5,6\right\}$, and $P_{5}^{\prime}=7891011, P_{5}^{\prime \prime}=f_{2}, f_{1}, 0,1,2$; the other situations are similar to above with symmetry. Moreover, f_{1} and f_{2} are symmetric, if f_{2} is adjacent to the vertices on cycle, the property is preserved, that is if f_{2} is adjacent to $v_{i}, v_{i} \in V\left(C_{12}\right)$, then $N_{C_{12}}\left(f^{\prime}\right) \subseteq S_{v_{i}}=\left\{v_{i}, v_{i+2}, v_{i+5}, v_{i+7}, v_{i+10}\right\}$ (If $i+2 \geq 12$, then f^{\prime} is adjacent to v_{i+2-12}, the rest may be deduced by analogy). With the property, if $N_{C_{12}}\left(f_{2}\right)=\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{t}}\right\} \subset V\left(C_{12}\right)$, then $N_{C_{12}}\left(f^{\prime}\right) \subseteq S_{v_{i_{1}}} \cap S_{v_{i_{2}}} \cap \cdots \cap S_{v_{i_{t}}}$. What's more, by Remark 2.4, f_{2} can be adjacent to nonadjacent vertices in C_{12}. And f_{2} can be adjacent to nonadjacent vertices in $\{0,3,4,5,6,7,8,9\}$, otherwise, if $\left(f_{2}, 2\right) \in E(G)$, there exists a longer cycle $C_{13}=0 f_{1} f_{2} 23 \ldots 10110$, the situations of vertices $1,10,11$ are similar. So $\left|N_{C_{12}}\left(f_{2}\right)\right| \leq 5$. Now we consider the following subcases:
case 4.1.1. $\left|N_{C_{12}}\left(f_{2}\right)\right|=1$ (see Figure 3). Without loss of generality, let $N_{C_{12}}\left(f_{1}\right)=N_{C_{12}}\left(f_{2}\right)=0$, as previously mentioned, f^{\prime} has at most five neighbors in C_{12}. When $\left|N_{C_{12}}\left(f^{\prime}\right)\right|=5$, by Remark 2.4, there are at least 17 edges should be deleted from K_{12}. We get

$$
|E(G)| \leq\binom{ 12}{2}+5\left(\left|V_{>0}\right|-2\right)+3-17+e x\left(\left|V_{0}\right|, P_{5}\right) \leq\binom{ 12}{2}+5(n-12)-24-\frac{1}{2}\left|V_{0}\right|-\frac{r(4-r)}{2}<5 n-13+\delta
$$

for $-5-\frac{r(4-r)}{2}-\delta<0$, where $\left|V_{0}\right| \equiv r(\bmod 4)$. So there exists $3 P_{5}$ in G, a contradiction.

Figure 3: A graph with C_{12} and P_{2} in $V_{>0},\left|N_{C_{12}}\left(f_{2}\right)\right|=1$.
case 4.1.2. $\left|N_{\mathrm{C}_{12}}\left(f_{2}\right)\right|=2$ (see Figure 4). Then $\left|N_{\mathrm{C}_{12}}\left(f^{\prime}\right)\right| \leq 4$. When $\left|N_{\mathrm{C}_{12}}\left(f^{\prime}\right)\right|=4$: if $N_{\mathrm{C}_{12}}\left(f_{2}\right)=\{0,5\}$ (or $\{0,7\}$), then $N_{C_{12}}\left(f^{\prime}\right)=\{0,5,7,10\}$ (or $\{0,2,5,7\}$), meanwhile, $N_{C_{12}}\left(f_{1}\right)=\{0,5\}$ (or $\{0,7\}$). By Remark 2.4 , there are at least 11 edges should be deleted from K_{12}. We get

$$
|E(G)| \leq\binom{ 12}{2}+4\left(\left|V_{>0}\right|-2\right)+5-11+e x\left(\left|V_{0}\right|, P_{5}\right) \leq\binom{ 12}{2}+4(n-12)-14-\frac{5}{2}\left|V_{0}\right|-\frac{r(4-r)}{2}<5 n-13+\delta
$$

for $n>17-\frac{r(4-r)}{2}-\delta$, where $\left|V_{0}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.

Figure 4: A graph with C_{12} and P_{2} in $V_{>0},\left|N_{C_{12}}\left(f_{2}\right)\right|=2$.
case 4.1.3. $\left|N_{C_{12}}\left(f_{2}\right)\right|=3$ (see Figure 5). Then $\left|N_{C_{12}}\left(f^{\prime}\right)\right| \leq 3$. When $\left|N_{C_{12}}\left(f^{\prime}\right)\right|=3$: if $N_{C_{12}}\left(f_{2}\right)=\{0,5,7\}$, then $N_{C_{12}}\left(f^{\prime}\right)=\{0,5,7\}$, meanwhile, $N_{C_{12}}\left(f_{1}\right)=\{0,5\}$ (or $\left.\{0,7\}\right)$. By Remark 2.4, there are at least 6 edges should be deleted from K_{12}. We get

$$
|E(G)| \leq\binom{ 12}{2}+3\left(\left|V_{>0}\right|-2\right)+6-6+e x\left(\left|V_{0}\right|, P_{5}\right) \leq\binom{ 12}{2}+3(n-12)-6-\frac{3}{2}\left|V_{0}\right|-\frac{r(4-r)}{2}<5 n-13+\delta
$$

for $n>\frac{37}{2}-\frac{r(4-r)}{4}-\frac{\delta}{2}$, where $\left|V_{0}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.

Figure 5: A graph with C_{12} and P_{2} in $V_{>0},\left|N_{C_{12}}\left(f_{2}\right)\right|=3$.
case 4.1.4. $\left|N_{C_{12}}\left(f_{2}\right)\right|=4,\left|N_{C_{12}}\left(f^{\prime}\right)\right| \leq 1$. When $\left|N_{C_{12}}\left(f^{\prime}\right)\right|=1$: if $N_{C_{12}}\left(f_{2}\right)=\{0,3,5,7\}$ (or $\{0,5,7,9\}$), then $N_{\mathrm{C}_{12}}\left(f^{\prime}\right)=5$ (or 7). By Remark 2.4, there are at least 9 edges should be deleted from K_{12}. We get

$$
|E(G)| \leq\binom{ 12}{2}+\left(\left|V_{>0}\right|-2\right)+6-9+e x\left(\left|V_{0}\right|, P_{5}\right) \leq\binom{ 12}{2}+\frac{3}{2}(n-12)-5-\frac{r(4-r)}{2}<5 n-13+\delta
$$

for $n>\frac{116}{7}-\frac{r(4-r)}{7}-\frac{2 \delta}{7}$, where $\left|V_{0}\right| \equiv r(\bmod 4)$. There exists a $3 P_{5}$ in G, a contradiction.
case 4.1.5. $\left|N_{C_{12}}\left(f_{2}\right)\right|=5$, that is $N_{C_{12}}\left(f_{2}\right)=\{0,3,5,7,9\}$, then $N_{C_{12}}\left(f^{\prime}\right)=\emptyset$. By Remark 2.4, there are at least 17 edges should be deleted from K_{12}. We get

