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Abstract. In this paper we investigated the inverse problem of identifying an unknown time-dependent
coefficient and free boundary in heat conduction equation. By using the change of variable we reduced
the free boundary problem into a fixed boundary problem. In direct solver problem we employed the
meshless local Petrov-Galerkin (MLPG) method based on the moving least squares (MLS) approximation.
Inverse reduced problem with fixed boundary is nonlinear and we formulated it as a nonlinear least-squares
minimization of a scalar objective function. Minimization is performed by using of f mincon routine from
MATLAB optimization toolbox accomplished with the Interior − point algorithm. In order to deal with the
time derivatives, a two-step time discretization method is used. It is shown that the proposed method is
accurate and stable even under a large measurement noise through several numerical experiments.

1. Introduction

Many practical problems, such as heat conduction problems are such that they can be modeled as a
free boundary problems (FBPs), therefore FBPs have an important role in analyzing engineering science
problems and, in general, real world problems. FBPs are boundary-value problems which are defined in a
domain, a part of whose boundary is not known at the outset of the problem, that part of the boundary is
called a free boundary. The Stefan problem is one kind of the free boundary problems which, describing
the process of melting and solidification. In [13, 43] heat conduction fundamentals and in [18, 26, 41, 47]
framework of the Stefan free boundary problems are considered. A Free boundary problem can be appear as
an inverse coefficients and free boundary identification problem with one or several unknown coefficients.
These inverse problems are some of the complex and practical problems that have a great application in
engineering science and industry.

In recent years, several methods have been employed for solving the inverse problem of heat conduction
equation and Stefan problems numerically, such as the homotopy analysis method [27, 42, 48], Lie-group
shooting method [36], finite difference method and finite element method [56] and variational iteration
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method [51]. Grzymkowski and Slota [23, 24] investigated the direct and inverse one-phase Stefan problems
by applying the Adomian decomposition method (ADM), and Slota [52] used the homotopy perturbation
method for one-phase inverse Stefan problem. In [33] a method of fundamental solutions is applied for the
one-dimensional Stefan problem by Johansson et al. In [29–31] inverse Stefan problems of determination
time-dependent coefficients and free boundary by using of finite difference method and optimization tools
are considered. Determination of a time-dependent free boundary in a two-dimensional parabolic problem
was studied in [28]. In [40] the inverse moving boundary problem was solved by applying the radial basis
function (RBF) collocation method. The complex variable reproducing kernel particle method and finite
point method are applied for inverse problem of heat conduction equations in one dimensional and two
dimensional in [16, 17, 53].

For many years, the finite element method (FEM) has been considered as a standard and effective
technique for numerically solving many applied problems in Science and engineering. Due to several
limitations, this technique alone can not solve some of the complex problems of today’s world. For this
reason, the development and formulation of new and effective numerical techniques in recent years has been
a interesting field of some engineers and mathematicians. In recent years meshless methods have gained
considerable attention, as an extension of the numerical methods, in engineering and applied mathematics.
Flexibility and simplicity are the advantages of these methods. Meshless methods are presented to overcome
the shortcomings of the mesh-based technique, in last decades [39].

Meshless methods are generally divided into three categories. The first category includes methods
that use integration and are based on weak forms of PDEs, such as the element free Galerkin method
[11, 12, 45, 46, 58]. The second methods are based on the strong forms of PDEs and do not use integration,
for example the meshless collocation method based on radial basis functions (RBFs), [1, 2, 22, 34] are in
this category, and third category is a set of methods based on the combination of weak forms and strong
forms. Implementation of these methods are usually simple, in addition they are also computationally
efficient. In spite of several advantages of mentioned methods they also have significant shortcomings,
such as numerical instability and less accuracy.

The meshless weak form methods are those that use the global or local weak form. Good stability and
excellent accuracy of these methods make them more attractive. In methods that use the global weak form,
numerical integrations are carried out on the global background cells in solving the algebraic equations,
while in meshless local weak form methods, it does not require any background integration cells for field
nodes. The meshless local Petrov-Galerkin (MLPG) method is one of the methods based on the local weak
form of PDEs. This method, was first proposed in [6], and later discussed in depth in [4, 5]. In the MLPG
method, the numerical integrations are performed over a local small sub-domain defined for each node.
The local sub-domains usually have a regular shape, such as interval, circle, square, sphere, cube, etc. Some
applications of MLPG method can be found in [3, 6–9, 20, 21, 25], also the several development of the MLPG
method for inverse problems of heat conduction equation in recent years can be be seen in [35, 49, 50, 57].

