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The Turán Number of the Graph 3P5
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Abstract. The Turán number ex(n,H) of a graph H, is the maximum number of edges in a graph of order
n which does not contain H as a subgraph. Let Ex(n,H) denote all H-free graphs on n vertices with ex(n,H)
edges. Let Pi denote a path consisting of i vertices, and mPi denote m disjoint copies of Pi. In this paper, we
give the Turán number ex(n, 3P5) for all positive integers n, which partly solve the conjecture proposed by
L. Yuan and X. Zhang [7]. Moreover, we characterize all extremal graphs of 3P5 denoted by Ex(n, 3P5).

1. Introduction

The graphs considered in this paper are simple and undirected. For a graph G = (V(G),E(G)), where
V(G) is the vertex set and E(G) is the edge set. Let the Turán number ex(n,H) denote the maximum number
of edges in a simple graph of order n which does not contain H as a subgraph. Let Pi denote a path of order i
and Cq denote a cycle of order q, mPi denote m disjoint copies of Pi. For two vertex disjoint graphs G and F by
G∪F we denote the vertex disjoint union of G and F, and by G + F the graph obtained from G∪F by joining
all vertices between G and F. By G we denote the complement of the graph G. We denote by NG(v) the set of
vertices adjacent to v in G, if V′ ⊆ V(G), then NG(V′) =

⋃
v∈V′ NG(v), and de1G(v) = |NG(v)|. For u, v ∈ V(G),

(u, v) is the edge between u and v, and for A,B ⊆ V(G) with A∩B = ∅, let E(A,B) = {e ∈ E(G)|e∩A , ∅, e∩B , ∅},
G|A denote the subgraph of G induced by A. For {v1, v2, . . . , vm} ⊆ V(G), u is adjacent to {v1, v2, . . . , vm}means
that u is adjacent to each vertex in {v1, v2, . . . , vm}. The basic notions not defined in this paper can be found
in [1].

In 1941, Turán [2] proved that the Turán graph Tr−1(n) (balanced complete (r − 1)-partite graph on n
vertices) is the extremal graph without containing Kr as a subgraph. Later, Moon [3] and Simonovits [4]
showed that Kk−1 + Tr−1(n − k + 1) is the unique extremal graph containing no kKr for sufficient large n. In
1959, Erdős and Gallai [5] proved that ex(n,Pk) ≤ (k − 2)n(1/2) with equality if and only if n = (k − 1)t. In
2011, N. Bushaw and N. Kettle [6] determined ex(n, kPl) for arbitrary l, and n appropriately large relative to
k and l.

For Fm = Pk1 ∪ Pk2 ∪ · · · ∪ Pkm , k1 ≥ k2 ≥ · · · ≥ km, Liu, Lidický and Palmer [7] extended N. Bushaw and
N. Kettle’s result and determined ex(n,Fm) for n sufficiently large. But they didn’t solve the case for n with
minor conditions. In 2014, H. Bielak and S. Kieliszek [8] determined ex(n, 3P4) for all n. L. Yuan and X.
Zhang [9, 10] determined the value of ex(n, kP3) for all n, and characterized all extremal graphs. Later, for
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small n, they determined ex(n,Fm) for k1, k2, . . . , km are all even or there is at most one odd. If there are two
odds, they just obtained a result for ex(n,P2l+1 ∪ P3). Finally, they proposed an important conjecture.

For convenience, we introduce the following definitions first.

Definition 1.1. [12] Let n ≥ m ≥ l ≥ 3 be given three positive integers. Then n can be written as n =
(m − 1) + t(l − 1) + r, where t ≥ 0 and 0 ≤ r < l − 1. Denote by

[n,m, l] ≡
(
m − 1

2

)
+ t

(
l − 1

2

)
+

(
r
2

)
.

Moreover, if n ≤ m − 1, denote by [n,m, l] ≡
(n

2
)
.

Definition 1.2. [12] Let s =
∑m

i=1 b
ki
2 c and ki be positive integers. If n ≥ s, then we denote

[n, s] ≡
(
s − 1

2

)
+ (s − 1)(n − s + 1).

Conjecture 1.3. [10] Let k1 ≥ k2 ≥ · · · ≥ km ≥ 3 and k1 > 3. Fm = Pk1 ∪ Pk2 ∪ · · · ∪ Pkm , then

ex(n,Fm) = max{[n, k1, k1], [n, k1 + k2, k2], . . . , [n,
m∑

i=1

ki, km], [n,
m∑

i=1

b
ki

2
c] + c},

where c = 1 if all of k1, k2, . . . , km are odd, and c = 0 for otherwise. Moreover, the extremal graphs are

Ex(n,Pk1 ), . . . ,K∑m
i=1 ki−1 ∪ Ex(n −

m∑
i=1

ki + 1,Pkm )

and
K∑m

i=1 b
ki
2 c−1

+ (K2 ∪ K
n−

∑m
i=1 b

ki
2 c−1

) if all of k1, k2, . . . , km are odd,

K∑m
i=1 b

ki
2 c−1

+ (K
n−

∑m
i=1 b

ki
2 c+1

) otherwise.

Later, H. Bielak and S. Kieliszek [11] partly confirmed the conjecture 1.3, they determined ex(n, 2P5)
for all positive integers n and gave the extremal graph. In 2017, ex(n, 2P7) was determined by Y. Lan, Z.
Qin and Y. Shi [12]. And ex(n,P5 ∪ P2l+1) was proved by Y. Hu and H. Tian [13] recently. However, all of
them studied two disjoint paths with odd vertices. In this paper, we consider three disjoint odd paths, and
propose the result as follows.

Theorem 1.4. Let n be a positive integer.

ex(n, 3P5) = max{[n, 15, 5], 5n − 14}.

Moreover, the extremal graphs are Kn for n < 15, K14 ∪ H where H ⊂ Ex(n − 14,P5) for 15 ≤ n < 24 and
K5 + (K2 ∪ Kn−7) for n ≥ 24.

This result determine the value of ex(n, 3P5) for all positive integers n that partly confirm the conjecture
1.3, and characterize all extremal graphs of 3P5 denoted by Ex(n, 3P5). We will prove it detailedly in the
next section.
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2. Proof of Theorem 1.4

For convenience, we first present the following important lemma which is used to prove our result.

Lemma 2.1. (Faudree and Schelp [14]). If G is a graph with |V(G)| = kn+r(0 ≤ k, 0 ≤ r < n) and G contains no Pn+1,
then |E(G)| ≤ kn(n−1)/2+r(r−1)/2 with equality if and only if G = kKn∪Kr or G = tKn∪(K(n−1)/2+K(n+1)/2+(k−t−1)n+r),
for some 0 ≤ t < k, where n is odd, and k > 0, r = (n ± 1)/2.

Corollary 2.2. Let n be a positive integer and n ≡ r (mod 4). Then ex(n,P5) = b n
4 c

(4
2
)

+
(r

2
)

=
3n+r(r−4)

2 .