$$
|E(G)| \leq\binom{ 12}{2}+7-17+\operatorname{ex}\left(n-14, P_{5}\right) \leq\binom{ 12}{2}-10+\frac{3}{2}(n-14)-\frac{r(4-r)}{2}<5 n-13+\delta
$$

for $n>\frac{96}{7}-\frac{r(4-r)}{7}-\frac{2 \delta}{7}$, where $\left|V_{0}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.
case 4.2. Suppose that $V_{>0}$ is an independent set.
Let $V_{0+}=\left\{g \in V_{0} \mid N(g) \cap V_{>0} \neq \emptyset\right\}$ and $V_{0-}=V_{0}-V_{0+}$. Let us consider the following subcases:
case 4.2.1. $V_{0+} \neq \emptyset$.
There exists at least one vertex f in $V_{>0}$ that has neighbors in V_{0+}, then V_{0+} is an independent set and $\operatorname{deg}(g)=1, \forall g \in V_{0+}$, it means that $\left|E\left(V_{>0}, V_{0+}\right)\right|=\left|V_{0+}\right|$.

For $\left|N_{C_{12}}(f)\right|=1$, (see Figure 6). Similar to the case 4.1, $f^{\prime} \in V_{>0}-\{f\}$ has at most five neighbors in C_{12}. If $\left|N_{C_{12}}\left(f^{\prime}\right)\right|=5$, by Remark 2.4, there are at least 17 edges should be deleted from K_{12}. We get
$|E(G)| \leq\binom{ 12}{2}+5\left(\left|V_{>0}\right|-1\right)+1-17+\left|V_{0+}\right|+e x\left(\left|V_{0-}\right|, P_{5}\right) \leq\binom{ 12}{2}+5(n-12)-21-4\left|V_{0+}\right|-\frac{7}{2}\left|V_{0-}\right|-\frac{r(4-r)}{2}<5 n-13+\delta$, for $-2-\frac{r(4-r)}{2}-\delta<0$, where $\left|V_{0-}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.

Figure 6: A graph with C_{12} and $V_{0+} \neq \emptyset$.
For $\left|N_{\mathrm{C}_{12}}(f)\right|=2,\left|N_{\mathrm{C}_{12}}\left(f^{\prime}\right)\right| \leq 4$. When $\left|N_{\mathrm{C}_{12}}\left(f^{\prime}\right)\right|=4$: if $N_{\mathrm{C}_{12}}(f)=\{0,5\}($ or $\{0,7\})$, then $N_{\mathrm{C}_{12}}\left(f^{\prime}\right)=$ $\{0,5,7,10\}$ (or $\{0,2,5,7\}$). By Remark 2.4, there are at least 11 edges should be deleted from K_{12}. We get
$|E(G)| \leq\binom{ 12}{2}+4\left(\left|V_{>0}\right|-1\right)+2-11+\left|V_{0+}\right|+e x\left(\left|V_{0-}\right|, P_{5}\right) \leq\binom{ 12}{2}+4(n-12)-13-3\left|V_{0+}\right|-\frac{5}{2}\left|V_{0-}\right|-\frac{r(4-r)}{2}<5 n-13+\delta$, for $n>18-\frac{r(4-r)}{2}-\delta$, where $\left|V_{0-}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.

For $\left|N_{C_{12}}(f)\right|=3,\left|N_{C_{12}}\left(f^{\prime}\right)\right| \leq 3$. When $\left|N_{C_{12}}\left(f^{\prime}\right)\right|=3$: if $N_{C_{12}}\left(f_{2}\right)=\{0,5,7\}$, then $N_{C_{12}}\left(f^{\prime}\right)=\{0,5,7\}$. By Remark 2.4, there are at least 6 edges should be deleted from K_{12}. We get
$|E(G)| \leq\binom{ 12}{2}+3\left(\left|V_{>0}\right|-1\right)+3-6+\left|V_{0+}\right|+e x\left(\left|V_{0-}\right|, P_{5}\right) \leq\binom{ 12}{2}+3(n-12)-6-2\left|V_{0+}\right|-\frac{3}{2}\left|V_{0-}\right|-\frac{r(4-r)}{2}<5 n-13+\delta$,
for $n>\frac{37}{2}-\frac{r(4-r)}{4}-\frac{\delta}{2}$, where $\left|V_{0-}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.
For $\left|N_{C_{12}}(f)\right|=4,\left|N_{C_{12}}\left(f^{\prime}\right)\right| \leq 1$. When $\left|N_{C_{12}}\left(f^{\prime}\right)\right|=1$: if $N_{C_{12}}\left(f_{2}\right)=\{0,3,5,7\}($ or $\{0,5,7,9\})$, then $N_{C_{12}}\left(f^{\prime}\right)=$ 5(or 7). By Remark 2.4, there are at least 9 edges should be deleted from K_{12}. We get

$$
|E(G)| \leq\binom{ 12}{2}+\left(\left|V_{>0}\right|-1\right)+4-9+\left|V_{0+}\right|+e x\left(\left|V_{0-}\right|, P_{5}\right) \leq\binom{ 12}{2}+\frac{3}{2}(n-12)-6-\frac{r(4-r)}{2}<5 n-13+\delta
$$

for $n>\frac{110}{7}-\frac{r(4-r)}{7}-\frac{2 \delta}{7}$, where $\left|V_{0-}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.
For $\left|N_{C_{12}}(f)\right|=5, N_{C_{12}}\left(f^{\prime}\right)=\emptyset$, by Remark 2.4, there are at least 17 edges should be deleted from K_{12}. We get

$$
|E(G)| \leq\binom{ 12}{2}+5-17+\left|V_{0+}\right|+e x\left(\left|V_{0-}\right|, P_{5}\right) \leq\binom{ 12}{2}-12+\frac{3}{2}(n-12)-\frac{r(4-r)}{2}<5 n-13+\delta,
$$

for $n>14-\frac{r(4-r)}{7}-\frac{2 \delta}{7}$, where $\left|V_{0-}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.
case 4.2.2. $V_{0+}=\emptyset$.
By Remark 2.4, the vertices in $V_{>0}$ can be adjacent to at most 6 vertices in C_{12}. Let $V_{i}^{\prime}=V_{>0}-V_{i}, i=$ 1,2,3,4,5, 6 .
case 4.2.2.1. $V_{6} \neq \emptyset$. We have $\left|V_{6}\right|=1$ and $\left|V_{1}\right|=\left|V_{>0}\right|-1$, or $\left|V_{6}\right|=2$ and $V_{i}^{\prime}=\emptyset$, otherwise there exists $3 P_{5}$ in G. For the two situations, there are at least 15 edges should be deleted from K_{12}. We obtain

$$
|E(G)| \leq\binom{ 12}{2}+6 \times 1-15+\left|V_{>0}\right|-1+e x\left(\left|V_{0}\right|, P_{5}\right)<5 n-13+\delta
$$

for $n>\frac{102}{7}-\frac{r(4-r)}{7}-\frac{2 \delta}{7}$, where $\left|V_{0}\right| \equiv r(\bmod 4)$, or

