Filomat 34:10 (2020), 3369–3380 https://doi.org/10.2298/FIL2010369L

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

More on Arhangel'skiĭ Sheaf Amalgamations

Meiyan Liu^a, Jiakui Yu^a, Shuguo Zhang^a

^aCollege of Mathematics, Sichuan University, Chengdu, Sichuan, 610064 China

Abstract. We proceed to consider the topic of ideal-convergence. In particular, we introduce the ideal-version of Arhangel'skiĭ sheaf amalgamations, and exam the relations among the ideal-version of Arhangel'skiĭ sheaf amalgamations, ideal-version of QN-spaces and ideal-version of covering properties. Some characterizations of ideal-version of Arhangel'skiĭ sheaf amalgamations will be given. Our observations extend some classic results.

1. Introduction

All spaces are assumed to be infinite completely regular Hausdorff. For a given space *X*, and $x \in X$, the following notation, named as the *sheaf* at *x*, will be used throughout this note (see, [23]).

• Γ_x denotes the set of all nontrivial countable infinite sequences that converge to *x*.

In 1972, A.V. Arhangel'skiĭ [1] introduced the following local properties, which are named as Arhangel'skiĭ sheaf amalgamations (or Arhangel'skiĭ α_i -properties).

Definition 1.1. Let *X* be a topological space,

- α_1 -space: *X* is an α_1 -space if for each $x \in X$, each sequence $(O_n : n \in \mathbb{N})$ of elements of Γ_x , there is a single element $O \in \Gamma_x$ such that $O_n \setminus O$ is finite for each $n \in \mathbb{N}$.
- α_2 -space: *X* is an α_2 -space if for each $x \in X$, each sequence $(O_n : n \in \mathbb{N})$ of elements of Γ_x , there is a single element $O \in \Gamma_x$ such that $O_n \cap O$ is infinite for each $n \in \mathbb{N}$.
- α_3 -space: *X* is an α_3 -space if for each $x \in X$, each sequence $(O_n : n \in \mathbb{N})$ of elements of Γ_x , there is a single element $O \in \Gamma_x$ such that $O_n \cap O$ is infinite for infinitely many $n \in \mathbb{N}$.
- α_4 -space: *X* is an α_4 -space if for each $x \in X$, each sequence $(O_n : n \in \mathbb{N})$ of elements of Γ_x , there is a single element $O \in \Gamma_x$ such that $O_n \cap O$ is nonempty for infinitely many $n \in \mathbb{N}$.

²⁰¹⁰ Mathematics Subject Classification. Primary 40A35; Secondary 26A03, 54A20, 54G15

Keywords. Ideal convergence, Arhangel'skiĭ sheaf amalgamations, sequence selection properties

Received: 06 November 2019; Revised: 23 July 2020; Accepted: 25 July 2020

Communicated by Ljubiša D.R. Kočinac

This work was supported by NSFC #11771311

Email addresses: 347055264@qq.com (Meiyan Liu), 770186166@qq.com (Jiakui Yu), zhangsg@scu.edu.cn (Shuguo Zhang)

Lots of interesting notions (e.g, QN-spaces, wQN-spaces, covering properties) although defined for essentially different purpose, are closely related to these α_i properties. The idea of α_i -properties was applied to general selection principles theory (see, [18], [19]). The references dealing with α_i -properties are too numerous to be listed here. When the ideal convergence appeared, for every theorem which deals with convergence of sequences there is a natural question whether this theorem can be generalized in some sense to the corresponding ideal-version? If not, then for which class of ideals such generalization is possible. The ideal version of QN-spaces and wQN-spaces have been considered recently (see, [5], [9], [26]). There may be interesting questions to ask, for example, how about the ideal-version of Arhangel'skii sheaf amalgamations? Is there any relation among ideal-QN spaces, ideal-covering properties and ideal-Arhangel'skii sheaf amalgamations?

This paper is devoted to researching these questions. To beginning, we need to recall some necessary notions.

Let \mathbb{N} be the set of all natural numbers. An ideal on \mathbb{N} is a nonempty family of subsets of \mathbb{N} closed under taking finite unions and subsets of its elements. By *Fin* we denote the ideal of all finite subsets of \mathbb{N} . If not explicitly said we assume that all considered ideals contain *Fin* and are proper (not contain \mathbb{N}). Let *X* be a topological space. The set \mathbb{R}^X of all real functions: $X \to \mathbb{R}$ is endowed with the Tychonoff product topology. Let $C_p(X)$ be the set of all continuous real functions: $X \to \mathbb{R}$ endowed with the topology which it inherits as subset of \mathbb{R}^X .

Definition 1.2. Let *X* be a topological space, $x \in X$, *I* being an ideal on \mathbb{N} .

- A sequence $(x_n : n \in \mathbb{N})$ of X is \mathcal{I} -convergent to x if for every open neighborhood U of x, $\{n \in \mathbb{N} : x_n \notin U\} \in \mathcal{I}$.
- A sequence $(f_n : n \in \mathbb{N})$ from \mathbb{R}^X is *I*-convergent to *f* if $(f_n(x) : n \in \mathbb{N})$ is *I*-convergent to f(x) for every $x \in X$.

It is good to notice that the notion of ideal convergence is a generalization of the classical one. It was first considered in the case of the ideal of sets of statistical density 0 by Steinhaus and Fast [14].

Let I be an ideal on \mathbb{N} , $x \in X$. we denote by $I \cdot \Gamma_x$ the set of all all nontrivial countable infinite sequences that I-converge to x. Now, we introduce the following key definitions.

Definition 1.3. Let I, \mathcal{J} be ideals on \mathbb{N} , *X* being a topological space.

- $(I, \mathcal{J})\alpha_1$ -space: X is an $(I, \mathcal{J})\alpha_1$ -space if for each $x \in X$, each sequence $(O_n : n \in \mathbb{N})$ from I- Γ_x , there is a single element $O \in \mathcal{J}$ - Γ_x such that $O_n \setminus O$ is finite for each $n \in \mathbb{N}$.
- $(I, \mathcal{J})\alpha_2$ -space: X is an $(I, \mathcal{J})\alpha_2$ -space if for each $x \in X$, each sequence $(O_n : n \in \mathbb{N})$ from I- Γ_x , there is a single element $O \in \mathcal{J}$ - Γ_x such that $O_n \cap O$ is infinite for each $n \in \mathbb{N}$.
- $(I, \mathcal{J})\alpha_3$ -space: X is an $(I, \mathcal{J})\alpha_3$ -space if for each $x \in X$, each sequence $(O_n : n \in \mathbb{N})$ from I- Γ_x , there is a single element $O \in \mathcal{J}$ - Γ_x such that $O_n \cap O$ is infinite for infinitely many $n \in \mathbb{N}$.
- $(I, \mathcal{J})\alpha_4$ -space: X is an $(I, \mathcal{J})\alpha_4$ -space if for each $x \in X$, each sequence $(O_n : n \in \mathbb{N})$ from I- Γ_x , there is a single element $O \in \mathcal{J}$ - Γ_x such that $O_n \cap O$ is nonempty for infinitely many $n \in \mathbb{N}$.