Lemma 2.3. (Erdős, Gallai [5]). Suppose that |V(G)| = n. If the following inequality

(n − 1)(l − 1)
2

+ 1 ≤ |E(G)|

is satisfied for some l ∈ N, then there exists a cycle Cq ⊂ G for some q ≥ l.

Proof. [Proof of Theorem 1.4] Obviously, the extremal graph Kn gives the lower and upper bounds of
ex(n, 3P5) for n < 15. Thus, ex(n, 3P5) =

(n
2
)

for n < 15.
For 15 ≤ n < 24 (see Table 1),H does not contain 3P5 as a subgraph, so E(H) gives the lower bounds on

ex(n, 3P5) for respective n. For n ≥ 24, note that the graph G = K5 + (K2 ∪ Kn−7) dose not contain 3P5 as a
subgraph, this also gives us the lower bounds, ex(n, 3P5) ≥ 5n − 14. Let δ = |E(H)| − (5n − 14), and δ = 0 for
n ≥ 24.

Therefore, we would like to prove that 5n − 14 + δ is the upper bound for n ≥ 15. Let us assume that
there exists a graph G such that |V(G)| = n, |E(G)| = 5n − 13 + δ and without a subgraph 3P5. Applying
Lemma 2.3 to the graph G, we obtain

(n − 1)(l − 1)
2

+ 1 ≤ 5n − 13 + δ,

l ≤ 11 −
18 − 2δ
n − 1

.

We get G contains a Cq, table 1 gives the value of q for 15 ≤ n < 24; for n ≥ 24, δ = 0, we get l ≤ 10, then
q ≥ 10. Let 0, 1, 2, . . . , q − 1 be the consecutive vertices in Cq.

n H |E(H)| q 5n − 14 δ
15 K14 ∪ K1 91 14 61 30
16 K14 ∪ K2 92 13,14 66 26
17 K14 ∪ K3 94 12,13,14 71 23
18 K14 ∪ K4 97 12,13,14 76 21
19 K14 ∪ K4 ∪ K1 97 11,12,13,14 81 16
20 K14 ∪ K4 ∪ K2 98 11,12,13,14 86 12
21 K14 ∪ K4 ∪ K3 100 11,12,13,14 91 9
22 K14 ∪ 2K4 103 10,11,12,13,14 96 7
23 K14 ∪ 2K4 ∪ K1 103 10,11,12,13,14 101 2

Table 1: The lower bounds on ex(n, 3P5) for 15 ≤ n < 24, with the cycle Cq ⊂ G.

We should consider the following cases:
case 1. q ≥ 15. We have P15 in Cq, then 3P5 is a subgraph of G, a contradiction.
case 2. q = 14. Let F = G − V(C14). Note that there are no edges between C14 and F, otherwise for some

f ∈ V(F), without loss of generality, let ( f , 0) ∈ E(G), then we get a P15 = f 0 1 2 . . . 11 12 13, so 3P5 is a
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subgraph of G. The minimum number of edges in F is equal to 5n− 13 + δ−
(14

2
)

= 5n− 104 + δ. By Corollary
2.2,

ex(n − 14,P5) =
3(n − 14) + r(r − 4)

2
,

where n − 14 ≡ r (mod 4). We get ex(n − 14,P5) < 5n − 104 + δ for n > 166
7 −

r(4−r)
7 −

2δ
7 . Therefore, for n ≥ 15

with different δ, we get P5 in F, then there exists 3P5 in G, a contradiction.

Remark 2.4 If we connect a vertex to two adjacent vertices in cycle simultaneously, we will get a longer
cycle. For example, there is a cycle C = v0v1 . . . vnv0, without loss of generality, let the vertex u be adjacent
to v0 and v1, then we get a longer cycle C′ = v0uv1 . . . vnv0. When a vertex is adjacent to some vertices in
a complete graph, some edges in complete graph should be deleted to avoid creating a longer cycle. For
instance, there is a complete graph Kn, V(Kn) = {v1, v2, . . . , vn}, the longest cycle is Cn. Let the vertex u be
adjacent to vi and v j, i, j ∈ {1, 2, . . . ,n}, j > i + 1. Then we need to delete the edge (vi+1, v j+1), since otherwise
we get a longer cycle Cn+1 = uvivi−1 . . . 0 . . . v j+1vi+1vi+2 . . . v ju. In the same way, the edge (vi−1, v j−1) also
should be deleted.

case 3. q = 13. By table 1, for n = 15 with 91 edges, G does not contain C13, so we just consider the
situation for n ≥ 16. Let F = G − V(C13). If there does not exist any edge between C13 and F, then similar
to the case 2, |E(F)| ≥ 5n − 13 + δ −

(13
2
)
> ex(n − 13,P5) for n > 143

7 −
r(4−r)

7 −
2δ
7 , where (n − 13) ≡ r (mod 4).

Therefore, for n ≥ 16 with different δ, there exists P5 in F, and we get 3P5 in G, a contradiction.

Let Vi denote the vertex set that each vertex from Vi has exactly i neighbors in Cq, i = 0, 1, 2, . . . , q − 1,
V>0 = V(F)−V0. Note that in this case, V>0 is an independent set, and the vertices from V0 can be connected
only between themselves.

Without loss of generality, let ( f , 0) ∈ E(G) for some f ∈ V>0. Then for all f ′ ∈ V>0 − f , NC13 ( f ′) ⊆
{0, 3, 5, 8, 10}, otherwise, if f ′ is adjacent to 1 or 4, we get P5 with { f ′, 1, 2, 3, 4}, and P10 = 5 6 . . . 11 12 0 f ;
if ( f ′, 2) ∈ E(G), we get P5 = f 0 1 2 f ′,P′5 = 3 4 5 6 7,P′′5 = 8 9 10 11 12; if ( f ′, 6) ∈ E(G), we get
P5 = 1 2 3 4 5,P′5 = f ′ 6 7 8 9,P′′5 = 10 11 12 0 f ; the other situations are similar to above with symmetry. If f
is adjacent to other vertex on cycle, the property is preserved, that is if f is adjacent to vi, vi ∈ V(C13), then
NC13 ( f ′) ⊆ Svi = {vi, vi+3, vi+5, vi+8, vi+10} (If i+3 ≥ 13, then f ′ is adjacent to vi+3−13, the rest may be deduced by
analogy). With the property, if f is adjacent to {vi1 , vi2 , . . . , vit } ⊂ V(C13), then NC13 ( f ′) ⊆ Svi1

∩ Svi2
∩ · · · ∩ Svit

.
By Remark 2.4, f can be adjacent to nonadjacent vertices on C13, so |NC13 ( f )| ≤ 6. Now we consider the
following subcases:

case 3.1. For all f ∈ V>0, |NC13 ( f )| ≤ 3 (see Figure 1). To make the edges of G as more as possible, let
|NC13 ( f )| = 3, the only situation is that NC13 ( f ) = {0, 3, 8}. By Remark 2.4, there are at least 6 edges should be
deleted from K13, the dotted lines in the figure denote the edges in E(G). We get

|E(G)| ≤
(
13
2

)
+ 3|V>0| − 6 + ex(|V0|,P5) ≤

(
13
2

)
+ 3(n − 13) − 6 −

3
2
|V0| −

r(4 − r)
2

< 5n − 13 + δ,

for n > 23 − r(4−r)
4 −

δ
2 , where |V0| ≡ r (mod 4). Therefore, for n ≥ 16 with different δ, there exists 3P5 in G, a

contradiction.
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Figure 1: A graph with C13, and all vertices in V>0 have three neighbors in C13.