$$
|E(G)| \leq\binom{ 12}{2}+6 \times 2-15+e x\left(\left|V_{0}\right|, P_{5}\right)<5 n-13+\delta
$$

for $n>\frac{110}{7}-\frac{r(4-r)}{7}-\frac{2 \delta}{7}$, where $\left|V_{0}\right| \equiv r(\bmod 4)$. We get $3 P_{5}$ in both situations, a contradiction.
case 4.2.2.2. $V_{6}=\emptyset, V_{5} \neq \emptyset$. We have $\left|V_{5}\right|=1$ and $\left|N_{C_{12}}\left(V_{i}^{\prime}\right)\right| \leq 2$, or $\left|V_{5}\right|=2$ and $V_{i}^{\prime}=\emptyset$ otherwise there exists $3 P_{5}$ in G. For the two situations, there are at least 14 edges should be deleted from K_{12}. We obtain

$$
|E(G)| \leq\binom{ 12}{2}+5 \times 1-14+2\left(\left|V_{>0}\right|-1\right)+e x\left(\left|V_{0}\right|, P_{5}\right)<5 n-13+\delta
$$

for $n>\frac{44}{3}-\frac{r(4-r)}{6}-\frac{\delta}{3}$, where $\left|V_{0}\right| \equiv r(\bmod 4)$, or

$$
|E(G)| \leq\binom{ 12}{2}+5 \times 2-14+e x\left(\left|V_{0}\right|, P_{5}\right)<5 n-13+\delta
$$

for $n>\frac{108}{7}-\frac{r(4-r)}{7}-\frac{2 \delta}{7}$, where $\left|V_{0}\right| \equiv r(\bmod 4)$. We get $3 P_{5}$ in both situations, a contradiction.
case 4.2.2.3. $V_{6}=V_{5}=\emptyset$. For $V_{i}, i=1,2,3,4$, let V_{j} be the first nonempty set in $V_{4}, V_{3}, V_{2}, V_{1}$, by Remark 2.4, there are at least $\binom{j+1}{2}-1$ edges should be deleted from K_{12}. Then

$$
|E(G)| \leq\binom{ 12}{2}+\sum_{i=1}^{4} i \cdot\left|V_{i}\right|-\left(\binom{j+1}{2}-1\right)+e x\left(\left|V_{0}\right|, P_{5}\right)<5 n-13+\delta
$$

for $n \geq 17$ with different δ, we get $3 P_{5}$ in G, a contradiction.
case 5. $q=11$. By table 1, we just consider the situation for $n \geq 19$. Let $F=G-V\left(C_{11}\right)$. Note that $V_{>0} \neq \emptyset$, since otherwise $E(F) \geq 5 n-13+\delta-\binom{11}{2}>\operatorname{ex}\left(n-11, P_{5}\right)$ for $n>\frac{103}{7}-\frac{r(4-r)}{7}-\frac{2 \delta}{7}$, where $(n-11) \equiv r$ $(\bmod 4)$. Therefore, for $n \geq 19$ with different δ, there exists P_{5} in F, and we get $3 P_{5}$ in G, a contradiction.
case 5.1. Suppose that there exists $P_{3}=f_{1} f_{2} f_{3}$ in $\left.G\right|_{V_{>0}}$.
Since $f_{1}, f_{2}, f_{3} \in V_{>0}$, there exists exactly one P_{3} and no more edges in $V_{>0}, V_{0+}=\emptyset$. Without loss of generality, let $\left(f_{1}, 0\right) \in E(G)$. For $f^{\prime} \in V_{>0}-\left\{f_{1}, f_{2}, f_{3}\right\}, N_{C_{11}}\left(f^{\prime}\right) \subseteq\{3,8\}$, otherwise, if f^{\prime} is adjacent to 0 , we get $P_{5}=f^{\prime} 0 f_{1} f_{2} f_{3}$, and $P_{10}=12 \ldots 10$; if f^{\prime} is adjacent to 1 or 4 , we get P_{5} with $\left\{f^{\prime}, 1,2,3,4\right\}$, and $P_{10}=$ $56 \ldots 100 f_{1} f_{2} f_{3}$; if f^{\prime} is adjacent to 2 or 5 , we get P_{5} with $\left\{f^{\prime}, 2,3,4,5\right\}$, and $P_{5}^{\prime}=678910, P_{5}^{\prime \prime}=10 f_{1} f_{2} f_{3}$; the other situations are similar to above with symmetry. Moreover, f_{1} and f_{3} are symmetric, if f_{3} is adjacent to other vertices on cycle, the property is preserved, that is if f_{3} is adjacent to $v_{i}, v_{i} \in V\left(C_{11}\right)$, then f^{\prime} can be adjacent to $S_{v_{i}}=\left\{v_{i+3}, v_{i+8}\right\}$ (If $i+3 \geq 11$, then f^{\prime} is adjacent to v_{i+3-11}, the rest may be deduced by analogy). With the property, if f_{3} is adjacent to $\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{t}}\right\} \subset V\left(C_{11}\right)$, then $N_{C_{11}}\left(f^{\prime}\right) \subseteq S_{v_{i_{1}}} \cap S_{v_{i_{2}}} \cap \cdots \cap S_{v_{i_{4}}}$. Note that f_{3} can be adjacent to nonadjacent vertices in $\{0,4,5,6,7\}$, otherwise, if $\left(f_{3}, 3\right) \in E(G)$, there exists a longer cycle $C_{12}=0 f_{1} f_{2} f_{3} 3 \ldots 100$, the situations of vertices $1,2,8,9,10$ are similar. So $\left|N_{C_{11}}\left(f_{3}\right)\right| \leq 3$. In the same way, f_{2} can be adjacent to nonadjacent vertices in $\{0,3,4,5,6,7,8\}$. What's more, if $N_{C_{11}}\left(f_{3}\right)=v_{i}, N_{C_{11}}\left(f_{2}\right)=v_{j}$, $v_{i}, v_{j} \in V\left(C_{11}\right)$, then $j=i$, or $j<i-2$, or $j>i+2$. Now we consider the following subcases:
case 5.1.1. For $\left|N_{C_{11}}\left(f_{3}\right)\right|=1$ (see Figure 7). Without loss of generality, let $N_{C_{11}}\left(f_{3}\right)=N_{C_{11}}\left(f_{1}\right)=0$, as previously mentioned, $\left|N_{C_{11}}\left(f_{2}\right)\right| \leq 4 . N_{C_{11}}\left(f^{\prime}\right) \subseteq\{3,8\}$, by Remark 2.4 , there are at least 2 edges should be deleted from K_{11}. We get

$$
|E(G)| \leq\binom{ 11}{2}+2\left(\left|V_{>0}\right|-3\right)+8-2+e x\left(\left|V_{0}\right|, P_{5}\right) \leq\binom{ 11}{2}+2(n-11)-\frac{1}{2}\left|V_{0}\right|-\frac{r(4-r)}{2}<5 n-13+\delta
$$

for $\frac{46}{3}-\frac{r(4-r)}{6}-\frac{\delta}{3}<0$, where $\left|V_{0}\right| \equiv r(\bmod 4)$, so there exists $3 P_{5}$ in G, a contradiction.