The MLS approximation plays an important role in those meshless methods which are based on weak
forms such as the element free Galerkin (EFG) method and meshless local Petrov–Galerkin (MLPG) method.
By considering a local sub-domain for each field node, the MLS approximates the solving function at each
field node. The MLS approximation was developed from the conventional least-squares method and in
practical numerical processes, it essentially involves the application of the conventional method to every
selected point. A disadvantage of the conventional method is that the final algebraic equations system
is sometimes ill-conditioned. The improved moving least-squares (IMLS) approximation was presented
by Liew et al. [59]. In the IMLS approximation, the algebra equations system is not ill-condition, and
can be solved without obtaining the inverse matrix. Based on the IMLS approximation and the EFG
method, an improved element-free Galerkin (IEFG) method has been created [19, 59]. However, the MLS
and IMLS approximations are approximations of scalar functions, and thus the meshless method that is
derived from them requires a lot of nodes in the domain. The complex variable moving least-squares
(CVMLS) [45] and the improved complex variable moving least-squares (ICVMLS) approximations, which
are approximation of a vector function, have been developed. Therefore, based on these approximations,
the complex variable element-free Galerkin (CVEFG) and the improved complex variable element-free
Galerkin (ICVEFG) methods have been presented [10, 14, 15, 37, 38, 44, 54, 55].
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The layout of the paper is as follows. In section 2, the formulation of the problem is presented. We
briefly describe the MLS approximation in Section 3. Solution of direct problem is considered in Section
4. In this section the time discretization of the problem, the local weak form formulation of the discretized
problem, the MLPG discretization of the problem and an example to test the direct solver are presented.
We introduce the statement of the inverse problem in section 5. In this section with two examples, the
usefulness and effectiveness of the proposed method can be seen. At last, we give a conclusion in Section 6.

2. Statement of the problem

Consider the following heat conduction equation

∂v(y, t)
∂t

= a(t)
∂2v(y, t)
∂y2 + f (y, t), 0 < y < s(t), 0 < t < T < ∞, (1)

subject to the initial condition

v(y, 0) = ϕ(y), 0 ≤ y ≤ s0, s0 = s(0), (2)

and boundary conditions

v(0, t) = µ1(t), v(s(t), t) = µ2(t), 0 ≤ t ≤ T. (3)

In order to determine the unknown coefficient a(t) and free boundary boundary s(t), we impose the over-
determination conditions

−a(t)vy(0, t) = µ3(t),
∫ s(t)

0
v(y, t)dy = µ4(t), 0 ≤ t ≤ T, (4)

where v(y, t), s(t) and a(t) denote the temperature distribution, free boundary and time-dependent thermal
diffusivity and f (y, t) is source function. Note that µ2(t) and µ3(t) represent Cauchy data at the boundary
end x = 0, while µ4(t) represents the specification of the energy of the heat conducting system.

By using the change of variable we reduce the free boundary problem into a fixed boundary problem
as follows. Let

x =
y

s(t)
, v(y, t) = v(xs(t), t) = u(x, t), (5)

therefore, the following equations are abtained from Eqs. (1) - (4)

∂u(x, t)
∂t

= a(t)
1

s2(t)
∂2u(x, t)
∂x2 + x

s′(t)
s(t)

∂u(x, t)
∂x

, 0 < x < 1, 0 < t < T < ∞, (6)

u(x, 0) = ϕ(s0x), 0 ≤ x ≤ 1, (7)
u(0, t) = µ1(t), u(1, t) = µ2(t), 0 ≤ t ≤ T, (8)

−a(t)ux(0, t) = µ3(t)s(t), s(t)
∫ 1

0
u(x, t)dx = µ4(t), 0 ≤ t ≤ T. (9)

This problem has been investigated in [30] and [32]. Existence and uniqueness theorems of solution are
presented in [32].