It is easy to see that the $(Fin, Fin)\alpha_i$ -spaces coincide with the corresponding α_i -spaces. For convenience, we denote by $I\alpha_i$ -spaces the $(Fin, I)\alpha_i$ -spaces. The following is obvious,

$$(I, \mathcal{J})\alpha_1 \Rightarrow (I, \mathcal{J})\alpha_2 \Rightarrow (I, \mathcal{J})\alpha_3 \Rightarrow (I, \mathcal{J})\alpha_4$$

Note that for any ideals I_1 , I_2 , \mathcal{J}_1 and \mathcal{J}_2 on \mathbb{N} such that $I_1 \subseteq I_2$, $\mathcal{J}_1 \subseteq \mathcal{J}_2$,

X is an $(I_2, \mathcal{J}_1)\alpha_i$ -space \Rightarrow *X* is an $(I_1, \mathcal{J}_2)\alpha_i$ -space.

The paper is organized as follows: Section 2 introduces basic notions, and Section 3 discusses the $I\alpha_2$ -spaces and $I\alpha_4$ -spaces. Section 4 is devoted to investigation of $I\alpha_1$ -spaces. Finally, the relations among our main definitions and the $(I, \mathcal{J}-\alpha_1), (I, \mathcal{J}-\alpha_4)$ introduced in [5] will be discussed in Section 5.

2. Preliminaries

We shall use standard terminology and notations of topology and set theory (see [3, 12]). For any set *X*, $\mathcal{P}(X)$ denotes the power set of *X*; |X| denotes the cardinality of *X*. Let *I* be an ideal on \mathbb{N} , $I^+ = \{A \subseteq \mathbb{N} : A \notin I\}$, $I^* = \{A \subseteq \mathbb{N} : A^c \in I\}$, where A^c is $\mathbb{N} \setminus A$.

2.1. Selection Principles on Covers

Let *X* be a topological space. A collection \mathcal{U} of subsets of *X* is a cover of *X* if $\bigcup \mathcal{U} = X$ and $X \notin \mathcal{U}$. Recall that a cover \mathcal{U} of *X* is a γ -cover if for every $x \in X$, *x* is contained in all but finitely many members of \mathcal{U} . Let O(X) denote the family of all open covers of *X*, and $\Gamma(X)$ be the collection of all open γ -covers. When *X* is clear from the context, we shall write O, Γ instead of $O(X), \Gamma(X)$. Similarly, let $\Gamma_F, \Gamma_{cl}, \Gamma_B$ denote the families of all countable closed γ -covers of *X*, all clopen γ -covers and all Borel γ -covers respectively.

In [24], Marion Scheepers began a systematic study of selection principles in topology and their relations to game theory and Ramsey theory. Let \mathcal{A} , B be families of subsets of X, let's recall the following types of selection principles:

- $S_1(\mathcal{A}, \mathcal{B})$: For any sequence $(\mathcal{U}_n \in \mathcal{A} : n \in \mathbb{N})$, there is a $U_n \in \mathcal{U}_n$ for each $n \in \mathbb{N}$ such that $\{U_n : n \in \mathbb{N}\} \in \mathcal{B}$.
- $S_{fin}(\mathcal{A}, \mathcal{B})$: For any sequence $(\mathcal{U}_n \in \mathcal{A} : n \in \mathbb{N})$, there is a finite $\mathcal{V}_n \subseteq \mathcal{U}_n$ for each $n \in \mathbb{N}$ such that $\bigcup_{n \in \mathbb{N}} \mathcal{V}_n \in \mathcal{B}$.
- $U_{fin}(\mathcal{A}, \mathcal{B})$: For any sequence $(\mathcal{U}_n \in \mathcal{A} : n \in \mathbb{N})$, there is a finite $\mathcal{V}_n \subseteq \mathcal{U}_n$ for each $n \in \mathbb{N}$ such that $\{\bigcup \mathcal{V}_n : n \in \mathbb{N}\} \in \mathcal{B}$.

2.2. Sequence Selection Property

A space *X* has the *sequence selection property* if for every $x \in X$, $S_1(\Gamma_x, \Gamma_x)$ holds. The sequence selection property was introduced by M. Scheepers in [22]. It is well known that *X* is an α_2 -space iff *X* has the $S_1(\Gamma_x, \Gamma_x)$ -property. We modify this notion by ideals on \mathbb{N} as follow.

Definition 2.1. Let I be an ideal on \mathbb{N} . A space X has I-sequence selection property if for every $x \in X$, $S_1(\Gamma_x, I - \Gamma_x)$ holds.

In the space $C_{\nu}(X)$, let $\overline{0}$ denote the zero function.

- $\Gamma_{\bar{0}}$ denotes all countable infinite sequences from $C_{\nu}(X)$ that converge pointwise to $\bar{0}$;
- I- $\Gamma_{\bar{0}}$ denotes all countable infinite sequences from $C_p(X)$ that I-converge point-wise to $\bar{0}$.

Note that $C_p(X)$ is homogeneous (as a topological group), so $C_p(X)$ has property $S_1(\Gamma_{\bar{0}}, \Gamma_{\bar{0}})$ if and only if $C_p(X)$ has the sequence selection property.

2.3. QN-Spaces and wQN-Spaces

The notions of QN-spaces and wQN-spaces are introduced in [7], and they are extended in [9] as follow (see also, [26]).

Definition 2.2. Let \mathcal{J} be an ideal on \mathbb{N} , and *X* be a topological space.

- (1) *X* is called a \mathcal{J} QN-space if any sequence $(f_n : n \in \mathbb{N}) \in \Gamma_{\bar{0}}$ is \mathcal{J} QN-convergent (there exists a sequence $(\varepsilon_n > 0 : n \in \mathbb{N}) \in \mathcal{J}$ - Γ_0 such that for every $x \in X$, $\{n \in \mathbb{N} : |f_n(x)| \ge \varepsilon_n\} \in \mathcal{J}$).
- (2) *X* is called a \mathcal{J} wQN-space if for any sequence $(f_n : n \in \mathbb{N}) \in \Gamma_{\bar{0}}$, there exists a sequence $(n_k : k \in \mathbb{N})$ of natural numbers such that $(f_{n_k} : k \in \mathbb{N})$ is \mathcal{J} QN-convergent to $\bar{0}$ (there exists sequence $(\varepsilon_k > 0 : n \in \mathbb{N}) \in \mathcal{J}$ - Γ_0 such that for every $x \in X$, $\{k \in \mathbb{N} : |f_{n_k}(x)| \ge \varepsilon_k\} \in \mathcal{J}$)

The notions of (I, \mathcal{J}) QN-spaces, (I, \mathcal{J}) wQN-spaces are defined analogously. The relations among α_i -spaces, QN-spaces and wQN-spaces were revealed by the following result.

Theorem 2.3. ([4, 21, 23]) For any Tychonoff space X, the following hold.

(1) X is a QN-space if, and only if, $C_p(X)$ is an α_1 -space.

(2) X is a wQN-space if, and only if, $C_p(X)$ is an α_2 -space.