Figure 7: A graph with C_{11} and P_{3} in $V_{>0},\left|N_{C_{11}}\left(f_{3}\right)\right|=1$.
case 5.1.2. For $\left|N_{C_{11}}\left(f_{3}\right)\right|=2$ (see Figure 8). Then $N_{C_{11}}\left(f_{3}\right)=N_{C_{11}}\left(f_{1}\right)=\{0, a\}, a \in\{4,5,6,7\}$. $\left|N_{C_{11}}\left(f_{2}\right)\right| \leq 3$, and $\left|N_{C_{11}}\left(f^{\prime}\right)\right| \leq 1$. By Remark 2.4, there are at least 2 edges should be deleted from K_{11}. We get

$$
|E(G)| \leq\binom{ 11}{2}+\left(\left|V_{>0}\right|-3\right)+9-2+e x\left(\left|V_{0}\right|, P_{5}\right) \leq\binom{ 11}{2}+\frac{3}{2}(n-11)+4-\frac{r(4-r)}{2}<5 n-13+\delta
$$

for $n>\frac{111}{7}-\frac{r(4-r)}{7}-\frac{2 \delta}{7}$, where $\left|V_{0}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.

Figure 8: A graph with C_{11} and P_{3} in $V_{>0},\left|N_{C_{11}}\left(f_{3}\right)\right|=2$.
case 5.1.3. For $\left|N_{C_{11}}\left(f_{3}\right)\right|=3, N_{C_{11}}\left(f_{3}\right)=\{0,4,6\}($ or $\{0,4,7\}$ or $\{0,5,7\})$, then $N_{C_{11}}\left(f^{\prime}\right)=\emptyset$, and $N_{C_{11}}\left(f_{1}\right)=$ $N_{C_{11}}\left(f_{2}\right)=0$. By Remark 2.4, there are at least 6 edges should be deleted from K_{11}. We get

$$
|E(G)| \leq\binom{ 11}{2}+7-6+e x\left(n-14, P_{5}\right) \leq\binom{ 11}{2}+1+\frac{3}{2}(n-14)-\frac{r(4-r)}{2}<5 n-13+\delta
$$

for $n>\frac{96}{7}-\frac{r(4-r)}{7}-\frac{2 \delta}{7}$, where $(n-14) \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.
case 5.2. Suppose that there exists $P_{2}=f_{1} f_{2}$ in $\left.G\right|_{V_{>0}}$.
Note that $\left|E\left(V_{>0}, V_{0+}\right)\right| \leq\left|V_{0+}\right|+1$. And $\left.G\right|_{V_{>0}}$ could contain more edges. Without loss of generality, let f_{1}, f_{2} are adjacent to 0 . Then other edges in $V_{>0}$ can be adjacent to $2,4,7,9$, otherwise, if there exists $P_{2}^{\prime}=f_{3} f_{4}$ in $\left.G\right|_{V_{>0}}, f_{3}, f_{4}$ are adjacent to 0 , we get $P_{5}=f_{1} f_{2} 0 f_{3} f_{4}$, and $P_{10}=12 \ldots 10$; if $P_{2}^{\prime}=f_{3} f_{4}$ is adjacent to 1, we get $P_{5}=f_{3} f_{4} 123, P_{5}^{\prime}=45678, P_{5}^{\prime \prime}=9100 f_{1} f_{2}$; if $P_{2}^{\prime}=f_{3} f_{4}$ is adjacent to 3 or 5 , we get P_{5} with $\left\{f_{3}, f_{4}, 3,4,5\right\}$, and $P_{5}^{\prime}=678910, P_{5}^{\prime \prime}=f_{1} f_{2} 012$; the situations of vertices $6,8,10$ are similar to above with symmetry. Generally, let f_{1} or f_{2} be adjacent to $v_{i}, v_{i} \in V\left(C_{11}\right)$, then other edges in $V_{>0}$ can be adjacent to $S_{v_{i}}=\left\{v_{i+2}, v_{i+4}, v_{i+7}, v_{i+9}\right\}$ (If $i+2 \geq 11$, then f^{\prime} is adjacent to v_{i+2-11}, the rest may be deduced by analogy). With the property, if $N_{C_{11}}\left(f_{1}\right) \cup N_{C_{11}}\left(f_{2}\right)=\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{t}}\right\} \subset V\left(C_{11}\right)$, then $N_{C_{11}}\left(f_{3}\right) \cup N_{C_{11}}\left(f_{4}\right) \subseteq S_{v_{i_{1}}} \cap S_{v_{i_{2}}} \cap \cdots \cap S_{v_{i_{i}}}$. Note that there are at most three independent edges in $\left.G\right|_{V_{>0}}$. What's more, since $\left(f_{1}, 0\right) \in E(G), f_{2}$ can be adjacent to nonadjacent vertices in $\{0,3,4,5,6,7,8\}$, otherwise we get a longer cycle. So $\left|N_{C_{11}}\left(f_{2}\right)\right| \leq 4$. Now we consider the following subcases:
case 5.2.1. For $\left|N_{C_{11}}\left(f_{2}\right)\right| \leq 2$ (see Figure 9). To make the edges of G as more as possible, let $N_{C_{11}}\left(f_{1}\right)=$ $N_{C_{11}}\left(f_{2}\right)=\{0,5\}$, then there exists a second edge $\left(f_{3}, f_{4}\right) \in E\left(\left.G\right|_{V_{>0}}\right), N_{C_{11}}\left(f_{3}\right)=N_{C_{11}}\left(f_{4}\right) \in\{7,9\}$, and there are at most three independent edges in $\left.G\right|_{V_{>0}}$. Similar to the previous case, $\left|N_{C_{11}}\left(f^{\prime}\right)\right| \leq 5$ for all isolated vertices $f^{\prime} \in V_{>0}$. When $\left|N_{C_{11}}\left(f^{\prime}\right)\right|=5$, by Remark 2.4, there are at least 14 edges should be deleted from K_{11}. We obtain
$|E(G)| \leq\binom{ 11}{2}+5\left(\left|V_{>0}\right|-2\right)+5+2-14+\left|V_{0+}\right|+1+e x\left(\left|V_{0-}\right|, P_{5}\right) \leq\binom{ 11}{2}+5(n-11)-16-\frac{r(4-r)}{2}<5 n-13+\delta$, for $-3-\frac{r(4-r)}{2}-\delta<0$, where $\left|V_{0-}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.