In this paper we apply a kind of MLPG method which is based on the Galerkin weak form and moving
least squares (MLS) approximation on the Eq. (6), which is subjected to the initial condition (7) and over-
specified boundary conditions in Eqs. (8)-(9). Direct problem consist of determination of the temperature
distribution u(x, t) together with µ3(t) and µ4(t), whereas in inverse problem s(t), a(t) and u(x, t) are functions
to be determined.



A. Karami et al. / Filomat 34:10 (2020), 3319–3337 3322

3. The MLS approximation scheme

In this work we used the MLS approximation to represent the trial function at each node. In this
section the formulation of MLS approximation has been explained. Consider the sub-domain Ωs, with
the boundary ∂Ωs, of problem global domain Ω around point x. In fact Ωs is the domain of definition
(or support) of the MLS approximation for the trial function at x. Let qT(x) = [q1(x), q2(x), ..., qm(x)] be a
complete monomial basis in the space coordinate x. For example, for one-dimensional case
the linear basis is

qT(x) = [1, x], m = 2, (10)

the quadratic basis is

qT(x) = [1, x, x2], m = 3, (11)

and the cubic basis is

qT(x) = [1, x, x2, x3], m = 4. (12)

For all x belong to Ωs the MLS approximation uh(x) of u in Ωs, over a set of random nodes xi (i = 1, 2, ...,n)
located in Ωs, is given as

uh(x) = qT(x)λ(x) ∀ x ∈ Ωs, (13)

where λT(x) = [λ1(x), λ2(x), ..., λm(x)] is a vector of coefficients q j(x) ( j = 1, 2, ...m). In order to determine the
unknown coefficient vector λ(x), we define a function J(λ(x)) as follows

J(λ(x)) =

n∑
i=1

wi(x)[qT(xi)λ(x) − ûi]2 = [Qλ(x) − û]TW(x)[Qλ(x) − û], (14)

where the matrices Q and W(x) in Eq. (14) are defined as

Q =


qT(x1)
qT(x2)
...

qT(xn)


n×m

, W(x) =


w1(x) · · · 0
...

. . .
...

0 · · · wn(x)

 .

Fig. 1: The distinction between the nodal values ui of the trial function uh(x), and the undetermined
fictitious nodal values ûi.
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In the above relations wi(x), i = 1, 2, ...,n, is the weight function corresponding to the node xi, so that
for each x in the support of wi(x) we have wi(x) > 0, n is the number of nodes in Ωs for which the weight
functions wi(x) > 0 and ûT = [û1, û2, ..., ûn] is the vector of fictitious nodal values. It is necessary to mention
that ûi, i = 1, 2, ...,n, are not equal to nodal values ui ,i = 1, 2, ...,n, of the unknown trial function uh(x) in
general (Fig. 1). The stationarity of J(λ(x)) in Eq. (14) with respect to λ(x) the following matrix equation is
obtained:

F(x)λ(x) = G(x)û, (15)

where F(x) and G(x) are matrices defined as follows

F(x) = QTW(x)Q = G(x)Q =

n∑
i=1

wi(x)q(xi)qT(xi), (16)

G(x) = QTW(x) = [w1(x)q(x1),w2(x)q(x2), ...,wn(x)q(xn)]. (17)

The MLS approximation is well-defined only when the matrix F in Eq. (15) is non-singular, i.e. if and only
if the rank of Q equals m. A necessary condition to have a well-defined MLS approximation is that at least
m weight functions are non-zero (i.e. n > m) for each sample point x ∈ Ω. Computing λ(x) from Eq. (15)
and substituting it into Eq. (13), gives

uh(x) = ΦT(x).û =

n∑
i=1

φi(x)ûi, x ∈ Ωs, (18)

where

ΦT(x) = qT(x)F−1(x)G(x), (19)

or

φi(x) =

m∑
j=1

q j(x)[F−1(x)G(x)] ji. (20)

The functionφi is usually called the shape function of the MLS approximation corresponding to nodal point
xi. The partial derivative of φi(x) with respect to x is defined as

φi,x =

m∑
j=1

[q j,x(F−1G) ji + q j(F−1G,x + F−1
,x G) ji], (21)

in which (F−1),x = F−1
,x = −F−1F,xF−1 and (·),x denotes the derivative with respect to x. In this paper the