case 3.2. There exists some f ∈ V>0 that |NC13 ( f )| = 4 (see Figure 2). Then |NC13 ( f ′)| ≤ 2 for all f ′ ∈ V>0− f ,
such as NC13 ( f ) = {0, 3, 8, 11} (or {0, 5, 8, 10}), NC13 ( f ′) = {3, 8} (or {0, 5}). By Remark 2.4, there are at least 12
edges should be deleted from K13. We get

|E(G)| ≤
(
13
2

)
+ 2(|V>0| − 1) + 4 − 12 + ex(|V0|,P5) ≤

(
13
2

)
+ 2(n − 13) − 10 −

1
2
|V0| −

r(4 − r)
2

< 5n − 13 + δ,

for n > 55
3 −

r(4−r)
6 −

δ
3 , where |V0| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

Figure 2: A graph with C13, and for some f ∈ V>0, |NC13 ( f )| = 4.

case 3.3. There exists some f ∈ V>0 that |NC13 ( f )| = 5. Then |NC13 ( f ′)| ≤ 1 for all f ′ ∈ V>0 − f , such
as NC13 ( f ) = {0, 2, 5, 7, 10} (or {0, 3, 5, 8, 10}), NC13 ( f ′) = 10 (or 0). By Remark 2.4, there are at least 19 edges
should be deleted from K13. We get

|E(G)| ≤
(
13
2

)
+ |V>0| − 1 + 5 − 19 + ex(|V0|,P5) ≤

(
13
2

)
+

3
2

(n − 13) − 15 −
r(4 − r)

2
< 5n − 13 + δ,

for n > 113
7 −

r(4−r)
7 −

2δ
7 , where |V0| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

case 3.4. There exists some f ∈ V>0 that |NC13 ( f )| = 6. Then NC13 ( f ′) = ∅ for all f ′ ∈ V>0 − f . By Remark
2.4, there are at least 20 edges should be deleted from K13, we get

|E(G)| ≤
(
13
2

)
+ 6 − 20 + ex(n − 14,P5) ≤

(
13
2

)
− 14 +

3
2

(n − 14) −
r(4 − r)

2
< 5n − 13 + δ,

for n > 112
7 −

r(4−r)
7 −

2δ
7 , where (n − 14) ≡ r (mod 4). There exists 3P5 in G, a contradiction.
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case 4. q = 12. By table 1, we just consider the situation for n ≥ 17. Let F = G − V(C12). Note that
V>0 , ∅, since otherwise E(F) ≥ 5n − 13 + δ −

(12
2
)
> ex(n − 12,P5) for n > 122

7 −
r(4−r)

7 −
2δ
7 , where (n − 12) ≡ r

(mod 4). Therefore, for n ≥ 17 with different δ, there exists P5 in F, and we get 3P5 in G, a contradiction.

case 4.1. Suppose that there exists P2 = f1 f2 in G|V>0 .

Since f1, f2 ∈ V>0, there are no more edges in G|V>0 . Without loss of generality, let ( f1, 0) ∈ E(G).
For f ′ ∈ V>0 − { f1, f2}, NC12 ( f ′) ⊆ {0, 2, 5, 7, 10}, otherwise, if f ′ is adjacent to 1 or 4, we get P5 with
{ f ′, 1, 2, 3, 4}, and P10 = 5 6 . . . 11 0 f1 f2; if f ′ is adjacent to 3 or 6, we get P5 with { f ′, 3, 4, 5, 6}, and
P′5 = 7 8 9 10 11,P′′5 = f2, f1, 0, 1, 2; the other situations are similar to above with symmetry. Moreover, f1
and f2 are symmetric, if f2 is adjacent to the vertices on cycle, the property is preserved, that is if f2 is
adjacent to vi, vi ∈ V(C12), then NC12 ( f ′) ⊆ Svi = {vi, vi+2, vi+5, vi+7, vi+10} (If i + 2 ≥ 12, then f ′ is adjacent to
vi+2−12, the rest may be deduced by analogy). With the property, if NC12 ( f2) = {vi1 , vi2 , . . . , vit } ⊂ V(C12), then
NC12 ( f ′) ⊆ Svi1

∩Svi2
∩· · ·∩Svit

. What’s more, by Remark 2.4, f2 can be adjacent to nonadjacent vertices in C12.
And f2 can be adjacent to nonadjacent vertices in {0, 3, 4, 5, 6, 7, 8, 9}, otherwise, if ( f2, 2) ∈ E(G), there exists
a longer cycle C13 = 0 f1 f2 2 3 . . . 10 11 0, the situations of vertices 1, 10, 11 are similar. So |NC12 ( f2)| ≤ 5.
Now we consider the following subcases:

case 4.1.1. |NC12 ( f2)| = 1 (see Figure 3). Without loss of generality, let NC12 ( f1) = NC12 ( f2) = 0, as previously
mentioned, f ′ has at most five neighbors in C12. When |NC12 ( f ′)| = 5, by Remark 2.4, there are at least 17
edges should be deleted from K12. We get

|E(G)| ≤
(
12
2

)
+ 5(|V>0| − 2) + 3 − 17 + ex(|V0|,P5) ≤

(
12
2

)
+ 5(n − 12) − 24 −

1
2
|V0| −

r(4 − r)
2

< 5n − 13 + δ,

for −5 − r(4−r)
2 − δ < 0, where |V0| ≡ r (mod 4). So there exists 3P5 in G, a contradiction.

Figure 3: A graph with C12 and P2 in V>0, |NC12 ( f2)| = 1.

case 4.1.2. |NC12 ( f2)| = 2 (see Figure 4). Then |NC12 ( f ′)| ≤ 4. When |NC12 ( f ′)| = 4: if NC12 ( f2) = {0, 5}(or
{0, 7}), then NC12 ( f ′) = {0, 5, 7, 10}(or {0, 2, 5, 7}), meanwhile, NC12 ( f1) = {0, 5}(or {0, 7}). By Remark 2.4, there
are at least 11 edges should be deleted from K12. We get

|E(G)| ≤
(
12
2

)
+ 4(|V>0| − 2) + 5 − 11 + ex(|V0|,P5) ≤

(
12
2

)
+ 4(n − 12) − 14 −

5
2
|V0| −

r(4 − r)
2

< 5n − 13 + δ,

for n > 17 − r(4−r)
2 − δ, where |V0| ≡ r (mod 4). There exists 3P5 in G, a contradiction.
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Figure 4: A graph with C12 and P2 in V>0, |NC12 ( f2)| = 2.