Figure 9: A graph with C_{11} and P_{2} in $V_{>0},\left|N_{C_{11}}\left(f_{2}\right)\right|=2$.
case 5.2.2. For $3 \leq\left|N_{C_{11}}\left(f_{2}\right)\right| \leq 4$, then $\left|N_{C_{11}}\left(f_{1}\right)\right| \leq 2$ and there exists only one edge in $\left.G\right|_{V_{>0}}$. Moreover, $\left|N_{C_{11}}\left(f^{\prime}\right)\right| \leq 5, \forall f^{\prime} \in V_{>0}-\left\{f_{1}, f_{2}\right\}$. When $\left|N_{C_{11}}\left(f^{\prime}\right)\right|=5$, by Remark 2.4, there are at least 14 edges should be deleted from K_{11}. We obtain
$|E(G)| \leq\binom{ 11}{2}+5\left(\left|V_{>0}\right|-2\right)+7-14+\left|V_{0+}\right|+1+e x\left(\left|V_{0-}\right|, P_{5}\right) \leq\binom{ 11}{2}+5(n-11)-16-\frac{r(4-r)}{2}<5 n-13+\delta$,
for $-3-\frac{r(4-r)}{2}-\delta<0$, where $\left|V_{0-}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.
case 5.3. Suppose that $V_{>0}$ is an independent set.
Let $V_{0-+}=\left\{h \in V_{0-} \mid N_{G}(h) \cap V_{0+} \neq \emptyset\right\}, V_{0--}=V_{0-}-V_{0-+}$.
case 5.3.1. $V_{0-+} \neq \emptyset$ (see Figure 10). Without loss of generality, let $f g h$ be a path in F such that $f \in V_{>0}, g \in V_{0+}, h \in V_{0-+}$. Then V_{0-+} is an independent set and $\left|E\left(V_{0+}, V_{0-}\right)\right|=\left|V_{0-+}\right|$. Then for all
$f^{\prime} \in V_{>0}-\{f\}, N_{C_{11}}\left(f^{\prime}\right) \subseteq\{3,8\}$, and $N_{V_{0+}}\left(f^{\prime}\right)=\emptyset$. Therefore, $N_{V_{>0}}\left(V_{0+}\right)=\{f\}$, and V_{0+} is also an independent set. By Remark 2.4, there are at least 2 edges should be deleted from K_{11}. We obtain
$|E(G)| \leq\binom{ 11}{2}+2\left(\left|V_{>0}\right|-1\right)+1-2+\left|V_{0+}\right|+\left|V_{0-+}\right|+e x\left(\left|V_{0--}\right|, P_{5}\right) \leq\binom{ 11}{2}+2(n-11)-3-\frac{r(4-r)}{2}<5 n-13+\delta$, for $n>\frac{43}{3}-\frac{r(4-r)}{6}-\frac{\delta}{3}$, where $\left|V_{0--}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.

Figure 10: A graph with C_{11} and independent set $V_{>0}, V_{0-+} \neq \emptyset$.
case 5.3.2. $V_{0-+}=\emptyset, V_{0+} \neq \emptyset$.
case 5.3.2.1. $\left.G\right|_{V_{0+}}$ contains P_{2} (see Figure 11). Then there exists only one edge (g_{1}, g_{2}) in $\left.G\right|_{V_{0+}}$. It is same to the previous case that $N_{C_{11}}\left(f^{\prime}\right) \subseteq\{3,8\}, N_{V_{0+}}\left(f^{\prime}\right)=\emptyset$, so $N_{V_{>0}}\left(V_{0+}\right)=\{f\}$. By Remark 2.4 , there are at least 2 edges should be deleted from K_{11}. We obtain

$$
|E(G)| \leq\binom{ 11}{2}+2\left(\left|V_{>0}\right|-1\right)+1-2+\left|V_{0+}\right|+1+e x\left(\left|V_{0-}\right|, P_{5}\right) \leq\binom{ 11}{2}+2(n-11)-2-\frac{r(4-r)}{2}<5 n-13+\delta
$$

we get $n>\frac{44}{3}-\frac{r(4-r)}{6}-\frac{\delta}{3}$, where $\left|V_{0-}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.

Figure 11: A graph with C_{11} and P_{2} in V_{0+}.
case 5.3.2.2. V_{0+} is an independent set. In this case, $\left|N_{G}(g)\right|=1$, or $\left|N_{G}(g)\right|=2$ and $\left|V_{0+}\right|=1, \forall g \in V_{0+}$. What's more, $\left|N_{C_{11}}(f)\right| \leq 5, \forall f \in V_{>0}$. When $\left|N_{C_{11}}(f)\right|=5$, by Remark 2.4, there are at least 14 edges should be deleted from K_{11}. Then we get

$$
|E(G)| \leq\binom{ 11}{2}+5\left|V_{>0}\right|-14+\left|V_{0+}\right|+e x\left(\left|V_{0-}\right|, P_{5}\right) \leq\binom{ 11}{2}+5(n-11)-14-\frac{r(4-r)}{2}<5 n-13+\delta
$$

for $-1-\frac{r(4-r)}{2}-\delta<0$, where $\left|V_{0-}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.
case 5.3.2.3. $V_{0+}=\emptyset .\left|N_{C_{11}}(f)\right| \leq 5, \forall f \in V_{>0}$. If $\left|N_{C_{11}}(f)\right|_{\max }=i$, by Remark 2.4, there are at least $\binom{i+1}{2}-1$ edges should be deleted from K_{11}. Then we obtain

$$
\left.|E(G)| \leq\binom{ 11}{2}+i\left|V_{>0}\right|-\binom{i+1}{2}-1\right)+e x\left(\left|V_{0}\right|, P_{5}\right)<5 n-13+\delta
$$

for all $n \geq 19$ with different δ. Therefore we get $3 P_{5}$ in G, a contradiction.
case 6. $q=10$. By table 1 , we just consider the situation for $n \geq 22$. Let $F=G-V\left(C_{10}\right)$. Note that $V_{>0} \neq \emptyset$, since otherwise $E(F) \geq 5 n-13+\delta-\binom{10}{2}>e x\left(n-10, P_{5}\right)$ for $n>\frac{86}{7}-\frac{r(4-r)}{7}-\frac{2 \delta}{7}$, where $n-10 \equiv r$ $(\bmod 4)$. Therefore, for $n \geq 22$ with different δ, we get P_{5} in F, and there exists $3 P_{5}$ in G, a contradiction.
case 6.1. Suppose that there exists $P_{4}=f_{1} f_{2} f_{3} f_{4}$ in $\left.G\right|_{V_{>0}}$ (see Figure 12).
Since $f_{1}, f_{2}, f_{3}, f_{4} \in V_{>0}$, then V_{0+} is an independent set, and the vertices in V_{0+} just can be adjacent to f_{2} or f_{3}, so $E\left(V_{>0}, V_{0+}\right)=\left|V_{0+}\right| . V_{0-+}=\emptyset$. Without loss of generality, let $\left(f_{1}, 0\right) \in E(G)$, then $N_{C_{10}}(x) \subseteq\{0,5\}$ for $x=f_{1}, f_{4}$, otherwise we get a longer cycle. $\left|N_{C_{10}}\left(f_{2}\right)\right|+\left|N_{C_{10}}\left(f_{3}\right)\right| \leq 4$: if $N_{C_{10}}(x)=0$, then $N_{\mathrm{C}_{10}}\left(f_{2}\right)=N_{C_{10}}\left(f_{3}\right) \subseteq$ $\{0, b\}, b \in\{4,5,6\}$, or $N_{C_{10}}\left(f_{2}\right)=0, N_{C_{10}}\left(f_{3}\right) \subseteq\{0,4,6\}$; if $N_{C_{10}}(x)=\{0,5\}$, then $N_{C_{10}}\left(f_{2}\right)=N_{C_{10}}\left(f_{3}\right) \subseteq\{0,5\}$. For $f^{\prime} \in V_{>0}-\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}, f^{\prime}$ can be adjacent to nonadjacent vertices in $\{0,2,3,5,7,8\}$, otherwise, if f^{\prime} is adjacent to 1 or 4 , we get P_{5} with $\left\{f^{\prime}, 1,2,3,4\right\}$, and $P_{10}=56 \ldots 90 f_{1} f_{2} f_{3} f_{4}$; the situations of vertices 6 and 9 are similar to above with symmetry. So $\left|N_{C_{10}}\left(f^{\prime}\right)\right| \leq 4$. Note that $\left.G\right|_{V_{>0}}$ could contain more P_{4}, however, they just can be adjacent to $\{0,5\}$. Above all, to make the edges of G as more as possible, let $N_{C_{10}}\left(f_{1}\right)=N_{C_{10}}\left(f_{2}\right)=N_{C_{10}}\left(f_{3}\right)=N_{C_{10}}\left(f_{4}\right)=\{0,5\}$, and $\left|N_{C_{10}}\left(f^{\prime}\right)\right|=4$. By Remark 2.4, there are at least 11 edges should be deleted from K_{10}. We get