2.4. Orderings

Let I, \mathcal{J} be ideals on \mathbb{N} . For a map $\varphi : \mathbb{N} \to \mathbb{N}$, the image of \mathcal{J} is defined by $\varphi(\mathcal{J}) = \{A \subseteq \mathbb{N} : \varphi^{-1}(A) \in \mathcal{J}\}$. Clearly, $\varphi(\mathcal{J})$ is closed under subsets and finite unions and $\mathbb{N} \notin \varphi(\mathcal{J})$. Moreover, if φ is finite-to-one then $\varphi(\mathcal{J})$ is an ideal.

Definition 2.4. Let I, \mathcal{J} be ideals on \mathbb{N} .

 \leq_K : For a function $\varphi : \mathbb{N} \to \mathbb{N}$ we write $I \leq_{\varphi} \mathcal{J}$ if $I \subseteq \varphi(\mathcal{J})$, i.e, $\varphi^{-1}(A) \in \mathcal{J}$ for any $A \in I$ ([17]);

 \leq_{KB} : $I \leq_{KB} \mathcal{J}$ if there is a finite-to-one function $\varphi : \mathbb{N} \to \mathbb{N}$ such that $I \leq_{\varphi} \mathcal{J}$ ([15]).

3. $I\alpha_2$ -Spaces and $I\alpha_4$ -Spaces

This section is devoted to studying $I\alpha_2$ -spaces and $I\alpha_4$ -spaces. In particular, we shall put effort to find characterizations of these properties.

We say that a countable set converges to *x* if it has a bijective enumeration converges to *x*. When saying $\Lambda \in \Gamma_x$ or \mathcal{I} - Γ_x , we always assume that the index set of Λ is \mathbb{N} (that is, bijective enumeration).

Theorem 3.1. Let $I_1, I_2, \mathcal{J}_1, \mathcal{J}_2$ be ideals on \mathbb{N} such that $I_1 \leq_{KB} I_2$, X being a topological space.

- (1) If $C_p(X)$ is an $I_1\alpha_2$ -space, then it is an $I_2\alpha_2$ -space.
- (2) Moreover, assume that $\mathcal{J}_1 \leq_{KB} \mathcal{J}_2$. If $C_p(X)$ is an $(I_2, \mathcal{J}_1)\alpha_2$ -space, then it is an $(I_1, \mathcal{J}_2)\alpha_2$ -space.

Proof. Since $I_1 \leq_{KB} I_2$, assume that $\varphi : \mathbb{N} \to \mathbb{N}$ is a finite-to-one function such that $I_1 \leq_{\varphi} I_2$. Let $(\Lambda_n : n \in \mathbb{N})$ be a sequence valued in $\Gamma_{\bar{0}}$. Assume that for each $n \in \mathbb{N}$,

$$\Lambda_n = (f_k^n : k \in \mathbb{N}).$$

Since $C_p(X)$ is an $\mathcal{I}_1\alpha_2$ -space, there exists $\Lambda \in \mathcal{I}_1$ - Γ_0 such that $\Lambda \cap \Lambda_n$ are infinite for all $n \in \mathbb{N}$. Assume that

$$\Lambda = (f_k : k \in \mathbb{N}).$$

Now, we rearrange via φ each Λ_n as $(f_{\varphi(k)}^n : k \in \mathbb{N})$, and Λ as $(f_{\varphi(k)} : k \in \mathbb{N})$. Note that for each Λ_n , its indexed set is \mathbb{N} , so $\{f_{\varphi(k)}^n : k \in \mathbb{N}\} \subseteq \{f_k^n : k \in \mathbb{N}\}$. This ensures that the sequence $(f_{\varphi(k)} : k \in \mathbb{N})$ intersects with each Λ_n infinitely. It is enough to show that $(f_{\varphi(k)} : k \in \mathbb{N}) \in I_2$. Note that, for each $x \in X$, each $\varepsilon > 0$,

$$\{\varphi(k): |f_{\varphi(k)}(x)| \ge \varepsilon\} \subseteq \varphi^{-1}(\{k: |f_k(x)| \ge \varepsilon\})$$

We finished the proof.

(2) We also assume that the finite-to-one function $\varphi: \omega \to \omega$ witnesses that $I_1 \leq_{\varphi} I_2$, and the finite-to-one function $\psi: \mathbb{N} \to \mathbb{N}$ witnesses that $\mathcal{J}_1 \leq_{\psi} \mathcal{J}_2$. Let $(\Lambda_n : n \in \mathbb{N})$ be a sequence from I_1 - Γ_0 . Assume that

$$\Lambda_n = (f_k^n : k \in \mathbb{N})$$

We rearrange each Λ_n via φ as

$$\Lambda_n = (f_{\varphi(k)}^n : k \in \mathbb{N}).$$

Then for each $n \in \mathbb{N}$, $\widetilde{\Lambda_n} \in I_2$ - Γ_0 . Indeed, for each $x \in X$ and each $\varepsilon > 0$

$$\{\varphi(k): |f_{\varphi(k)}^n(x)| \ge \varepsilon\} \subseteq \varphi^{-1}(\{k: |f_k^n(x)| \ge \varepsilon\}).$$

Since $C_p(X)$ is an $(I_2, \mathcal{J}_1)\alpha_2$ -space, there exists $\Lambda \in \mathcal{J}_1$ - Γ_0 such that it intersects with each $\widetilde{\Lambda_n}$ infinitely. Assume that $\Lambda = (f_k : k \in \mathbb{N})$. Again, we rearrange $\widetilde{\Lambda_n}$ by

$$\widetilde{\widetilde{\Lambda}_n} = (f_{\psi(\varphi(k))}^n : k \in \mathbb{N})$$

and

 $\widetilde{\Lambda} = (f_{\psi(k)} : k \in \mathbb{N}).$

Then $\Lambda \in \mathcal{J}_2$ - Γ_0 for each $n \in \mathbb{N}$ since for each $x \in X$ and ε ,

$$\{\psi(k): |f_{\psi(k)}(x)| \ge \varepsilon\} \subseteq \psi^{-1}(\{k: |f_k(x)| \ge \varepsilon\}).$$

Since ψ is finite-to-one, $\widetilde{\Lambda}$ intersects with each $\widetilde{\widetilde{\Lambda}_n}$ infinitely. Note also that $\{f_{\psi(\varphi(k))}^n : k \in \mathbb{N}\} \subseteq \{f_k^n : k \in \mathbb{N}\}$, so $\widetilde{\Lambda}$ intersects with each Λ_n infinitely, and then we complete the proof. \Box

With the same argument of the proof of Lemma 1 in [23], it is easy to get the following result.

Lemma 3.2. Let I be an ideal on \mathbb{N} . The following hold true.

- (a) $(f_n : n \in \mathbb{N}) \in I \cdot \Gamma_{\bar{0}}$ if and only if $(|f_n| : n \in \mathbb{N}) \in I \cdot \Gamma_{\bar{0}}$.
- (b) If $(f_m^n : m \in \mathbb{N}) \in I \Gamma_{\bar{0}}$ for every $n \in \mathbb{N}$, then $(\sum_{n \le k} f_{n,m} : m \in \mathbb{N}) \in I \Gamma_{\bar{0}}$ for any $k \in \mathbb{N}$.