case 4.1.3. |NC12 ( f2)| = 3 (see Figure 5). Then |NC12 ( f ′)| ≤ 3. When |NC12 ( f ′)| = 3: if NC12 ( f2) = {0, 5, 7}, then
NC12 ( f ′) = {0, 5, 7}, meanwhile, NC12 ( f1) = {0, 5}(or {0, 7}). By Remark 2.4, there are at least 6 edges should be
deleted from K12. We get

|E(G)| ≤
(
12
2

)
+ 3(|V>0| − 2) + 6 − 6 + ex(|V0|,P5) ≤

(
12
2

)
+ 3(n − 12) − 6 −

3
2
|V0| −

r(4 − r)
2

< 5n − 13 + δ,

for n > 37
2 −

r(4−r)
4 −

δ
2 , where |V0| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

Figure 5: A graph with C12 and P2 in V>0, |NC12 ( f2)| = 3.

case 4.1.4. |NC12 ( f2)| = 4, |NC12 ( f ′)| ≤ 1. When |NC12 ( f ′)| = 1: if NC12 ( f2) = {0, 3, 5, 7} (or {0, 5, 7, 9}), then
NC12 ( f ′) = 5(or 7). By Remark 2.4, there are at least 9 edges should be deleted from K12. We get

|E(G)| ≤
(
12
2

)
+ (|V>0| − 2) + 6 − 9 + ex(|V0|,P5) ≤

(
12
2

)
+

3
2

(n − 12) − 5 −
r(4 − r)

2
< 5n − 13 + δ,

for n > 116
7 −

r(4−r)
7 −

2δ
7 , where |V0| ≡ r (mod 4). There exists a 3P5 in G, a contradiction.

case 4.1.5. |NC12 ( f2)| = 5, that is NC12 ( f2) = {0, 3, 5, 7, 9}, then NC12 ( f ′) = ∅. By Remark 2.4, there are at least
17 edges should be deleted from K12. We get

|E(G)| ≤
(
12
2

)
+ 7 − 17 + ex(n − 14,P5) ≤

(
12
2

)
− 10 +

3
2

(n − 14) −
r(4 − r)

2
< 5n − 13 + δ,

for n > 96
7 −

r(4−r)
7 −

2δ
7 , where |V0| ≡ r (mod 4). There exists 3P5 in G, a contradiction.
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case 4.2. Suppose that V>0 is an independent set.
Let V0+ = {1 ∈ V0|N(1) ∩ V>0 , ∅} and V0− = V0 − V0+. Let us consider the following subcases:
case 4.2.1. V0+ , ∅.
There exists at least one vertex f in V>0 that has neighbors in V0+, then V0+ is an independent set and

de1(1) = 1,∀1 ∈ V0+, it means that |E(V>0,V0+)| = |V0+|.
For |NC12 ( f )| = 1, (see Figure 6). Similar to the case 4.1, f ′ ∈ V>0 − { f } has at most five neighbors in C12.

If |NC12 ( f ′)| = 5, by Remark 2.4, there are at least 17 edges should be deleted from K12. We get

|E(G)| ≤
(
12
2

)
+5(|V>0|−1)+1−17+|V0+|+ex(|V0−|,P5) ≤

(
12
2

)
+5(n−12)−21−4|V0+|−

7
2
|V0−|−

r(4 − r)
2

< 5n−13+δ,

for −2 − r(4−r)
2 − δ < 0, where |V0−| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

Figure 6: A graph with C12 and V0+ , ∅.

For |NC12 ( f )| = 2, |NC12 ( f ′)| ≤ 4. When |NC12 ( f ′)| = 4: if NC12 ( f ) = {0, 5}(or {0, 7}), then NC12 ( f ′) =
{0, 5, 7, 10}(or {0, 2, 5, 7}). By Remark 2.4, there are at least 11 edges should be deleted from K12. We get

|E(G)| ≤
(
12
2

)
+4(|V>0|−1)+2−11+|V0+|+ex(|V0−|,P5) ≤

(
12
2

)
+4(n−12)−13−3|V0+|−

5
2
|V0−|−

r(4 − r)
2

< 5n−13+δ,

for n > 18 − r(4−r)
2 − δ, where |V0−| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

For |NC12 ( f )| = 3, |NC12 ( f ′)| ≤ 3. When |NC12 ( f ′)| = 3: if NC12 ( f2) = {0, 5, 7}, then NC12 ( f ′) = {0, 5, 7}. By
Remark 2.4, there are at least 6 edges should be deleted from K12. We get

|E(G)| ≤
(
12
2

)
+3(|V>0|−1)+3−6+|V0+|+ex(|V0−|,P5) ≤

(
12
2

)
+3(n−12)−6−2|V0+|−

3
2
|V0−|−

r(4 − r)
2

< 5n−13+δ,

for n > 37
2 −

r(4−r)
4 −

δ
2 , where |V0−| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

For |NC12 ( f )| = 4, |NC12 ( f ′)| ≤ 1. When |NC12 ( f ′)| = 1: if NC12 ( f2) = {0, 3, 5, 7}(or {0, 5, 7, 9}), then NC12 ( f ′) =
5(or 7). By Remark 2.4, there are at least 9 edges should be deleted from K12. We get

|E(G)| ≤
(
12
2

)
+ (|V>0| − 1) + 4 − 9 + |V0+| + ex(|V0−|,P5) ≤

(
12
2

)
+

3
2

(n − 12) − 6 −
r(4 − r)

2
< 5n − 13 + δ,

for n > 110
7 −

r(4−r)
7 −

2δ
7 , where |V0−| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

For |NC12 ( f )| = 5, NC12 ( f ′) = ∅, by Remark 2.4, there are at least 17 edges should be deleted from K12. We
get

|E(G)| ≤
(
12
2

)
+ 5 − 17 + |V0+| + ex(|V0−|,P5) ≤

(
12
2

)
− 12 +

3
2

(n − 12) −
r(4 − r)

2
< 5n − 13 + δ,
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for n > 14 − r(4−r)
7 −

2δ
7 , where |V0−| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

case 4.2.2. V0+ = ∅.
By Remark 2.4, the vertices in V>0 can be adjacent to at most 6 vertices in C12. Let V′i = V>0 − Vi, i =

1, 2, 3, 4, 5, 6.
case 4.2.2.1. V6 , ∅. We have |V6| = 1 and |V1| = |V>0| − 1, or |V6| = 2 and V′i = ∅, otherwise there exists

3P5 in G. For the two situations, there are at least 15 edges should be deleted from K12. We obtain

|E(G)| ≤
(
12
2

)
+ 6 × 1 − 15 + |V>0| − 1 + ex(|V0|,P5) < 5n − 13 + δ,

for n > 102
7 −

r(4−r)
7 −

2δ
7 , where |V0| ≡ r (mod 4), or

|E(G)| ≤
(
12
2

)
+ 6 × 2 − 15 + ex(|V0|,P5) < 5n − 13 + δ

for n > 110
7 −

r(4−r)
7 −

2δ
7 , where |V0| ≡ r (mod 4). We get 3P5 in both situations, a contradiction.