$$
|E(G)| \leq\binom{ 10}{2}+4\left(\left|V_{>0}\right|-4\right)+11-11+\left|V_{0+}\right|+e x\left(\left|V_{0-}\right|, P_{5}\right) \leq\binom{ 10}{2}+4(n-10)-16-\frac{r(4-r)}{2}<5 n-13+\delta
$$

for $n>2-\frac{r(4-r)}{2}-\delta$, where $\left|V_{0-}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.

Figure 12: A graph with C_{10} and P_{4} in $V_{>0}$.
case 6.2. Suppose that there exists $P_{3}=f_{1} f_{2} f_{3}$ in $\left.G\right|_{V_{>0}}$.
Since $f_{1}, f_{2}, f_{3} \in V_{>0}$, then V_{0-+} is an independent set, and $E\left(V_{0+}, V_{0-+}\right)=\left|V_{0-+}\right| .\left|E\left(V_{>0}, V_{0}\right)\right| \leq\left|V_{0+}\right|+2$ (when $\left|E\left(V_{>0}, V_{0}\right)\right| \leq\left|V_{0+}\right|+2, V_{0-+}=\emptyset$ and $\left|V_{0+}\right|=1$). $\left.G\right|_{V_{0+}}$ contains at most one edge. Without loss of generality, let $\left(f_{1}, 0\right) \in E(G)$. By Remark 2.4, f_{3} can be adjacent to nonadjacent vertices in $\{0,4,5,6\}$, so $N_{\mathrm{C}_{10}}\left(f_{3}\right) \leq 3$. f_{2} can be adjacent to nonadjacent vertices in $\{0,3,4,5,6,7\}$, and if $N_{\mathrm{C}_{10}}\left(f_{3}\right)=v_{i}, N_{\mathrm{C}_{10}}\left(f_{2}\right)=v_{j}$, $v_{i}, v_{j} \in V\left(C_{10}\right)$, then $j=i$, or $j<i-2$, or $j>i+2$. For $f^{\prime} \in V_{>0}-\left\{f_{1}, f_{2}, f_{3}\right\}, f^{\prime}$ can be adjacent to nonadjacent vertices in C_{10}, so $N_{C_{10}}\left(f^{\prime}\right) \leq 5$. Note that $\left.G\right|_{V_{>0}}$ could contain more P_{3} or edges, however, they just can be adjacent to $\{0,5\}$. Above all, to make the edges of G as more as possible, let $N_{C_{10}}\left(f_{1}\right)=N_{C_{10}}\left(f_{3}\right)=$
$\{0,4\}, N_{C_{10}}\left(f_{2}\right)=\{0,4,7\}$, and $\left|N_{C_{10}}\left(f^{\prime}\right)\right|=5$. By Remark 2.4, there are at least 10 edges should be deleted from K_{10}. We get
$|E(G)| \leq\binom{ 10}{2}+5\left(\left|V_{>0}\right|-3\right)+9-10+\left|V_{0+}\right|+2+\left|V_{0-+}\right|+e x\left(\left|V_{0--}\right|, P_{5}\right) \leq\binom{ 10}{2}+5(n-10)-14-\frac{r(4-r)}{2}<5 n-13+\delta$,
for $-6-\frac{r(4-r)}{2}-\delta<0$, where $\left|V_{0--}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.
case 6.3. Suppose that there exists $P_{2}=f_{1} f_{2}$ in $\left.G\right|_{V_{>0}}$.
Since $f_{1}, f_{2} \in V_{>0}$, then V_{0-+} is an independent set, and $E\left(V_{0+}, V_{0-+}\right)=\left|V_{0-+}\right| .\left|E\left(V_{>0}, V_{0}\right)\right| \leq\left|V_{0+}\right|+2$, and $G_{V_{0+}}$ contains at most one edge. Without loss of generality, let $\left(f_{1}, 0\right) \in E(G)$. By Remark 2.4, f_{1}, f_{2} can be adjacent to nonadjacent vertices in $\{0,3,4,5,6,7\}$, and if $N_{C_{10}}\left(f_{1}\right)=v_{i}, N_{C_{10}}\left(f_{2}\right)=v_{j}, v_{i}, v_{j} \in\{0,3,4,5,6,7\}$, then $j=i$, or $j<i-2$, or $j>i+2$. So $\left|N_{\mathrm{C}_{10}}\left(f_{1}\right)\right|+\left|N_{\mathrm{C}_{10}}\left(f_{2}\right)\right| \leq 5$, such as $N_{\mathrm{C}_{10}}\left(f_{1}\right)=0, N_{\mathrm{C}_{10}}\left(f_{2}\right)=\{0,3,5,7\}$, or $N_{C_{10}}\left(f_{1}\right)=\{0,3\}, N_{C_{10}}\left(f_{2}\right)=\{0,3,6\}$. There exist at most five independent edges in $\left.G\right|_{V_{>0}}$. For $f^{\prime} \in V_{>0}-\left\{f_{1}, f_{2}\right\}$, f^{\prime} can be adjacent to nonadjacent vertices in C_{10}, so $N_{C_{10}}\left(f^{\prime}\right) \leq 5$. By Remark 2.4, there are at least 10 edges should be deleted from K_{10}. We get
$|E(G)| \leq\binom{ 10}{2}+5\left(\left|V_{>0}\right|-2\right)+6-10+\left|V_{0+}\right|+2+\left|V_{0-+}\right|+e x\left(\left|V_{0--}\right|, P_{5}\right) \leq\binom{ 10}{2}+5(n-10)-12-\frac{r(4-r)}{2}<5 n-13+\delta$,
for $-4-\frac{r(4-r)}{2}-\delta<0$, where $\left|V_{0--}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.
case 6.4. Suppose that $V_{>0}$ is an independent set.
Let $V_{0--+}=\left\{w \in V_{0--} \mid N_{G}(w) \cap V_{0-+} \neq \emptyset\right\}, V_{0---}=V_{0--}-V_{0--+}$.
case 6.4.1. $V_{0--+} \neq \emptyset$ (see Figure 13). Without loss of generality, let $f g h w$ be a path in F such that $f \in V_{>0}, g \in V_{0+}, h \in V_{0-+}$ and $w \in V_{0--+}$. For all $f^{\prime} \in V_{>0}-f, f^{\prime}$ is adjacent to nonadjacent vertices in $\{0,2,3,5,7,8\}$, otherwise, if f^{\prime} is adjacent to 1 or 4 , we get P_{5} with $\left\{f^{\prime}, 1,2,3,4\right\}$, and $P_{10}=56 \ldots 90 f \mathrm{gh} w$; the other situations are similar to above with symmetry. So $\left|N_{C_{10}}\left(f^{\prime}\right)\right| \leq 4$. And if $N_{C_{10}}\left(f^{\prime}\right)$ contains vertices 2, 3,7 , or 8 , then $N_{V_{0+}}\left(f^{\prime}\right)=\emptyset$. So to make the edges of G as more as possible, let $\left|N_{C_{10}}\left(f^{\prime}\right)\right|=4, N_{C_{10}}(f)=\{0,5\}$. f can't be adjacent to g^{\prime}, for all $g^{\prime} \in V_{0+}-g$, otherwise we get $P_{5}=g^{\prime} f g h w$ in F. Therefore, $N_{V_{0+}}\left(V_{0-+}\right)=g$, and V_{0-+} is an independent set, otherwise, if there exists an edge $h h^{\prime}$ in $\left.G\right|_{V_{0-+}}$, then there exists $P_{5}=f g h^{\prime} h w$ in F. so $\left|E\left(V_{0+}, V_{0-+}\right)\right|=\left|V_{0-+}\right| . V_{0--+}$ is an independent set and $\operatorname{deg}_{G}(w)=1$, so $\left|E\left(V_{0-+}, V_{0--}\right)\right|=\left|V_{0--+}\right|$. By Remark 2.4, there are at least 11 edges should be deleted from K_{10}. We get
$|E(G)| \leq\binom{ 10}{2}+4\left(\left|V_{>0}\right|-1\right)-11+3+\left|V_{0-+}\right|+\left|V_{0--+}\right|+e x\left(\left|V_{0---}\right|, P_{5}\right) \leq\binom{ 10}{2}+4(n-10)-12-\frac{r(4-r)}{2}<5 n-13+\delta$,
for $n>6-\frac{r(4-r)}{2}-\delta$, where $\left|V_{0---}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.