Let $C \subseteq \mathbb{N}$, and $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N})$. Recall that *C* is called a pseudounion of \mathcal{A} if

- $\mathbb{N} \setminus C$ is infinite;
- $A \subseteq^* C$ for any $A \in \mathcal{A}$,

where $A \subseteq^* C$ means $A \setminus C$ is finite.

It is well known that I has a pseudounion if and only if $I \leq_{KB} Fin$ (see, e.g, [26, Remark 4.2]). Recall that if I has a pseudounion, then X is a wQN-space if and only if X is an IwQN-space ([5], Corollary 3.4). So, under the assumption of $I \leq_{KB} Fin$, $I\alpha_i$ property is equal to α_i for i = 2, 3, 4.

Definition 3.3. ([26]) Let I, \mathcal{J} be ideals on \mathbb{N} . \mathcal{J} is called a weak P(I) ideal if for each sequence $\{A_n : n \in \mathbb{N}\} \subseteq \mathcal{J}$, there exist $A \in I^+$ such that $A \cap A_n \in I$ for each $n \in \mathbb{N}$.

Lemma 3.4. ([26, Lemmaa 2.2]) Let I, J be ideals on \mathbb{N} . The following are equivalent:

- (1) \mathcal{J} is not a weak P(I)-ideal.
- (2) There is a partition $\{A_n : n \in \mathbb{N}\} \subseteq \mathcal{J}$ of \mathbb{N} such that for any $\{B_n : n \in \mathbb{N}\} \subseteq I$ we have

$$\bigcup_{n\in\mathbb{N}}(B_n\cap A_n)\in\mathcal{J}.$$

Theorem 3.5. Let I, \mathcal{J} be ideals. If \mathcal{J} is not a weak P(I)-ideal, then for each topological space $X, C_p(X)$ is an $(I, \mathcal{J})\alpha_4$ -space.

Proof. By the assumption there is a partition $\{A_k : k \in \mathbb{N}\} \subseteq \mathcal{J}$ of \mathbb{N} such that for any $\{B_k : k \in \mathbb{N}\} \subseteq \mathcal{I}$

$$(\dagger) \quad \bigcup_{k \in \mathbb{N}} (B_k \cap A_k) \in \mathcal{J}$$

Let $(\Lambda_n : n \in \mathbb{N})$ be a sequence from \mathcal{I} - $\Gamma_{\bar{0}}$. We may assume that for each $n \in \mathbb{N}$,

3373

$$\Lambda_n = (f_m^n : m \in \mathbb{N})$$

Claim 3.6. $(f_m^n : m \in A_n, n \in \mathbb{N}) \in \mathcal{J}$ - $\Gamma_{\bar{0}}$.

Proof. For each $x \in X$ and each $\varepsilon > 0$, we have that $\{m \in \mathbb{N} : |f_{n,m}(x)| \ge \varepsilon\} \in \mathcal{I}$ since $\Lambda_n \in \mathcal{I} - \Gamma_{\bar{0}}$. Note that

$$\bigcup_{n\in\mathbb{N}} \{m \in A_n : |f_{n,m}(x)| \ge \epsilon\} = \bigcup_{n\in\mathbb{N}} (A_n \cap \{m \in \mathbb{N} : |f_{n,m}(x)| \ge \epsilon\})$$

By (†), the right side of the equation belongs to \mathcal{J} , and then $\{m \in A_n, n \in \mathbb{N} : |f_{n,m}(x)| \ge \epsilon\} \in \mathcal{J}$. This implies that $(f_m^n : m \in A_n, n \in \mathbb{N}) \in \mathcal{J}$ - $\Gamma_{\bar{0}}$. \Box

It is easy to see that the sequence $(f_m^n : m \in A_n, n \in \mathbb{N})$ intersects with infinitely many Λ_n . \Box

Corollary 3.7. If *I* is not a weak *P*-ideal, then for every topological space X, $C_p(X)$ is an $I\alpha_4$ -space.

4. $I\alpha_1$ -Space

In [27], Tsaban-Zdomskyy obtained an elegant characterization of α_1 -spaces via Borel images in $\mathbb{N}^{\mathbb{N}}$: For any perfectly normal space *X*, $C_p(X)$ is an α_1 space if, and only if each Borel image of *X* into $\mathbb{N}^{\mathbb{N}}$ is bounded. We are interested in finding a similar characterization for $I\alpha_1$ -spaces. The natural candidate for the bound is the following key definition.

Definition 4.1. ([13]) Let I be an ideal on \mathbb{N} . For any $f, g \in \mathbb{N}^{\mathbb{N}}$, we say that $f \leq_{I} g$ if $[f > g] = \{n : f(n) > g(n)\} \in I$. $X \subseteq \mathbb{N}^{\mathbb{N}}$ is I-bounded if there exists $g \in \mathbb{N}^{\mathbb{N}}$ such that $(\forall f \in X)(f \leq_{I} g)$.

Let *I* be an ideal on \mathbb{N} . Recall that $\mathcal{B} \subseteq I$ is a basis if $(\forall I \in I)(\exists B \in \mathcal{B})(I \subseteq B)$.

Theorem 4.2. Let I be an ideal with a pseudounion, X being a perfectly normal space. Then the following statements are equivalent.

- (1) $C_p(X)$ is an $I\alpha_1$ -space.
- (2) Each Borel image of X in $\mathbb{N}^{\mathbb{N}}$ is *I*-bounded.
- (3) X satisfies $U_{fin}(\mathcal{B}, I \Gamma_{\mathcal{B}})$.

According to Corollary 3.4 in [5], if I is an ideal with a pseudounion, in the realm of perfectly normal spaces, $C_p(X)$ is an $I\alpha_1$ -space if, and only if it is an α_1 -space. Among the result of Tsaban-Zdomskky mentioned above, the implication (1) \Rightarrow (2) is obvious. The following lemma shows (2) \Rightarrow (1).

Lemma 4.3. Let X be a perfectly normal space, I being an ideal on \mathbb{N} with a pseudounion. If each Borel image of X in $\mathbb{N}^{\mathbb{N}}$ is I-bounded, then $C_p(X)$ is an $I\alpha_1$ -space.