Gaussian weight function is used that defined as

wi(x) =


exp[−(

li
ci

)2]−exp[−( rs
ci

)2]

1−exp[−( rs
ci

2)]
, 0 ≤ li ≤ rs,

0, li ≥ rs,

where li =‖ x − xi ‖, ci is a constant controlling the shape of the weight function wi(x) and rs is the size of
the support domain. rs must be chosen large enough to have sufficiently number of nodes covered in the
domain of definition of every sample point (n ≥ m) to ensure the regularity of F.
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4. Solution of direct problem

4.1. The time discretization approximation
In this work the following finite difference approximation is used to approximate the time derivative

∂u(x, t)
∂t

�
1
4t

(
uk+1(x) − uk(x)

)
, (22)

where u j(x) = u(x, t j), s j = s(t j), t0 = 0, t j = t0 + j4t, j = 0, 1, ...,M and 4t = T
M . Also by using the

Crank-Nicolson technique we have the following approximations:

a(t)
s2(t)

∂2u(x, t)
∂x2 �

1
2

(
ak+1

(sk+1)2
uk+1

xx +
ak

(sk)2
uk

xx), (23)

s′ (t)
s(t)

∂u(x, t)
∂x

�
1
2

(
s′ k+1

sk+1
uk+1

x +
s′ k

sk
uk

x), (24)

f (xs(t), t) �
1
2

( f k+1 + f k), (25)

where f ( j) = f (xs j, t j). Considering the above approximations, Eq. (6) can be written as:

uk+1
− uk

4t
=

1
2

(
ak+1

(sk+1)2
uk+1

xx +
ak

(sk)2
uk

xx) +
x
2

(
s′ k+1

sk+1
uk+1

x +
s′ k

sk
uk

x) +
1
2

( f k+1 + f k). (26)

Suppose that λ = 2
4t , then we have

λuk+1
− x

s′ k+1

sk+1
uk+1

x −
ak+1

(sk+1)2
uk+1

xx = λuk + x
s′ k

sk
uk

x +
ak

(sk)2
uk

xx + ( f k+1 + f k). (27)

4.2. The meshless local weak form formulation
Let Ωi

q be a sub-domain associated with the nodal point xi, i = 1, 2, ...,N, (called local quadrature cell)
in the global domain Ω. Ωi

q i = 1, 2, ...,N, overlap each other and union of them cover the whole global
domain Ω. In this paper Ωi

q are intervals centered at xi of radius rq. By applying the MLPG method, the
local weak form is obtained over local quadrature cells Ωi

q. For each node xi ∈ Ωi
q the local weak of Eq. (27)

is represented as follows

λ

∫
Ωi

q

uk+1ν(x)dx −
s′ k+1

sk+1

∫
Ωi

q

xuk+1
x ν(x)dx −

ak+1

(sk+1)2

∫
Ωi

q

uk+1
xx ν(x)dx =

λ

∫
Ωi

q

ukν(x)dx +
s′ k

sk

∫
Ωi

q

xuk
xν(x)dx +

ak

(sk)2

∫
Ωi

q

uk
xxν(x)dx +

∫
Ωi

q

( f k+1 + f k)ν(x)dx, (28)

where the Heaviside step function ν(x) is used as the test function in Ωi
q which is defined as

ν(x) =

{
1, x ∈ Ωi

q,
0, x < Ωi

q.
(29)

Using the integration by parts Eq. (28) converts to the following local weak form equation:

λ

∫
Ωi

q

uk+1dx −
s′ k+1

sk+1

∫
Ωi

q

xuk+1
x dx −

ak+1

(sk+1)2
uk+1

x |∂Ωi
q

=

λ

∫
Ωi

q

ukdx +
s′ k

sk

∫
Ωi

q

xuk
xdx +

ak

(sk)2
uk

x|∂Ωi
q
+

∫
Ωi

q

( f k+1 + f k)dx, (30)

where ∂Ωi
q is the boundary of Ωi

q.
In the next section by using of MLS approximation for the unknown functions, a system of algebraic

equations with unknown quantities is obtained from the local integral equation (30).
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4.3. MLPG Discretization
In this section, discretization of the Eq. (30) is desired. For this purpose, we consider the N regularly

points xi, i = 1, 2, ...N, in the domain of the problem and it’s boundary such that xi+1 − xi = h. Suppose that
u(xi, tk), is determined and u(xi, tk+1), is unknown for i = 1, 2, ...N. In order to determine the N unknown
quantities u(xi, tk+1) we need to have N equations. For interior nodes xi of the domain Ω, by replacing MLS
approximation formula (18) in the equations (30), the following discrete equations are obtained as