case 4.2.2.2. V6 = ∅,V5 , ∅. We have |V5| = 1 and |NC12 (V′i )| ≤ 2, or |V5| = 2 and V′i = ∅ otherwise there
exists 3P5 in G. For the two situations, there are at least 14 edges should be deleted from K12. We obtain

|E(G)| ≤
(
12
2

)
+ 5 × 1 − 14 + 2(|V>0| − 1) + ex(|V0|,P5) < 5n − 13 + δ,

for n > 44
3 −

r(4−r)
6 −

δ
3 , where |V0| ≡ r (mod 4), or

|E(G)| ≤
(
12
2

)
+ 5 × 2 − 14 + ex(|V0|,P5) < 5n − 13 + δ,

for n > 108
7 −

r(4−r)
7 −

2δ
7 , where |V0| ≡ r (mod 4). We get 3P5 in both situations, a contradiction.

case 4.2.2.3. V6 = V5 = ∅. For Vi, i = 1, 2, 3, 4, let V j be the first nonempty set in V4,V3,V2,V1, by Remark
2.4, there are at least

( j+1
2

)
− 1 edges should be deleted from K12. Then

|E(G)| ≤
(
12
2

)
+

4∑
i=1

i · |Vi| − (
(

j + 1
2

)
− 1) + ex(|V0|,P5) < 5n − 13 + δ,

for n ≥ 17 with different δ, we get 3P5 in G, a contradiction.
case 5. q = 11. By table 1, we just consider the situation for n ≥ 19. Let F = G − V(C11). Note that

V>0 , ∅, since otherwise E(F) ≥ 5n − 13 + δ −
(11

2
)
> ex(n − 11,P5) for n > 103

7 −
r(4−r)

7 −
2δ
7 , where (n − 11) ≡ r

(mod 4). Therefore, for n ≥ 19 with different δ, there exists P5 in F, and we get 3P5 in G, a contradiction.
case 5.1. Suppose that there exists P3 = f1 f2 f3 in G|V>0 .
Since f1, f2, f3 ∈ V>0, there exists exactly one P3 and no more edges in V>0, V0+ = ∅. Without loss of

generality, let ( f1, 0) ∈ E(G). For f ′ ∈ V>0 − { f1, f2, f3}, NC11 ( f ′) ⊆ {3, 8}, otherwise, if f ′ is adjacent to 0, we
get P5 = f ′ 0 f1 f2 f3, and P10 = 1 2 . . . 10; if f ′ is adjacent to 1 or 4, we get P5 with { f ′, 1, 2, 3, 4}, and P10 =
5 6 . . . 10 0 f1 f2 f3; if f ′ is adjacent to 2 or 5, we get P5 with { f ′, 2, 3, 4, 5}, and P′5 = 6 7 8 9 10,P′′5 = 1 0 f1 f2 f3;
the other situations are similar to above with symmetry. Moreover, f1 and f3 are symmetric, if f3 is adjacent
to other vertices on cycle, the property is preserved, that is if f3 is adjacent to vi, vi ∈ V(C11), then f ′ can be
adjacent to Svi = {vi+3, vi+8} (If i + 3 ≥ 11, then f ′ is adjacent to vi+3−11, the rest may be deduced by analogy).
With the property, if f3 is adjacent to {vi1 , vi2 , . . . , vit } ⊂ V(C11), then NC11 ( f ′) ⊆ Svi1

∩ Svi2
∩ · · · ∩ Svit

. Note that
f3 can be adjacent to nonadjacent vertices in {0, 4, 5, 6, 7}, otherwise, if ( f3, 3) ∈ E(G), there exists a longer
cycle C12 = 0 f1 f2 f3 3 . . . 10 0, the situations of vertices 1, 2, 8, 9, 10 are similar. So |NC11 ( f3)| ≤ 3. In the same
way, f2 can be adjacent to nonadjacent vertices in {0, 3, 4, 5, 6, 7, 8}. What’s more, if NC11 ( f3) = vi,NC11 ( f2) = v j,
vi, v j ∈ V(C11), then j = i, or j < i − 2, or j > i + 2. Now we consider the following subcases:
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case 5.1.1. For |NC11 ( f3)| = 1 (see Figure 7). Without loss of generality, let NC11 ( f3) = NC11 ( f1) = 0, as
previously mentioned, |NC11 ( f2)| ≤ 4. NC11 ( f ′) ⊆ {3, 8}, by Remark 2.4, there are at least 2 edges should be
deleted from K11. We get

|E(G)| ≤
(
11
2

)
+ 2(|V>0| − 3) + 8 − 2 + ex(|V0|,P5) ≤

(
11
2

)
+ 2(n − 11) −

1
2
|V0| −

r(4 − r)
2

< 5n − 13 + δ,

for 46
3 −

r(4−r)
6 −

δ
3 < 0, where |V0| ≡ r (mod 4), so there exists 3P5 in G, a contradiction.

Figure 7: A graph with C11 and P3 in V>0, |NC11 ( f3)| = 1.

case 5.1.2. For |NC11 ( f3)| = 2 (see Figure 8). Then NC11 ( f3) = NC11 ( f1) = {0, a}, a ∈ {4, 5, 6, 7}. |NC11 ( f2)| ≤ 3,
and |NC11 ( f ′)| ≤ 1. By Remark 2.4, there are at least 2 edges should be deleted from K11. We get

|E(G)| ≤
(
11
2

)
+ (|V>0| − 3) + 9 − 2 + ex(|V0|,P5) ≤

(
11
2

)
+

3
2

(n − 11) + 4 −
r(4 − r)

2
< 5n − 13 + δ,

for n > 111
7 −

r(4−r)
7 −

2δ
7 , where |V0| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

Figure 8: A graph with C11 and P3 in V>0, |NC11 ( f3)| = 2.

case 5.1.3. For |NC11 ( f3)| = 3, NC11 ( f3) = {0, 4, 6}(or {0, 4, 7} or {0, 5, 7}), then NC11 ( f ′) = ∅, and NC11 ( f1) =
NC11 ( f2) = 0. By Remark 2.4, there are at least 6 edges should be deleted from K11. We get

|E(G)| ≤
(
11
2

)
+ 7 − 6 + ex(n − 14,P5) ≤

(
11
2

)
+ 1 +

3
2

(n − 14) −
r(4 − r)

2
< 5n − 13 + δ,
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for n > 96
7 −

r(4−r)
7 −

2δ
7 , where (n − 14) ≡ r (mod 4). There exists 3P5 in G, a contradiction.