Proof. Let $C \subseteq \mathbb{N}$ be a pseudounion of I. That is, $\mathbb{N} \setminus C$ is infinite and $A \subset^* C$ for every $A \in I$. Let $(\Lambda_n : n \in \mathbb{N})$ be a sequence from $\Gamma_{\bar{0}}$. Assume that for each $n \in \mathbb{N}$,

$$\Lambda_n = (f_m^n : m \in \mathbb{N}).$$

Define a map ψ : $X \to \mathbb{N}^{\mathbb{N}}$ by

 $\psi(x)(0) = \min\{k : \wedge (\forall m \ge k) \mid f_m^0(x) \mid < 1\}.$

For each $n \ge 1$,

$$\psi(x)(n+1) = \min\{k : k > \psi(x)(n) \land (\forall m \ge k) \mid f_m^n(x) \mid < \frac{1}{n+1}\}.$$

This is a Borel map, so $\psi[X]$ is \mathcal{I} -bounded in $\mathbb{N}^{\mathbb{N}}$, and assume that $g \in \mathbb{N}^{\mathbb{N}}$ witnesses this. Moreover, we may assume that g is nondecreasing (Otherwise, we can replace g by \tilde{g} : $\tilde{g}(n) = \sum_{i \leq n} g(i)$). Note that for each

 $x \in X$, $\mathbb{N} \setminus C \subset^* [\psi(x) \le g]$. Set $h = g \circ (\mathbb{N} \setminus C)$, we have that

3374

$$\psi(x) \leq^* \psi(x) \circ (\mathbb{N} \setminus C) \leq^* h.$$

The first inequality holds due to the fact that each $\psi(x)$ is nondecreasing, and the second one thanks to the assumption that *g* is nondecreasing. Put

$$\Lambda = (f_m^n : m \ge h(n), n \in \mathbb{N}).$$

Therefore, $\psi[X] \leq h$, which implies that Λ is convergent to $\overline{0}$. \Box

Lemma 4.4. *X* satisfies $U_{fin}(\mathcal{B}, I - \Gamma_{\mathcal{B}})$ if and only if each Borel image of X in $\mathbb{N}^{\mathbb{N}}$ is *I*-bounded.

Proof. (\Rightarrow) For each *n*, *m*, let

$$U_m^n = \{x : f(x)(n) \le m\}.$$

Then for each n, $\{U_m^n : m \in \mathbb{N}\}$ is a Borel cover of X. Since X satisfies $U_{fin}(\mathcal{B}, I - \Gamma_{\mathcal{B}})$, there exists a $g \in \mathbb{N}^{\mathbb{N}}$ such that

$$\{\cup \mathcal{V}_n : n \in \mathbb{N}\}$$

is an \mathcal{I} - B_{Γ} -cover of X, where $\mathcal{V}_n = \{U_m^n : m \leq g(n)\}$. For each x,

$$[g \le f(x)] \subseteq \{n : x \notin \cup \mathcal{V}_n\} \in I$$

This shows that f[X] is *I*-bounded in $\mathbb{N}^{\mathbb{N}}$.

(⇐) For any sequence { $\mathcal{U}_n : n \in \mathbb{N}$ } of Borel covers of *X*. Assume that for each *n*,

$$\mathcal{U}_n = \{U_m^n : n \in \mathbb{N}\}$$

Without loss of generality, we may assume that for each *n*, \mathcal{U}_n is consisting of pairwise disjoint Borel sets. Define a function $f: X \to \mathbb{N}^{\mathbb{N}}$ by

$$f(x)(n) = m$$
 if $m = \min\{k : x \in U_{k}^{n}\}$ for each $n \in \mathbb{N}$.

Then *f* is a Borel map, so there exists $g \in \mathbb{N}^{\mathbb{N}}$ that is an *I*-bound for *f*[X]. Put

$$\mathcal{V}_n = \{ U_k^n : k \le f(n) \}.$$

For each $x \in X$,

$$\{n: n \notin \cup \mathcal{V}_n\} \subseteq [g \le f(x)] \in \mathcal{I}$$

Then $\{\cup \mathcal{V}_n : n \in \mathbb{N}\}$ is an \mathcal{I} - \mathcal{B}_{Γ} cover of X. \Box

Let I be an ideal on \mathbb{N} . Denote by \mathfrak{b}_I the minimal size of I-unbounded families in $\mathbb{N}^{\mathbb{N}}$ ([13]).

A sequence $\Lambda = (f_n : n \in \mathbb{N}) \in \Gamma_{\bar{0}}$ is called *monotonically convergens* to $\bar{0}$ if for each $x \in X$, $f_n(x) \ge f_{n+1}(x)$ for each $n \in \mathbb{N}$. Modifying the monotonic sequence selection property introduced in [22], we define the following notion.

Definition 4.5. ([8]) Let I be an ideal on \mathbb{N} , and X being a perfectly normal space. We say that X has the I-monotonic sequence selection property (written, $S_1^M(\Gamma_{\bar{0}}, I - \Gamma_{\bar{0}})$) if for each sequence ($\Lambda_n : n \in \mathbb{N}$) such that each Λ_n is monotonically converges to $\bar{0}$. There exists $\Lambda \in I - \Gamma_{\bar{0}}$ such that $|\Lambda \cap \Lambda_n| = 1$ for each n.

Definition 4.6. ([10]) Let I be an ideal on \mathbb{N} , X being a topological space. X is called has the I-Hurewicz property if for any sequence ($\mathcal{U}_n : n \in \mathbb{N}$) of γ -covers, there exists for each n a finite $\mathcal{V}_n \subset \mathcal{U}_n$ such that $\{\cup \mathcal{V}_n : n \in \mathbb{N}\}$ is an I- γ -cover (that is, for each $x \in X$, $\{n : x \notin \cup \mathcal{V}_n\} \in I$).

Theorem 4.7. Let I be an ideal on \mathbb{N} . The minimal size of $X \subset \mathbb{R}$ such that $C_p(X)$ is not an $I\alpha_1$ -space is \mathfrak{b}_I .

3375

Note that the minimal size of $X \subset \mathbb{R}$ such that X does not have I-Hurewicz is \mathfrak{b}_I ([11], Theorem 3.1). In addition, it is easy to see that if $C_p(X)$ is an $I\alpha_1$ -space, then it has the $S(\Gamma_{\bar{0}}, I - \Gamma_{\bar{0}})$ property, and then has the $S_1^M(\Gamma_{\bar{0}}, I - \Gamma_{\bar{0}})$ property.

For any topological space *X*, if *X* has the *I*-Hurewicz property then $C_p(X)$ has the $S_1^M(\Gamma_{\bar{0}}, I - \Gamma_{\bar{0}})$ ([8], Theorem 3.4). Moreover, almost literal repetition of the proof of Theorem 1 in [22], give us the following. For the reader's convenience, we present here the proof.

Lemma 4.8. Let X be a perfectly normal space. If $C_p(X)$ has the $S_1^M(\Gamma_{\bar{0}}, \mathcal{I} - \Gamma_{\bar{0}})$, then X has the \mathcal{I} -Hurewicz property.