λ
N∑

j=1

∫
Ωi

q

φ j(x)dx

 u(k+1)
j −

s′ k+1

sk+1

N∑
j=1

∫
Ωi

q

xφ
′

j(x)dx

 u(k+1)
j −

ak+1

(sk+1)2

N∑
j=1

φ
′

j(x)u(k+1)
j |∂Ωi

q
= λ

N∑
j=1

∫
Ωi

q

φ j(x)dx

 u(k)
j + (31)

s′ k

sk

N∑
j=1

∫
Ωi

q

xφ
′

j(x)dx

 u(k)
j +

ak

(sk)2

N∑
j=1

φ
′

j(x)u(k)
j |∂Ωi

q
+ F(k)

i ,

where

F(k)
i =

∫
Ωi

q

( f k+1 + f k)dx.

For nodes x = 0 and x = 1 which are located on the boundary of problem, we set

uk+1(0) = µ1((k + 1)4t), (32)

uk+1(1) = µ2((k + 1)4t). (33)

The matrix form of Eqs. (31) for all N nodal points in domain and on boundary of the problem can be
represented as follows[

λ
N∑

j=1

ai j −
s′ k+1

sk+1

N∑
j=1

bi j −
ak+1

(sk+1)2

N∑
j=1

ci j

]
u(k+1)

j =

[
λ

N∑
j=1

ai j +
s′ k

sk

N∑
j=1

bi j +
ak

(sk)2

N∑
j=1

ci j

]
u(k)

j + F(k)
i , (34)

where

ai j =

∫
Ωi

q

φ j(x)dx, bi j =

∫
Ωi

q

xφ
′

jdx, ci j = φ
′

j(x)|∂Ωi
q
. (35)

Assuming that

Ai j = λai j −
s′ k+1

sk+1
bi j −

ak+1

(sk+1)2
ci j, (36)

Bi j = λai j +
s′ k

sk
bi j +

ak

(sk)2
ci j, (37)

and U = (ui)N×1, Eqs. (34) yield the following system of equations

AU(k+1) = BU(k) + Fk. (38)

To satisfy Eq. (38), for nodes belong to the boundary, i.e. x = 0 and x = 1, we set for each step

A11 = ANN = 1, ∀ j , 1 : A1 j = 0, ∀ j , N : AN j = 0,
B11 = BNN = 1, ∀ j , 1 : B1 j = 0, ∀ j , N : BN j = 0,

Fk
1 = µ1((k + 1)4t), Fk

N = µ2((k + 1)4t).
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At first step, when k = 0, according to the initial conditions, we apply the following assumptions:

U(0) = [ϕ(s0x1), ϕ(s0x2), . . . , ϕ(s0xN)]T. (39)

4.4. Numerical experiments

In this section we test the described approach for direct problem with an example. We consider the
problem (6)-(9) with T = 1 and

s(t) = 1 + 2t, a(t) = 1 + t2,

µ1(t) = 1 + 8t, µ2(t) = (2 + 2t)2 + 8t,
ϕ(y) = (1 + y)2, f (y, t) = 6 − 2t2.

In direct problem v(y, t), µ3(t) and µ4(t) are functions to be determined. The analytical solution of problem
is given by

v(y, t) = (1 + y)2 + 8t,

µ3(t) = −(2 + 2t2), µ4(t) =
(2 + 2t)3

− 1
3

+ 8t(1 + 2t),

and

u(x, t) = v(xs(t), t) = (1 + x + 2xt)2 + 8t,

µ3(t) = −(2 + 2t2), µ4(t) =
(2 + 2t)3

− 1
3

+ 8t(1 + 2t).