Figure 13: A graph with C_{10} and independent set $V_{>0}, V_{0--+} \neq \emptyset$.
case 6.4.2. $V_{0--+}=\emptyset, V_{0-+} \neq \emptyset$.
case 6.4.2.1. Suppose that there is a $P_{2}=h_{1} h_{2}$ in $\left.G\right|_{V_{0-+}}$.
Without loss of generality, let $f g h_{1} h_{2}$ be a path in F such that $f \in V_{>0}, g \in V_{0+}, h_{1}, h_{2} \in V_{0-+}$. Similar to the previous case, for all $f^{\prime} \in V_{>0}-f, f^{\prime}$ is adjacent to nonadjacent vertices in $\{0,2,3,5,7,8\}$, so $\left|N_{C_{10}}\left(f^{\prime}\right)\right| \leq 4$. And if $N_{C_{10}}\left(f^{\prime}\right)$ contains vertices $2,3,7$, or 8 , then $N_{V_{0+}}\left(f^{\prime}\right)=\emptyset$. Let $\left|N_{C_{10}}\left(f^{\prime}\right)\right|=4, N_{C_{10}}(f)=\{0,5\}$. So $N_{V_{0+}}\left(V_{0-+}\right)=g$. Moreover, there are at most one edge in $\left.G\right|_{V_{0-+}}$, otherwise, if there exists $P_{2}^{\prime}=h_{3} h_{4}$ in $\left.G\right|_{V_{0-+}}$, we get $P_{5}=h_{1} h_{2} g h_{3} h_{4}$ in F. By Remark 2.4, there are at least 11 edges should be deleted from K_{10}. We get
$|E(G)| \leq\binom{ 10}{2}+4\left(\left|V_{>0}\right|-1\right)-11+3+\left|V_{0-+}\right|+1+e x\left(\left|V_{0--}\right|, P_{5}\right) \leq\binom{ 10}{2}+4(n-10)-11-\frac{r(4-r)}{2}<5 n-13+\delta$,
for $n>7-\frac{r(4-r)}{2}-\delta$, where $\left|V_{0--}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.
case 6.4.2.2. Suppose that V_{0-+} is an independent set.
Without loss of generality, let $f g h$ be a path in F such that $f \in V_{>0}, g \in V_{0+}, h \in V_{0-+}$. For all $f^{\prime} \in V_{>0}-f$, f^{\prime} is adjacent to nonadjacent vertices in $C_{10},\left|N_{C_{10}}\left(f^{\prime}\right)\right| \leq 5$. And if $N_{C_{10}}\left(f^{\prime}\right)$ contains vertices $1,2,3,4,6,7,8$ or 9 , then $N_{V_{0+}}\left(f^{\prime}\right)=\emptyset$. Let $\left|N_{C_{10}}\left(f^{\prime}\right)\right|=5, N_{C_{10}}(f)=\{0,5\}$. G| $V_{V_{0+}}$ contains at most one P_{2}. If there is a $P_{2}=g g^{\prime}$ in $\left.G\right|_{V_{0+}}$, then $\left|V_{0-+}\right|=2$. If V_{0+} is an independent set, all vertices in V_{0+} can't be adjacent to $h^{\prime} \in V_{0-+}-h$. So $\left|E\left(V_{>0}, V_{0+}\right)\right| \leq\left|V_{0+}\right|,\left|E\left(V_{0+}, V_{0-+}\right)\right| \leq\left|V_{0+}\right|$. By Remark 2.4, there are at least 10 edges should be deleted from K_{10}. We get

$$
|E(G)| \leq\binom{ 10}{2}+5\left(\left|V_{>0}\right|-1\right)-10+1+2\left|V_{0+}\right|+e x\left(\left|V_{0--}\right|, P_{5}\right) \leq\binom{ 10}{2}+5(n-10)-14-\frac{r(4-r)}{2}<5 n-13+\delta
$$