Proof. Let ($\mathcal{U}_m : m \in \mathbb{N}$) be a sequence of γ -covers of X, and assuming

$$\mathcal{U}_m = (U_n^m : n \in \mathbb{N}).$$

Thanks to the perfect normality of *X*, we further assume that for each *m*, each *n*,

$$U_n^m = \bigcup_{k \in \mathbb{N}} U_{n,k'}^m$$

where $(U_{n,k}^m : k \in \mathbb{N})$ is a increasing sequence of closed sets. Define for each *m*, each *n*, each *k*, a continuous function $f_{n,k}^m : X \to [0, 1]$ by

$$f_{n,k}^{m}(x) = \begin{cases} 0, & \text{if } x \in U_{n,k}^{m} \\ 1, & \text{if } x \notin U_{n}^{m} \end{cases}$$
(1)

Define for each *m*, *n* a function $g_n^m(x)$: $X \to [0, 1]$ by

$$g_n^m(x) = |\prod_{j \le n} f_{j,n}^m(x)|.$$

Then for each *m*, let $\Lambda_m = (g_n^m : n \in \mathbb{N})$, then $\Lambda_m \in \Gamma_{\bar{0}}$ and is monotonically. By the property $S_1^M(\Gamma_{\bar{0}}, \mathcal{I} - \Gamma_{\bar{0}})$, there exists $\Lambda \in \mathcal{I} - \Gamma_{\bar{0}}$ such that $|\Lambda \cap \Lambda_m| = 1$. Assume that

$$\Lambda = (g_{n_m}^m : m \in \mathbb{N}), \text{ where } g_{n_m}^m \in \Lambda_m.$$

Now, let $\mathcal{V}_m = \{U_j^m : j \le n_m\}$. Then $\{\cup \mathcal{V}_m : m \in \mathbb{N}\} \in I \cdot \Gamma$. Indeed, for each $x \in X$, let $A_x = \{m : |g_{n_m}^m(x)| \ge 1\}$, then $A_x \in I$ since $\Lambda \in I \cdot \Gamma_{\bar{0}}$. So

$$(\forall m \in (\mathbb{N} \setminus A_x))(\exists j \le n_m)(|f_{j,n_m}^m(x)| < 1)$$

This implies that $x \in U_i^m$, and then $x \in \bigcup \mathcal{V}_m$. Therefore, $\{m : x \notin \bigcup \mathcal{V}_m\} \subseteq A_x \in I$. \Box

Proof of Theorem 4.7 For each $X \subset \mathbb{R}$ with $|X| < \mathfrak{b}_I$, $C_p(X)$ is an $I\alpha_1$ -space by Theorem 4.3. Taking $X \subset \mathbb{R}$ with size \mathfrak{b}_I such that it is not an I-Hurewicz space. Then $C_p(X)$ is not an $I\alpha_1$ -space.

Remark 4.9. It was showed that for each analytic *P*-deal I, $b = b_I$ ([13], Corollary 5.5). Thus, in the realms of analytic *P*-ideals, the minimal size of $X \subset \mathbb{R}$ such that $C_p(X)$ is not an $I\alpha_1$ -space is b_I .

The next work is motivated by Lemma 30 in [27]. For $h \in \mathbb{N}^{\mathbb{N}}$, let $A_h = \{(n, m); m \le h(n), n \in \mathbb{N}\}$ and

$$\mathcal{I}_b = \{ B \subseteq \mathbb{N} \times \mathbb{N} : (\exists h \in \mathbb{N}^{\mathbb{N}}) (B \subseteq A_h) \}.$$

This is an ideal on $\mathbb{N} \times \mathbb{N}$. The following notation can be viewed as a generalization of the *I*-convergence property introduced by Tsaban and Zdomskyy in [27].

Definition 4.10. Let I, \mathcal{J} be ideals on countable sets D_1 , D_2 respectively. We say that X has $IC(I, \mathcal{J})$ -property if for each sequence $(f_n : n \in \mathbb{N})$ of continuous functions that I-converges to $\overline{0}$, there exists $F \in I^*$ such that $(f_n : n \in F)$ is \mathcal{J} -convergent to $\overline{0}$.

It is easy to see that the $IC(\mathcal{I}_b, Fin)$ -property is just the bounded-ideals convergence property. If we require that $(f_{m_n} : n \in \mathbb{N})$ is \mathcal{J} -convergent to $\overline{0}$ for

$$F = \{m_0 < m_1 < m_2 < \cdots\}$$

Then the IC(I, Fin)-property coincides with the IC(I)-property defined in [16].

Theorem 4.11. Let I be an ideal on \mathbb{N} , and X being a perfectly normal space. Then the following conditions are equivalent.

- (1) X has $IC(I_b, I)$ -property;
- (2) $C_p(X)$ is an $I\alpha_1$ -space.

Proof. (1) \Rightarrow (2) Let $(\Lambda_n : n \in \mathbb{N})$ be a sequence from $\Gamma_{\bar{0}}$. Assume that for each $n \in \mathbb{N}$,

$$\Lambda_n = (f_m^n : m \in \mathbb{N}).$$

Putting all these functions together, and viewing it as a double indexed sequence, we have that

Claim 4.12. $(f_m^n : (n, m) \in \mathbb{N} \times \mathbb{N}) \in \mathcal{I}_b - \Gamma_{\bar{0}}.$

Proof. For each $x \in X$, each $\varepsilon > 0$. We need to show that $\{(n, m) \in \mathbb{N} \times \mathbb{N} : |f_m^n(x)| \ge \varepsilon\} \in I_b$. Define $h: \mathbb{N} \to \mathbb{N}$ by

$$h(n) = \min\{k : (\forall m \ge k)(|f_m^n(x)| < \varepsilon)\}$$

Then

 $\{(n,m)\in\mathbb{N}\times\mathbb{N}:|f_m^n(x)|\geq\varepsilon\}\subseteq A_h.$

Note that $A_h \in I_b$, we finish the proof of Claim. \Box

By (1), there exists $A \in I_b^*$ such that $(f_m^n : m \in A_{(n)}, n \in \mathbb{N}) \in I \cdot \Gamma_{\bar{0}}$, where $A_n = \{m : (n, m) \in A\}$. In addition, there exists $h \in \mathbb{N}^{\mathbb{N}}$ such that $A^c \subseteq A_h$. Let

$$\Lambda = (f_m^n : m > h(n), n \in \mathbb{N}).$$

Then $\Lambda \in \mathcal{I}$ - $\Gamma_{\bar{0}}$, and $\Lambda_n \setminus \Lambda$ is finite for each $n \in \mathbb{N}$.

(2) \Rightarrow (1) For each double indexed sequence $(f_m^n : (n, m) \in \mathbb{N} \times \mathbb{N})$ that belongs to $\mathcal{I}_b - \Gamma_{\bar{0}}$. Let $\Lambda_n = (f_m^n : m \in \mathbb{N})$.

Claim 4.13. For each $n \in \mathbb{N}$, $\Lambda_n \in \Gamma_{\bar{0}}$.

Proof. Note that for any $x \in X$ and any $\epsilon > 0$, $\{(n, m) \in \mathbb{N} \times \mathbb{N} : |f_m^n(x)| \ge \epsilon\} \in \mathcal{I}_b$. So there exists $h_{x,\epsilon} \in \mathbb{N}^{\mathbb{N}}$ such that $\{(n, m) \in \mathbb{N} \times \mathbb{N} : |f_m^n(x)| \ge \epsilon\} \subseteq A_{h_{x,\epsilon}}$. Therefore, for each $n \in \mathbb{N}$, $\{m : |f_m^n(x)| \ge \epsilon\} \subseteq \{m : m \le h_{x,\epsilon}(n)\}$. \Box

Since $C_p(X)$ is an $I\alpha_1$ -space, there exists $\Lambda \in I$ - $\Gamma_{\bar{0}}$ such that $\Lambda_n \setminus \Lambda$ is finite for each $n \in \mathbb{N}$. Assume that $\Lambda = (f_m : m \in \mathbb{N})$, and define $h: \mathbb{N} \to \mathbb{N}$ by

$$h(n) = \max\{k : (\forall m \ge k) (f_m \in \Lambda_n)\} + 1.$$

Then $A_h \in I_b$ and $(f_m^n : (n, m) \in A_h^c) \in I \cdot \Gamma_{\bar{0}}$. \Box

Theorem 4.14. Let I be a P-ideal on \mathbb{N} , and X being a topological space. Then the following conditions each one implies the next.