In this example, the domain integrals are approximated using the 4 points Gaussian quadrature rule. In
order to investigate the accuracy of computed approximations and the efficiency of the presented method,
the following root mean square error (rmse) and absolute error formulas are applied

Absolute error(u(xi, t j)) = |uexact(xi, t j) − uapprox(xi, t j)|, (40)

rmse(µ(t)) =

√∑M
j=0

(
µexact(t j) − µapprox(t j)

)2

M + 1
. (41)

In implementing the meshless local weak form, each local quadrature domain Ωi
q is taken as interval

centered at xi of radius rq = 0.7h where h = xi+1 − xi, i = 1, 2, ...N. Also the radius of support domain Ωs
is rs = 4rq, c = 1.17h and the quadratic basis functions (11) is used in Eq. (13). Fig. 2 and Fig. 3 presents
the Exact solution, Numerical solution and Absolute errors for u(x, t) and v(y, t) with h = ∆t = 0.025, and
T = 1. Exact solution and numerical solution for µ3(t) and µ4(t) also are plotted in Fig. 4. Table 1 gives
the rmse(µ3(t)) and rmse(µ4(t)) for different values of h and ∆t. These have been approximated using the
Simpson rule for integration and the following formula for derivatives

∂u(0, t j)
∂x

�

j=M∑
j=0

φ
′

(0)uk
j , (42)

where φi(x) is defined in (20). Obtained results show a very good agreement between the exact and
numerical solutions.
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Fig. 2. Diagram of Exact solution, Numerical solution and Absolute error for u(x, t) when h = ∆t = 0.025.
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Table 1. The rmse for µ3(t) and µ3(t) when h = ∆t ∈ {0.1, 0.05, 0.025, 0.01} in direct problem.

h h = ∆t = 0.1 h = ∆t = 0.05 h = ∆t = 0.025 h = ∆t = 0.01
rmse(µ3(t)) 2.008622e − 13 2.343945e − 12 3.216328e − 12 7.840626e − 11
rmse(µ4(t)) 1.913527e − 13 2.200038e − 12 2.224144e − 12 4.993713e − 11

5. Inverse problem

5.1. Statement of the inverse problem

Inverse problem is considered with unknown free boundary, thermal diffusivity and temperature dis-
tribution i.e. s(t), a(t) and u(x, t). The inverse problem (6)-(9) is a nonlinear problem and we can formulate
it as a nonlinear least-squares minimization problem. The objective function to be minimized is defined as
follows

E(s, a) =
wwwwww − a(t)

s(t)
ux(0, t) − µ3(t)

wwwwww2

L2(0,T)
+

wwwwwws(t)
∫ 1

0
u(x, t)dx − µ4(t)

wwwwww2

L2(0,T)
. (43)

The discretized form of recent equation is

E(s, a) =

j=M∑
j=0

[
−

a j

s j
ux(0, t j) − µ3(t j)

]2
+

j=M∑
j=0

[
s j

∫ 1

0
u(x, t j)dx − µ4(t j)

]2
, (44)

where s = (s0, s1, ..., sM) and a = (a0, a1, ..., aM). According to the numerical results obtained in the next
section it seems that the problem being rather stable even under a large measurement noise in the input
data µ3(t) and µ4(t) therefore, there is no need to regularize the objective function (43) by adding a Tikhonov
penalty term of some norm of s(t) and a(t).

The minimization of nonlinear objective function E(s, a) with constrains s j, a j > 0 ( j = 0, 1, ...,M) was
performed by using the f mincon routine MATLAB toolbox accomplished with the Interior−point algorithm.
The f mincon minimizer by starting from an initial guesses tries to find the minimum value of the objective
function and minimizer parameters s j and a j ( j = 0, 1, ...,M). In inverse problem derivatives ux(0, t j) are
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approximated by Eq. (42) and integrations
∫ 1

0 u(x, t j)dx are computed with Trapezoidal rule. Furthermore,
when we apply the inverse problem solver, s′ (t j) is approximated by

s
′

(t j) �
s(t j+1) − s(t j)

∆t
, (45)

in direct solver. For implementing the routine f mincon we take the interval (10−10, 103) as a bound for s j
and a j. In addition we take other parameters for routine fmincon as follow
- Maximum function evaluations= 3000,
- Maximum iterations= 1000,
- Optimality tolerance= 10−6,
- Step tolerance= 10−10,
- Constraint tolerance= 10−6.