case 5.2. Suppose that there exists P2 = f1 f2 in G|V>0 .
Note that |E(V>0,V0+)| ≤ |V0+| + 1. And G|V>0 could contain more edges. Without loss of generality, let

f1, f2 are adjacent to 0. Then other edges in V>0 can be adjacent to 2,4,7,9, otherwise, if there exists P′2 = f3 f4
in G|V>0 , f3, f4 are adjacent to 0, we get P5 = f1 f2 0 f3 f4, and P10 = 1 2 . . . 10; if P′2 = f3 f4 is adjacent to 1,
we get P5 = f3 f4 1 2 3, P′5 = 4 5 6 7 8, P′′5 = 9 10 0 f1 f2; if P′2 = f3 f4 is adjacent to 3 or 5, we get P5 with
{ f3, f4, 3, 4, 5}, and P′5 = 6 7 8 9 10, P′′5 = f1 f2 0 1 2; the situations of vertices 6, 8, 10 are similar to above with
symmetry. Generally, let f1 or f2 be adjacent to vi, vi ∈ V(C11), then other edges in V>0 can be adjacent to
Svi = {vi+2, vi+4, vi+7, vi+9} (If i+2 ≥ 11, then f ′ is adjacent to vi+2−11, the rest may be deduced by analogy). With
the property, if NC11 ( f1) ∪NC11 ( f2) = {vi1 , vi2 , . . . , vit } ⊂ V(C11), then NC11 ( f3) ∪NC11 ( f4) ⊆ Svi1

∩ Svi2
∩ · · · ∩ Svit

.
Note that there are at most three independent edges in G|V>0 . What’s more, since ( f1, 0) ∈ E(G), f2 can be
adjacent to nonadjacent vertices in {0, 3, 4, 5, 6, 7, 8}, otherwise we get a longer cycle. So |NC11 ( f2)| ≤ 4. Now
we consider the following subcases:

case 5.2.1. For |NC11 ( f2)| ≤ 2 (see Figure 9). To make the edges of G as more as possible, let NC11 ( f1) =
NC11 ( f2) = {0, 5}, then there exists a second edge ( f3, f4) ∈ E(G|V>0 ),NC11 ( f3) = NC11 ( f4) ∈ {7, 9}, and there are
at most three independent edges in G|V>0 . Similar to the previous case, |NC11 ( f ′)| ≤ 5 for all isolated vertices
f ′ ∈ V>0. When |NC11 ( f ′)| = 5, by Remark 2.4, there are at least 14 edges should be deleted from K11. We
obtain

|E(G)| ≤
(
11
2

)
+ 5(|V>0| − 2) + 5 + 2− 14 + |V0+|+ 1 + ex(|V0−|,P5) ≤

(
11
2

)
+ 5(n− 11)− 16−

r(4 − r)
2

< 5n− 13 + δ,

for −3 − r(4−r)
2 − δ < 0, where |V0−| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

Figure 9: A graph with C11 and P2 in V>0, |NC11 ( f2)| = 2.

case 5.2.2. For 3 ≤ |NC11 ( f2)| ≤ 4, then |NC11 ( f1)| ≤ 2 and there exists only one edge in G|V>0 . Moreover,
|NC11 ( f ′)| ≤ 5,∀ f ′ ∈ V>0 − { f1, f2}. When |NC11 ( f ′)| = 5, by Remark 2.4, there are at least 14 edges should be
deleted from K11. We obtain

|E(G)| ≤
(
11
2

)
+ 5(|V>0| − 2) + 7 − 14 + |V0+| + 1 + ex(|V0−|,P5) ≤

(
11
2

)
+ 5(n − 11) − 16 −

r(4 − r)
2

< 5n − 13 + δ,

for −3 − r(4−r)
2 − δ < 0, where |V0−| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

case 5.3. Suppose that V>0 is an independent set.
Let V0−+ = {h ∈ V0−|NG(h) ∩ V0+ , ∅},V0−− = V0− − V0−+.
case 5.3.1. V0−+ , ∅ (see Figure 10). Without loss of generality, let f 1 h be a path in F such that

f ∈ V>0, 1 ∈ V0+, h ∈ V0−+. Then V0−+ is an independent set and |E(V0+,V0−)| = |V0−+|. Then for all
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f ′ ∈ V>0 − { f }, NC11 ( f ′) ⊆ {3, 8}, and NV0+
( f ′) = ∅. Therefore, NV>0 (V0+) = { f }, and V0+ is also an independent

set. By Remark 2.4, there are at least 2 edges should be deleted from K11. We obtain

|E(G)| ≤
(
11
2

)
+ 2(|V>0| − 1) + 1− 2 + |V0+|+ |V0−+|+ ex(|V0−−|,P5) ≤

(
11
2

)
+ 2(n− 11)− 3−

r(4 − r)
2

< 5n− 13 + δ,

for n > 43
3 −

r(4−r)
6 −

δ
3 , where |V0−−| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

Figure 10: A graph with C11 and independent set V>0, V0−+ , ∅.

case 5.3.2. V0−+ = ∅,V0+ , ∅.
case 5.3.2.1. G|V0+

contains P2 (see Figure 11). Then there exists only one edge (11, 12) in G|V0+
. It is same

to the previous case that NC11 ( f ′) ⊆ {3, 8}, NV0+
( f ′) = ∅, so NV>0 (V0+) = { f }. By Remark 2.4, there are at least

2 edges should be deleted from K11. We obtain

|E(G)| ≤
(
11
2

)
+ 2(|V>0| − 1) + 1 − 2 + |V0+| + 1 + ex(|V0−|,P5) ≤

(
11
2

)
+ 2(n − 11) − 2 −

r(4 − r)
2

< 5n − 13 + δ,

we get n > 44
3 −

r(4−r)
6 −

δ
3 , where |V0−| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

Figure 11: A graph with C11 and P2 in V0+.

case 5.3.2.2. V0+ is an independent set. In this case, |NG(1)| = 1, or |NG(1)| = 2 and |V0+| = 1,∀1 ∈ V0+.
What’s more, |NC11 ( f )| ≤ 5,∀ f ∈ V>0. When |NC11 ( f )| = 5, by Remark 2.4, there are at least 14 edges should
be deleted from K11. Then we get

|E(G)| ≤
(
11
2

)
+ 5|V>0| − 14 + |V0+| + ex(|V0−|,P5) ≤

(
11
2

)
+ 5(n − 11) − 14 −

r(4 − r)
2

< 5n − 13 + δ,
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for −1 − r(4−r)
2 − δ < 0, where |V0−| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

case 5.3.2.3. V0+ = ∅. |NC11 ( f )| ≤ 5,∀ f ∈ V>0. If |NC11 ( f )|max = i, by Remark 2.4, there are at least
(i+1

2
)
− 1

edges should be deleted from K11. Then we obtain

|E(G)| ≤
(
11
2

)
+ i|V>0| − (

(
i + 1

2

)
− 1) + ex(|V0|,P5) < 5n − 13 + δ,

for all n ≥ 19 with different δ. Therefore we get 3P5 in G, a contradiction.
case 6. q = 10. By table 1, we just consider the situation for n ≥ 22. Let F = G − V(C10). Note that

V>0 , ∅, since otherwise E(F) ≥ 5n − 13 + δ −
(10

2
)
> ex(n − 10,P5) for n > 86

7 −
r(4−r)