- (1) X has IC(Fin, QN)-property;
- (2) X is a QN-space;
- (3) X has IC(I, QN)-property;

(4) X has IC(I)-property.

Proof. (1) \Rightarrow (2) Let $(f_n : n \in \mathbb{N})$ be a sequence from $C_p(X)$ that converges to $\overline{0}$. By IC(Fin, QN), there exists $F \in Fin^*$ such that $(f_n : n \in F)$ is QN-convergent to $\overline{0}$. This implies that $(f_n : n \in \mathbb{N})$ is QN-convergent to $\overline{0}$.

(2) \Rightarrow (3) Assume that *X* is a QN-space. For any sequence $(f_n : n \in \mathbb{N})$ from $C_p(X)$ which *I*-converges to $\overline{0}$, since *I* is a *P*-ideal, there exists $F \in I^*$ such that $(f_n : n \in F)$ is convergent to $\overline{0}$ (see, [20]), and then it QN-converges to $\overline{0}$ since *X* is a QN-space.

 $(3) \Rightarrow (4)$ Obvious. \Box

Remark 4.15. Note that every QN-space has IC(Fin, QN)-property, so these properties are coincide.

The following result shows that in the realm of *P*-ideals, the assumption of *X* having IC(I)-property in Proposition 6.10 in [26] can be removed.

Proposition 4.16. Let I be a P-ideal on \mathbb{N} , X being a QN-space. Then for any ideal \mathcal{J} that extends I, X is an $(I, \mathcal{J})QN$ -space

5. $(I, \mathcal{J}-\alpha_1)$ and $(I, \mathcal{J}-\alpha_4)$

Definition 5.1. ([5]) Let I, \mathcal{J} be ideals on \mathbb{N} , *X* being a topological space.

(1) $C_p(X)$ has the property $(I, \mathcal{J}-\alpha_1)$ if for each sequence $((f_m^n : m \in \mathbb{N}) : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, $(f_m^n : m \in \mathbb{N}) \in I - \Gamma_{\bar{0}}$. There exists a sequence $(B_n : n \in \mathbb{N})$ from \mathcal{J} with $\bigcup_{n \in \mathbb{N}} B_n = \mathbb{N}$ such that

 $(\forall \varepsilon > 0)(\forall x \in X)(\exists J \in \mathcal{J})(\forall n, m)(m \notin J \cup B_n \to |f_m^n(x)| < \varepsilon).$

(2) $C_p(X)$ has the property $(I, \mathcal{J}-\alpha_4)$ if for each sequence $((f_m^n : m \in \mathbb{N}) : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, $(f_m^n : m \in \mathbb{N}) \in I - \Gamma_{\bar{0}}$. There exists a sequence $(m_n : n \in \mathbb{N})$ such that $(f_{m_n}^n : n \in \mathbb{N}) \in \mathcal{J} - \Gamma_{\bar{0}}$.

According to the definition, the property $(I, \mathcal{J}-\alpha_4)$ coincides with the $S_1(I-\Gamma_0, \mathcal{J}-\Gamma_0)$ property. What's more, we have the following.

Theorem 5.2. Let X be a topological space, and I, \mathcal{J} being ideals on \mathbb{N} . Then $C_p(X)$ has the property $(I, \mathcal{J}-\alpha_4)$ if, and only if it is an $(I, \mathcal{J})\alpha_4$ -space.

This result was implied by the following Lemma. The implication $(1) \Rightarrow (2)$ is the same as Theorem 2 in [23], and the implication $(2) \Rightarrow (3)$ is the same as Lemma 1(3) in [23]. To make the paper self-contained and accessible to a wide audience, we supply proofs in the follows, all of these constructions are due to Scheepers.

Lemma 5.3. Let I, \mathcal{J} be ideals on \mathbb{N} , X being a topological space. Then the following conditions each one implies the next.

- (1) $C_p(X)$ is an $(I, \mathcal{J})\alpha_4$ -space;
- (2) $C_p(X)$ has the $S_1(I \Gamma_{\bar{0}}, \mathcal{J} \Gamma_{\bar{0}})$ property;
- (3) $C_p(X)$ is an $(I, \mathcal{J})\alpha_2$ -space.

Proof. (1) \Rightarrow (2) Let (($f_k^n : k \in \mathbb{N}$) : $n \in \mathbb{N}$) be a sequence from \mathcal{I} - $\Gamma_{\bar{0}}$ such that for each n, each k, each $x \in X$, $f_k^n(x) \ge 0$. Let

$$g_k^m = \sum_{0 \le i \le m} f_k^i.$$

By Lemma 3.2, $((g_k^m : k \in \mathbb{N}) : m \in \mathbb{N}) \subseteq I - \Gamma_{\bar{0}}$. By (1), there exist $m_1 < m_2 < m_3 < \cdots$ and n_1, n_2, n_3, \cdots , such that $(g_{n_k}^{m_k}: k \in \mathbb{N}) \in \mathcal{J}$ - $\Gamma_{\bar{0}}$. That is, for each x, each $\varepsilon > 0$,

$$\{k: |g_{n_k}^{m_k}(x)| \ge \varepsilon\} \in \mathcal{J}.$$

Let $m_0 = 0$, choose for each *i* a k_i by

$$f_{k_i}^i(x) = f_{n_i}^i \text{ for } m_{j-1} < i \le m_j.$$

For each *i* let $\phi(i)$ be the unique *j* such that $m_{j-1} < i \leq m_j$. Then ϕ is a finite-to-one function and nondecreasing. So for each *i*, each $x \in X$, $0 \le f_{k_i}^i(x) \le g_{n_{\phi(i)}}^{m_{\phi(i)}}(x)$. Therefore, for each $x \in X$, each $\varepsilon > 0$,

$$\{i: |f_{k}^{i}(x)| \ge \varepsilon\} \subseteq \{i: |g_{n_{\phi(i)}}^{m_{\phi(i)}}(x)| \ge \varepsilon\} \in \mathcal{J}.$$

Thus, \mathcal{J} -lim_{$i\to\infty$} $f_{k_i}^i = \bar{0}$.