5.2. Numerical experiments

In this section with two examples we test the approach described for inverse problem. In applications
input data µ3(t j) and µ4(t j) are contaminated by noise. In this paper we consider the inverse problem
without noise and with random noisy data as follows

µ̃3(t j) = µ3(t j)(1 + δR1( j)), (46)
µ̃4(t j) = µ4(t j)(1 + δR2( j)), j = 0, 1, 2, ...,M, (47)

where δ denote the level of noise, and R1( j) and R2( j) are random numbers in [−1, 1].
In order to investigate the accuracy of computed approximations and the efficiency of the presented method,
we applied the root mean square error (rmse) and Relative error formulas as follows

rmse(s(t)) =

√∑M
j=0

(
sexact(t j) − sapprox(t j)

)2

M + 1
, (48)

rmse(a(t)) =

√∑M
j=0

(
aexact(t j) − aapprox(t j)

)2

M + 1
, (49)

Relative error(u(xi, t j)) =
|uexact(xi, t j) − uapprox(xi, t j)|

|uexact(xi, t j)|
. (50)

Example 1. Consider the the problem (6)-(9) with

µ1(t) = 1 + 8t, µ2(t) = (2 + 2t)2 + 8t,

µ3(t) = −(2 + 2t2), µ4(t) =
(2 + 2t)3

− 1
3

+ 8t(1 + 2t),

ϕ(y) = (1 + y)2, f (y, t) = 6 − 2t2,

and unknown free boundary s(t) and coefficient a(t). The analytical solutions are given by

v(y, t) = (1 + y)2 + 8t,
s(t) = 1 + 2t, a(t) = 1 + t2,

and

u(x, t) = v(xs(t), t) = (1 + x + 2xt)2 + 8t,
s(t) = 1 + 2t, a(t) = 1 + t2.
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The results of using the proposed method are obtained with h = ∆t = 0.025 and T = 1. In direct solver,
when we solve the inverse problem, each local quadrature domain Ωi

q is taken as interval centered at xi
of radius rq = 0.7h where h = xi+1 − xi, i = 1, 2, ...N. Also the radius of support domain Ωs is rs = 4rq,
c = 1.17h and the quadratic basis functions (11) is used in Eq. (13). The domain integrals in direct solver
also are approximated using the 4 points Gaussian quadrature rule. In this example the initial guesses for
free boundary and thermal diffusivity at different time steps are s j = 1, a j = 1 for j = 0, 1, ...,M.
We first consider the case in which there is no noise in µ3(t j) and µ4(t j). In this case, the objective function E
as a function of parameters s j and a j decreases very fast in small number of iterations. After a few iterations
convergence is achieved and objective function takes a stationary values of order 10−9. Diagrams of exact
solution and numerical solution for s(t) and a(t) are plotted in Fig. 5. Diagrams of exact solution and
numerical solution and relative error for u(x, t) and v(y, t) also are presented in Fig. 6. and Fig. 7. Obtained
results for δ = 0 show a very good agreement between the exact and numerical solutions. When the input
data µ3(t j) and µ4(t j) contaminate with level noise δ = 0.02 the objective function is again convergence very
fast and takes stationary values of order 10−7. Exact solution and numerical solution for s(t), a(t), u(x, t),
v(y, t) and relative error for u(x, t) and v(y, t) are presented in Fig. 5., Fig. 8. and Fig. 9. Values of rmse for
s(t) and a(t) and values of objective function in last iteration are given in Table 2. From the obtained results
it can be seen that the small perturbation in input data does not significantly affect in the output solutions.
It can be concluded that approximated solutions are stable.
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Fig. 5. For example1: Diagram of Exact solution, Numerical solution for s(t) and a(t) without noise (δ = 0)
and with δ = 0.02 and h = ∆t = 0.025
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Fig. 6. For Example 1: Diagram of Exact solution, Numerical solution and Relative error for u(x, t) without
noise and with h = ∆t = 0.025.
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Fig. 7. For Example 1: Diagram of Exact solution, Numerical solution and Relative error for v(x, t) without
noise and with h = ∆t = 0.025.
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Fig. 8. For Example 1: Diagram of Exact solution, Numerical solution and Relative error for u(x, t) with
δ = 0.02 and with h = ∆t = 0.025
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Fig. 9. For Example 1: Diagram of Exact solution, Numerical solution and Relative error for v(x, t) with
δ = 0.02 and with h = ∆t = 0.025