for $-6-\frac{r(4-r)}{2}-\delta<0$, where $\left|V_{0--}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.
case 6.4.3. $V_{0-+}=\emptyset, V_{0+} \neq \emptyset$.
case 6.4.3.1. Suppose that there is a $P_{3}=g_{1} g_{2} g_{3}$ in $\left.G\right|_{V_{0+}}$.
Without loss of generality, let $\left(g_{1}, f\right) \in E(G)$. For all $f^{\prime} \in V_{>0}-f, f^{\prime}$ is adjacent to nonadjacent vertices in $\{0,2,3,5,7,8\},\left|N_{C_{10}}\left(f^{\prime}\right)\right| \leq 4$. And if $N_{C_{10}}\left(f^{\prime}\right)$ contains vertices $2,3,7$, or 8 , then $N_{V_{0+}}\left(f^{\prime}\right)=\emptyset$. To make the edges of G as more as possible, let $\left|N_{\mathrm{C}_{10}}\left(f^{\prime}\right)\right|=4, N_{\mathrm{C}_{10}}(f)=\{0,5\}$, then $\left|E\left(V_{>0}, V_{0+}\right)\right|=\left|V_{0+}\right|$. And there are no more vertices in V_{0+}, otherwise we get P_{5} in F. By Remark 2.4, there are at least 11 edges should be deleted from K_{10}. We get

$$
|E(G)| \leq\binom{ 10}{2}+4\left(\left|V_{>0}\right|-1\right)-11+6+e x\left(\left|V_{0-}\right|, P_{5}\right) \leq\binom{ 10}{2}+4(n-10)-9-\frac{r(4-r)}{2}<5 n-13+\delta
$$

for $n>9-\frac{r(4-r)}{2}-\delta$, where $\left|V_{0-}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.
case 6.4.3.2. Suppose that there is a $P_{2}=g_{1} g_{2}$ in $\left.G\right|_{V_{0+}}$.
For all $f^{\prime} \in V_{>0}-f, f^{\prime}$ is adjacent to nonadjacent vertices in $C_{10},\left|N_{C_{10}}\left(f^{\prime}\right)\right| \leq 5$. And if $N_{C_{10}}\left(f^{\prime}\right)$ contains vertices $1,2,3,4,6,7,8$ or $9, N_{V_{0+}}\left(f^{\prime}\right)=\emptyset$. Let $\left|N_{C_{10}}\left(f^{\prime}\right)\right|=5, N_{C_{10}}(f)=\{0,5\}$. Then $\left|E\left(V_{>0}, V_{0+}\right)\right|=\left|V_{0+}\right|$. G| $V_{V_{0+}}$ contains at most one edge, otherwise we get P_{5} in F. By Remark 2,4, there are at least 10 edges should be deleted from K_{10}. We get
$|E(G)| \leq\binom{ 10}{2}+5\left(\left|V_{>0}\right|-1\right)-11+1+\left|V_{0+}\right|+1+e x\left(\left|V_{0-}\right|, P_{5}\right) \leq\binom{ 10}{2}+5(n-10)-14-\frac{r(4-r)}{2}<5 n-13+\delta$, for $-6-\frac{r(4-r)}{2}-\delta<0$, where $\left|V_{0-}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.
case 6.4.3.3. Suppose that V_{0+} is an independent set.
For all $f \in V_{>0}, f$ can be adjacent to nonadjacent vertices in C_{10}, so $\left|N_{C_{10}}(f)\right| \leq 5$. Since C_{10} contains P_{10}, then F can't contain P_{5}. To make the edges of G as more as possible, let $\left|N_{C_{10}}\left(f^{\prime}\right)\right|=5$. By Remark 2.4, there are at least 10 edges should be deleted from K_{10}. We get

$$
|E(G)| \leq\binom{ 10}{2}+5\left|V_{>0}\right|-10+e x\left(n-10, P_{5}\right) \leq\binom{ 10}{2}+5(n-10)-10-\frac{r(4-r)}{2}<5 n-13+\delta
$$

for $-2-\frac{r(4-r)}{2}-\delta<0$, where $\left|V_{0-}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.
case 6.4.4. $V_{0+}=\emptyset$.
Recall that $V_{>0}$ is an independent set, for all $f \in V_{>0}, f$ can be adjacent to nonadjacent vertices in C_{10}, so $\left|N_{C_{10}}(f)\right| \leq 5$. When $\left|N_{C_{10}}\left(f^{\prime}\right)\right|=5$, by Remark 2.4, there are at least 10 edges should be deleted from K_{10}. We get

$$
|E(G)| \leq\binom{ 10}{2}+5\left|V_{>0}\right|-10+e x\left(\left|V_{0}\right|, P_{5}\right) \leq\binom{ 10}{2}+5(n-10)-10-\frac{r(4-r)}{2}<5 n-13+\delta
$$

for $-2-\frac{r(4-r)}{2}-\delta<0$, where $\left|V_{0-}\right| \equiv r(\bmod 4)$. There exists $3 P_{5}$ in G, a contradiction.
In conclusion, the proof is completed.

3. Acknowledgement

The authors acknowledge the reviewers for their suggestions to improve the paper.

References

[1] J. A. Bondy, U. S. R. Murty, Graph Theory With Application, The Mathematical Gazette 62 (1978) 237-238.
[2] P. Turán, On an extremal problem in graph theory(in Hungrarian), Mat. Es Fiz. Lapok 48 (1941) 436-452.
[3] J. W. Moon, On independent complete subgraphs in a graph, Canad. J. Math 20 (1968) 95-102.
[4] M. Simonovits, A method for solving extremal problems in graph theory, stability problems, In Theory of Graphs, Academic Press (1968) 279-319.
[5] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar 10 (1959) 337-356.
[6] N. Bushaw and N. Kettle, Turán numbers of multiple paths and equibipartite forests, Combin. Probab. Comput 20 (2011) $837-853$.
[7] H. Liu, B. Lidický, C. Palmer, On the Turán Number of Forests, Macromolecules 6 (2013) 2088-2092.
[8] H. Bielak and S. Kieliszek, The Turán number of the graph $3 P_{4}$, Annales Universitatis Mariae Curie-Skodowska. Sectio A. Mathematica, 2014.
[9] L. T. Yuan, X, D, Zhang, The Turán number of disjoint copies of paths, Discrete Mathematics 2 (2015) 132-139.
[10] L. T. Yuan, X, D, Zhang, Turán numbers for disjoint paths, 2016.
[11] H. Bielak and S.Kieliszek, The Turán number of the graph $2 P_{5}$, Discussiones Mathematicae Graph Theory 36 (2016) 683-694.
[12] Y. X. Lan, Z. M. Qin, Y. T. Shi, The Turán number of $2 P_{7}$, Discussiones Mathematicae Graph Theory, 2017.
[13] Y. M. Hu, H. Tian, The Turán number of $P_{5} \cup P_{2 l+1}$, submit.
[14] R. J. Faudree and R. H. Schelp, Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975) 150-160.

[^0]: 2010 Mathematics Subject Classification. 05C35; 05C38
 Keywords. Turán number; extremal graph; disjoint paths
 Received: 07 November 2019; Revised: 07 January 2020; Accepted: 08 February 2020
 Communicated by Paola Bonacini
 Corresponding author: Yumei Hu
 Email addresses: feng_liquan@163.com (Liquan Feng), huyumei@tju.edu.cn (Yumei Hu)