(2) \Rightarrow (3) Let $((g_k^m : k \in \mathbb{N}) : m \in \mathbb{N}) \subseteq I - \Gamma_{\bar{0}}$. For each $m \in \mathbb{N}$, construct a sequence $(\Lambda_{m,k} : k \in \mathbb{N}) \subseteq I - \Gamma_{\bar{0}}$ by

$$\Lambda_{m,k} = (q_n^m : n \ge k).$$

We apply the $S_1(I - \Gamma_{\bar{0}}, \mathcal{J} - \Gamma_{\bar{0}})$ to the sequence

$$\Lambda_{0,0}, \Lambda_{0,1}, \Lambda_{0,2}, \cdots, \Lambda_{1,0}, \Lambda_{1,1}, \Lambda_{1,2}, \cdots, \Lambda_{n,0}, \Lambda_{n,1}, \Lambda_{n,2}, \cdots$$

There exists $\Lambda \in \mathcal{J}$ - $\Gamma_{\bar{0}}$ such that $|\Lambda \cap \Lambda_{m,k}| = 1$ for each $m, k \in \mathbb{N}$. \Box

Lemma 5.4. Let I, \mathcal{J} be ideals on \mathbb{N} , X being a topological space. If $C_{\nu}(X)$ is an $(I, \mathcal{J})\alpha_1$ -space, then it has the property $(I, \mathcal{J}-\alpha_1)$.

Proof. Assume that $C_p(X)$ is an $(\mathcal{I}, \mathcal{J})\alpha_1$ -space. Let $(\Lambda_n : n \in \mathbb{N})$ from \mathcal{I} - $\Gamma_{\bar{0}}$. Assume for each $n \in \mathbb{N}$ that

$$\Lambda_n = (f_m^n : m \in \mathbb{N})$$

There exists $\Lambda \in \mathcal{J}$ - $\Gamma_{\bar{0}}$ such that $\Lambda_n \setminus \Lambda$ is finite for each $n \in \mathbb{N}$. Let $A_n = \{m : f_m^n \in \Lambda_n \setminus \Lambda\}$, and $A = \mathbb{N} \setminus \bigcup_{n \in \mathbb{N}} A_n$ and enumerate *A* as $\{a_n : n \in \mathbb{N}\}$. We construct $(B_n : n \in \mathbb{N})$ as follow. If *A* is finite,

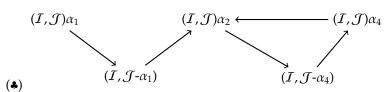
 $B_0 = A \cup A_0, B_n = A_n$ for n > 1.

If *A* is infinite, put for each $n \in \mathbb{N}$,

$$B_n = A_n \cup \{a_n\}.$$

Then the sequence $(B_n : n \in \mathbb{N})$ witnesses that $C_p(X)$ has the property $(I, \mathcal{J} - \alpha_1)$. \Box

We have the following diagram.



Corollary 5.5. Let I be an ideal on \mathbb{N} , X being a topological space. If $I \leq_{KB}$ Fin. the following are equivalent:

- (1) $C_{v}(X)$ is an $I\alpha_{2}$ -space;
- (2) X is an IwQN-space.

Proof. (1) \Rightarrow (2) is clear from the diagram \clubsuit above. (2) \Rightarrow (1) is also clear since $I \leq_{KB} Fin$ (in this case IwQN-spaces are IQN-spaces([5], Corollary 3.4)).

The following result shows that in some case, the $(I, \mathcal{J})\alpha_1$ property is different from the property $(I, \mathcal{J}-\alpha_1)$.

Proposition 5.6. *If* I *is not a weak* P*-ideal, then there exists* $X \subseteq \mathbb{R}$ *such that* $C_p(X)$ *is not an* $I\alpha_1$ *-space, but it has the property (Fin,* I*-* α_1 *).*

Proof. Put together Theorem 4.7, Corollary 5.3 in [26].

Acknowledgement

We are grateful to the referee for pointing out several errors in the preliminary version of this paper and for valuable suggestions which improved the presentation of the paper.

References

- A.V. Arhangel'skiï, The frequency spectrum of a topological space and the classification of spaces, Soviet Math. Doklady 13 (1972) 1185–1189.
- [2] T. Bartoszynski, M. Scheepers, A-sets, Real Anal. Exchange 19 (1993/94) 521–528.
- [3] L. Bukovský, The Structure of the Real Line, Monogr. Math, Springer-Birkhäuser, Basel, 2011
- [4] L. Bukovský, J. Haleš, QN-spaces, wQN-spaces and convering properties, Topology and Its Applications. 154 (2007) 848-858.
- [5] L. Bukovský, P. Das, J. Šupina, Ideal quasi-normal convergence and related notions, Coll. Math. 146 (2017) 265–281.
- [6] Z. Bukovský, Quasinormal convergence, Math. Slovaca 41 (1991) 137–146.
- [7] L. Bukovsky, I. Recław, M. Repicky, Spaces not distinguishing pointwise and quasinormal convergence of real functions, Topology Appl. 41 (1991) 25–40.
- [8] D. Chandra, Some remarks on sequence selection properties using ideals, Mat. Vesnik 68 (2016) 39-44.
- [9] P. Das, D. Chandra, Spaces not distinguishing pointwise and *I*-quasinormal convergence, Comment. Math. Univ. Carolin. 54 (2013) 83–96.
- [10] P. Das, Certain types of open covers and selection principles using ideals, Houston J. Math. 39 (2013) 637-650.
- [11] S.G. da Silva, The *I*-Hurewicz property and bounded families modulo an ideal, Questions Answers Gen. Topol. 36 (2018) 31–38.
- [12] R. Engelking, General Topology, Heldermann, Berlin, 1989.
- [13] B. Farhas, L. Soukup, More on cardinal invariants of analytic P-ideals, Comment. Math. Univ. Carolin. 50 (2010) 281–295.
- [14] H. Fast, Sur la convergence statistique, Coll. Math. 2 (1951) 241–244.
- [15] R. Filipów, p. Szuca, Three kinds of convergence and the associated I-Baire classes, J. Math. Anal. Appl. 391 (2012) 1-9.
- [16] J. Jasinski, I. Recław, Ideal convergence of continuous functions, Topology Appl. 153 (2006) 3511–3518.
- [17] M. Katětov, Products of filters, Comment. Math. Univ. Carolin. 9 (1968) 173-189.
- [18] Lj.D.R. Kočinac, Selection principles related to α_i -properties, Taiwanese J. Math. 12 (2008) 561–571.
- [19] Lj.D.R. Kočinac, On the α_i -selection priciples and games, Contemp. Math. 533 (2011) 107–124.
- [20] P. Kostyrko, T. Šalát, W. Wilczyński, *I*-convergence, Real Anal. Exchange 26 (2000) 669–685.
- [21] M. Sakai, The sequence selection properties of $C_p(X)$, Topology Appl. 154 (2007) 552–560.
- [22] M. Scheepers, A sequential property of $C_p(X)$ and a covering property of Hurewicz, Proc. Amer. Math. Soc. 125 (1997) 2789–2795.
- [23] M. Scheepers, $C_p(X)$ and Arhangel'skii's α_i -spaces, Topology Appl. 89 (1998) 265–275.
- [24] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996) 31–62.
- [25] M. Scheepers, B. Tsaban, The combinatorics of Borel covers, Topology Appl. 121 (2012) 357–382.
- [26] J. Šupina, Ideal QN-spaces, J. Math. Anal. Appl. 435 (2016) 477-491.
- [27] B. Tsaban, L. Zdomskyy, Hereditarily Hurewicz spaces and Arhangel'skii sheaf amalgamations, J. European Math. Soc. 2 (2012) 353–372.