Table 2: For Example 1 and Example 2: rmse values for s(t) and a(t) and values of objective function at final
iterations without noise and with level noise δ = 0.02 when h = ∆t = 0.025

rmse δ = 0 δ = 0.02
rmse(s(t)) 0.002243 0.016018

Example 1 rmse(a(t)) 0.011574 0.025649
Values of objective function 2.230615e − 09 6.875563e − 07

at final iteration
rmse(s(t)) 0.000427 0.010687

Example 2 rmse(a(t)) 0.000540 0.012325
Values of objective function 6.037903e − 13 1.037434e − 11

at final iteration
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Example 2. Consider the the problem (6)-(9) with

µ1(t) = 1 + 8t, µ2(t) = (1 +
√

2 − t)2 + 8t,

µ3(t) = −2
√

1 + t, µ4(t) =
(1 +

√
2 − t)3

− 1
3

+ 8t
√

2 − t,

ϕ(y) = (1 +
√

2y)2, f (y, t) = 8 − 2
√

1 + t.

With this data the analytical solution is given by

v(y, t) = (1 + y)2 + 8t,

s(t) =
√

2 − t, a(t) =
√

1 + t,

and

u(x, t) = v(xs(t), t) = (1 + x
√

2 − t)2 + 8t,

s(t) =
√

2 − t, a(t) =
√

1 + t.

The results of using the proposed method are obtained with h = ∆t = 0.025 and T = 1. In direct solver,
when we solve the inverse problem, each local quadrature domain Ωi

q is taken as interval centered at xi
of radius rq = 0.7h where h = xi+1 − xi, i = 1, 2, ...N. Also the radius of support domain Ωs is rs = 4rq,
c = 1.17h and the quadratic basis functions (11) is used in Eq. (13). The domain integrals in direct solver
also are approximated using the 4 points Gaussian quadrature rule. In this example the initial guesses for
free boundary and thermal diffusivity at different time steps are s j = 1, a j = 1 for j = 0, 1, ...,M.
We first consider the case in which there is no noise in µ3(t j) and µ4(t j). In this case, the objective function E
as a function of parameters s j and a j decreases very fast in small number of iterations. The objective function
takes a stationary values of order 10−13 at the final iteration. Diagrams of exact solution and numerical
solution for s(t) and a(t) are plotted in Fig. 10. Diagrams of exact solution and numerical solution and
relative error for u(x, t) and v(y, t) also are presented in Fig. 11. and Fig. 12. Obtained results for δ = 0
show a very good agreement between the exact and numerical solutions. When the input data µ3(t j) and
µ4(t j) are contaminate with level noise δ = 0.02 the objective function is again convergence very fast and
takes stationary values of order 10−11 at the final iteration. Exact solution and numerical solution for s(t),
a(t), u(x, t), v(y, t) and relative error for u(x, t) and v(y, t) are presented in Fig. 10., Fig. 13. and Fig. 14.
Values of rmse for s(t) and a(t) and values of objective function in last iteration are given in Table 2. From
the obtained results it can be seen that the small perturbation in input data does not significantly affect in
the output solutions. It can be concluded in this example also that approximated solutions are stable.
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Fig. 10. For Example 2: Diagram of Exact solution, Numerical solution for s(t) and a(t) without noise
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Fig. 13. For Example 2: Diagram of Exact solution, Numerical solution and Relative error for u(x, t) with
δ = 0.02 and with h = ∆t = 0.025
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Fig. 14. For Example 2: Diagram of Exact solution, Numerical solution and Relative error for v(x, t) with
δ = 0.02 and with h = ∆t = 0.025

6. Conclusions

In this paper, inverse problem of free boundary and coefficient thermal identification is considered.
For solving this problem by using the change of variable we have transformed the free boundary problem
into a fixed boundary. A kind of MLPG method based on the moving least squares approximation, has
been applied to solve the direct problem. With an example we tested the direct solver. Inverse problem
has been reformulated as a least-squares minimization problem. Computations are performed by f mincon
routine MATLAB toolbox with the Interior − point algorithm. Obtained numerical results are shown that
the propose method is accurate and stable, although under a large measurement noise in input data.
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