7 −
2δ
7 , where n − 10 ≡ r

(mod 4). Therefore, for n ≥ 22 with different δ, we get P5 in F, and there exists 3P5 in G, a contradiction.
case 6.1. Suppose that there exists P4 = f1 f2 f3 f4 in G|V>0 (see Figure 12).
Since f1, f2, f3, f4 ∈ V>0, then V0+ is an independent set, and the vertices in V0+ just can be adjacent to f2

or f3, so E(V>0,V0+) = |V0+|. V0−+ = ∅. Without loss of generality, let ( f1, 0) ∈ E(G), then NC10 (x) ⊆ {0, 5} for
x = f1, f4, otherwise we get a longer cycle. |NC10 ( f2)| + |NC10 ( f3)| ≤ 4: if NC10 (x) = 0, then NC10 ( f2) = NC10 ( f3) ⊆
{0, b}, b ∈ {4, 5, 6}, or NC10 ( f2) = 0, NC10 ( f3) ⊆ {0, 4, 6}; if NC10 (x) = {0, 5}, then NC10 ( f2) = NC10 ( f3) ⊆ {0, 5}.
For f ′ ∈ V>0 − { f1, f2, f3, f4}, f ′ can be adjacent to nonadjacent vertices in {0, 2, 3, 5, 7, 8}, otherwise, if f ′ is
adjacent to 1 or 4, we get P5 with { f ′, 1, 2, 3, 4}, and P10 = 5 6 . . . 9 0 f1 f2 f3 f4; the situations of vertices
6 and 9 are similar to above with symmetry. So |NC10 ( f ′)| ≤ 4. Note that G|V>0 could contain more P4,
however, they just can be adjacent to {0, 5}. Above all, to make the edges of G as more as possible, let
NC10 ( f1) = NC10 ( f2) = NC10 ( f3) = NC10 ( f4) = {0, 5}, and |NC10 ( f ′)| = 4. By Remark 2.4, there are at least 11 edges
should be deleted from K10. We get

|E(G)| ≤
(
10
2

)
+ 4(|V>0| − 4) + 11 − 11 + |V0+| + ex(|V0−|,P5) ≤

(
10
2

)
+ 4(n − 10) − 16 −

r(4 − r)
2

< 5n − 13 + δ,

for n > 2 − r(4−r)
2 − δ, where |V0−| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

Figure 12: A graph with C10 and P4 in V>0.

case 6.2. Suppose that there exists P3 = f1 f2 f3 in G|V>0 .
Since f1, f2, f3 ∈ V>0, then V0−+ is an independent set, and E(V0+,V0−+) = |V0−+|. |E(V>0,V0)| ≤ |V0+| + 2

(when |E(V>0,V0)| ≤ |V0+| + 2, V0−+ = ∅ and |V0+| = 1). G|V0+
contains at most one edge. Without loss

of generality, let ( f1, 0) ∈ E(G). By Remark 2.4, f3 can be adjacent to nonadjacent vertices in {0, 4, 5, 6}, so
NC10 ( f3) ≤ 3. f2 can be adjacent to nonadjacent vertices in {0, 3, 4, 5, 6, 7}, and if NC10 ( f3) = vi,NC10 ( f2) = v j,
vi, v j ∈ V(C10), then j = i, or j < i − 2, or j > i + 2. For f ′ ∈ V>0 − { f1, f2, f3}, f ′ can be adjacent to nonadjacent
vertices in C10, so NC10 ( f ′) ≤ 5. Note that G|V>0 could contain more P3 or edges, however, they just can
be adjacent to {0, 5}. Above all, to make the edges of G as more as possible, let NC10 ( f1) = NC10 ( f3) =
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{0, 4}, NC10 ( f2) = {0, 4, 7}, and |NC10 ( f ′)| = 5. By Remark 2.4, there are at least 10 edges should be deleted
from K10. We get

|E(G)| ≤
(
10
2

)
+5(|V>0|−3)+9−10+ |V0+|+2+ |V0−+|+ex(|V0−−|,P5) ≤

(
10
2

)
+5(n−10)−14−

r(4 − r)
2

< 5n−13+δ,

for −6 − r(4−r)
2 − δ < 0, where |V0−−| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

case 6.3. Suppose that there exists P2 = f1 f2 in G|V>0 .
Since f1, f2 ∈ V>0, then V0−+ is an independent set, and E(V0+,V0−+) = |V0−+|. |E(V>0,V0)| ≤ |V0+| + 2,

and GV0+
contains at most one edge. Without loss of generality, let ( f1, 0) ∈ E(G). By Remark 2.4, f1, f2 can

be adjacent to nonadjacent vertices in {0, 3, 4, 5, 6, 7}, and if NC10 ( f1) = vi,NC10 ( f2) = v j, vi, v j ∈ {0, 3, 4, 5, 6, 7},
then j = i, or j < i − 2, or j > i + 2. So |NC10 ( f1)| + |NC10 ( f2)| ≤ 5, such as NC10 ( f1) = 0,NC10 ( f2) = {0, 3, 5, 7}, or
NC10 ( f1) = {0, 3},NC10 ( f2) = {0, 3, 6}. There exist at most five independent edges in G|V>0 . For f ′ ∈ V>0−{ f1, f2},
f ′ can be adjacent to nonadjacent vertices in C10, so NC10 ( f ′) ≤ 5. By Remark 2.4, there are at least 10 edges
should be deleted from K10. We get

|E(G)| ≤
(
10
2

)
+5(|V>0|−2)+6−10+ |V0+|+2+ |V0−+|+ex(|V0−−|,P5) ≤

(
10
2

)
+5(n−10)−12−

r(4 − r)
2

< 5n−13+δ,

for −4 − r(4−r)
2 − δ < 0, where |V0−−| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

case 6.4. Suppose that V>0 is an independent set.
Let V0−−+ = {w ∈ V0−−|NG(w) ∩ V0−+ , ∅},V0−−− = V0−− − V0−−+.
case 6.4.1. V0−−+ , ∅ (see Figure 13). Without loss of generality, let f 1 h w be a path in F such that

f ∈ V>0, 1 ∈ V0+, h ∈ V0−+ and w ∈ V0−−+. For all f ′ ∈ V>0 − f , f ′ is adjacent to nonadjacent vertices in
{0, 2, 3, 5, 7, 8}, otherwise, if f ′ is adjacent to 1 or 4, we get P5 with { f ′, 1, 2, 3, 4}, and P10 = 5 6 . . . 9 0 f 1 h w;
the other situations are similar to above with symmetry. So |NC10 ( f ′)| ≤ 4. And if NC10 ( f ′) contains vertices 2,
3, 7, or 8, then NV0+

( f ′) = ∅. So to make the edges of G as more as possible, let |NC10 ( f ′)| = 4, NC10 ( f ) = {0, 5}.
f can’t be adjacent to 1′, for all 1′ ∈ V0+ − 1, otherwise we get P5 = 1′ f 1 h w in F. Therefore, NV0+

(V0−+) = 1,
and V0−+ is an independent set, otherwise, if there exists an edge h h′ in G|V0−+

, then there exists P5 = f 1 h′ h w
in F. so |E(V0+,V0−+)| = |V0−+|. V0−−+ is an independent set and de1G(w) = 1, so |E(V0−+,V0−−)| = |V0−−+|. By
Remark 2.4, there are at least 11 edges should be deleted from K10. We get

|E(G)| ≤
(
10
2

)
+4(|V>0|−1)−11+3+ |V0−+|+ |V0−−+|+ex(|V0−−−|,P5) ≤

(
10
2

)
+4(n−10)−12−

r(4 − r)
2

< 5n−13+δ,

for n > 6 − r(4−r)
2 − δ, where |V0−−−| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

Figure 13: A graph with C10 and independent set V>0, V0−−+ , ∅.

case 6.4.2. V0−−+ = ∅, V0−+ , ∅.
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case 6.4.2.1. Suppose that there is a P2 = h1 h2 in G|V0−+
.

Without loss of generality, let f 1 h1 h2 be a path in F such that f ∈ V>0, 1 ∈ V0+, h1, h2 ∈ V0−+. Similar to
the previous case, for all f ′ ∈ V>0− f , f ′ is adjacent to nonadjacent vertices in {0, 2, 3, 5, 7, 8}, so |NC10 ( f ′)| ≤ 4.
And if NC10 ( f ′) contains vertices 2, 3, 7, or 8, then NV0+

( f ′) = ∅. Let |NC10 ( f ′)| = 4, NC10 ( f ) = {0, 5}. So
NV0+

(V0−+) = 1. Moreover, there are at most one edge in G|V0−+
, otherwise, if there exists P′2 = h3 h4 in G|V0−+

,
we get P5 = h1 h2 1 h3 h4 in F. By Remark 2.4, there are at least 11 edges should be deleted from K10. We get

|E(G)| ≤
(
10
2

)
+ 4(|V>0| − 1)− 11 + 3 + |V0−+|+ 1 + ex(|V0−−|,P5) ≤

(
10
2

)
+ 4(n− 10)− 11−

r(4 − r)
2

< 5n− 13 + δ,

for n > 7 − r(4−r)
2 − δ, where |V0−−| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

case 6.4.2.2. Suppose that V0−+ is an independent set.
Without loss of generality, let f 1 h be a path in F such that f ∈ V>0, 1 ∈ V0+, h ∈ V0−+. For all f ′ ∈ V>0− f ,

f ′ is adjacent to nonadjacent vertices in C10, |NC10 ( f ′)| ≤ 5. And if NC10 ( f ′) contains vertices 1, 2, 3, 4, 6, 7, 8
or 9, then NV0+

( f ′) = ∅. Let |NC10 ( f ′)| = 5, NC10 ( f ) = {0, 5}. G|V0+
contains at most one P2. If there is a P2 = 1 1′

in G|V0+
, then |V0−+| = 2. If V0+ is an independent set, all vertices in V0+ can’t be adjacent to h′ ∈ V0−+ − h.

So |E(V>0,V0+)| ≤ |V0+|, |E(V0+,V0−+)| ≤ |V0+|. By Remark 2.4, there are at least 10 edges should be deleted
from K10. We get

|E(G)| ≤
(
10
2

)
+ 5(|V>0| − 1) − 10 + 1 + 2|V0+| + ex(|V0−−|,P5) ≤

(
10
2

)
+ 5(n − 10) − 14 −

r(4 − r)
2

< 5n − 13 + δ,

for −6 − r(4−r)
2 − δ < 0, where |V0−−| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

case 6.4.3. V0−+ = ∅, V0+ , ∅.
case 6.4.3.1. Suppose that there is a P3 = 11 12 13 in G|V0+

.
Without loss of generality, let (11, f ) ∈ E(G). For all f ′ ∈ V>0 − f , f ′ is adjacent to nonadjacent vertices

in {0, 2, 3, 5, 7, 8}, |NC10 ( f ′)| ≤ 4. And if NC10 ( f ′) contains vertices 2, 3, 7, or 8, then NV0+
( f ′) = ∅. To make the

edges of G as more as possible, let |NC10 ( f ′)| = 4, NC10 ( f ) = {0, 5}, then |E(V>0,V0+)| = |V0+|. And there are no
more vertices in V0+, otherwise we get P5 in F. By Remark 2.4, there are at least 11 edges should be deleted
from K10. We get

|E(G)| ≤
(
10
2

)
+ 4(|V>0| − 1) − 11 + 6 + ex(|V0−|,P5) ≤

(
10
2

)
+ 4(n − 10) − 9 −

r(4 − r)
2

< 5n − 13 + δ,

for n > 9 − r(4−r)
2 − δ, where |V0−| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

case 6.4.3.2. Suppose that there is a P2 = 11 12 in G|V0+
.

For all f ′ ∈ V>0 − f , f ′ is adjacent to nonadjacent vertices in C10, |NC10 ( f ′)| ≤ 5. And if NC10 ( f ′) contains
vertices 1, 2, 3, 4, 6, 7, 8 or 9, NV0+

( f ′) = ∅. Let |NC10 ( f ′)| = 5, NC10 ( f ) = {0, 5}. Then |E(V>0,V0+)| = |V0+|. G|V0+

contains at most one edge, otherwise we get P5 in F. By Remark 2,4, there are at least 10 edges should be
deleted from K10. We get

|E(G)| ≤
(
10
2

)
+ 5(|V>0| − 1) − 11 + 1 + |V0+| + 1 + ex(|V0−|,P5) ≤

(
10
2

)
+ 5(n − 10) − 14 −

r(4 − r)
2

< 5n − 13 + δ,

for −6 − r(4−r)
2 − δ < 0, where |V0−| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

case 6.4.3.3. Suppose that V0+ is an independent set.
For all f ∈ V>0, f can be adjacent to nonadjacent vertices in C10, so |NC10 ( f )| ≤ 5. Since C10 contains P10,

then F can’t contain P5. To make the edges of G as more as possible, let |NC10 ( f ′)| = 5. By Remark 2.4, there
are at least 10 edges should be deleted from K10. We get

|E(G)| ≤
(
10
2

)
+ 5|V>0| − 10 + ex(n − 10,P5) ≤

(
10
2

)
+ 5(n − 10) − 10 −

r(4 − r)
2

< 5n − 13 + δ,
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for −2 − r(4−r)
2 − δ < 0, where |V0−| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

case 6.4.4. V0+ = ∅.
Recall that V>0 is an independent set, for all f ∈ V>0, f can be adjacent to nonadjacent vertices in C10, so

|NC10 ( f )| ≤ 5. When |NC10 ( f ′)| = 5, by Remark 2.4, there are at least 10 edges should be deleted from K10. We
get

|E(G)| ≤
(
10
2

)
+ 5|V>0| − 10 + ex(|V0|,P5) ≤

(
10
2

)
+ 5(n − 10) − 10 −

r(4 − r)
2

< 5n − 13 + δ,

for −2 − r(4−r)
2 − δ < 0, where |V0−| ≡ r (mod 4). There exists 3P5 in G, a contradiction.

In conclusion, the proof is completed.
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