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Abstract. The aim purpose of the present work is to investigate some new nonlinear Gronwall-Bellman-
Bihari type inequalities with singular kernel via k-fractional integral of Riemann-Liouville. This investiga-
tion generalizes some integral inequalities obtained in the literature and extends some other existing types
of fractional integral inequalities. The obtained findings can be used to study some properties of solution
for fractional differential equations.

1. Introduction

Fractional calculus is one of the disciplines of mathematical analysis which deals with arbitrary deriva-
tion and integration, the scope of which extends to several fields in addition to mathematics such as
biological, economic and engineering sciences and other areas see [8, 12–16, 23, 49] and references therein.

Beginning with the classical Riemann-Liouville fractional integral and derivative operators, a large
number of fractional integral and derivative operators as well as their generalizations and extensions have
been presented by numerous mathematicians with a slightly different formulas see [2, 24, 26, 27, 33].

The above mentioned fractional operators has been widely used mostly in the fields of integral inequal-
ities by many researchers see [22, 31, 32, 35–44].

The famous Gronwall inequality [18], can be declared as follows: if u be a continuous and nonnegative
function defined on the interval I = [a, a + h], and if

u (t) ≤
∫ t

a

(
αu (s) + β

)
ds (1)

for all t ∈ I, where a, α, β and h are nonnegative constants, then

u (t) ≤ bh expαh.

The inequality (1) has been largely studied by considerable number of authors during the last century
and has motivated some important lines of study which are currently active. Over the last decades a
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large number of papers have been appeared in the literature. These articles deal with the simple proofs,
generalizations, refinements, extensions and improvements. Among the most important and imposing
one, are: Bellman [4, 5], Gollwitzer [17], Bihari [6], Ou-Yang [46] , Györi [19], Beesack [3], Dafermos [7],
Martynyuk and Kosolapov [28], Norbury et al. [45], Pachpatte [47, 48], Jiang et Meng [25], Abdeldaim and
Yakout [1], and many others that we have not mentioned.

Indeed, these inequalities are not enough to treat all the problems because some of them in theory and
in practice call upon the resolution of integral inequalities with singular kernels. Among the results which
subsiste in this direction we mention the works of: Henry [21], Ye et al. [51], Medveď [30] and Nisar et al.
[34].

The objective of this study is to establish some new nonlinear Gronwall-Bellman-Bihari type inequalities
with a singular kernel via the k-fractional Riemann-Liouville integral. The obtained inequalities can be
used as practical tools to study it of certain properties of the solutions of differential and integral equations.

2. Preliminaries

For the reader’s convenience, let us recall some basic definitions and preliminary results of fractional
calculus which we’ll use in the next section.

Definition 2.1. ([49], [50]) For a continuous function u : [0,∞)→ R, the Rimann-Liouville derivative of fractional
order α > 0 is defined as

Dα
0+ u(t) =

1
Γ(n − α)

(
d
dt

)n ∫ t

0

u(s)
(t − s)α−n−1 ds, n = [α] + 1,

where [α] denotes the integer part of the real number α.

Definition 2.2. ([49], [50]) The Riemann-Liouville fractional integral of order α is defined as

Iαu(t) =
1

Γ(α)

∫ t

0

u(s)
(t − s)1−α ds, α > 0,

provided the integral exists.

Definition 2.3. ([9]) The k-gamma function is defined by

Γk(α) =

∫
∞

0
e−

tk
k tα−1dt (R(α) > 0; k ∈ R+).

We note that the k-gamma function enjoy the following properties
1- Γk (α + k) = αΓk (α)
2- Γk (k) = 1
3- Γk (α) = k

α
k −1Γ

(
α
k

)
, where Γ is the usual function gamma.

Definition 2.4. ([9]) The k-beta function is defined by

Bk
(
α, β

)
=


1
k

∫ 1

0 t
α
k −1 (1 − t)

β
k−1 dt (min{R(α),R(β)} > 0),

Γk(α)Γk(β)
Γk(α+β) (α, β ∈ C\kZ−0 ),

where kZ−0 denotes the set of k-multiples of the elements in Z−0 .

Definition 2.5. ([11]) The k-Mittag-Leffler function is defined by

Ek,α,β(t) =

∞∑
n=0

tn

Γk(nα + β)
(α, β ∈ C,R(α) > 0, k ∈ R+).
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Definition 2.6. ([33]) The k-fractional Riemann-Liouville integral of order α is defined as

Iαk u(t) = 1
kΓk(α)

∫ t

0

u(s)

(t−s)1− αk
ds.

Definition 2.7. ([29]) A function ϕ(u) is said to be subadditive, if

ϕ(u + v) ≤ ϕ(u) + ϕ(v)

for u, v ≥ 0.

Definition 2.8. ([20]) A function ϕ(u) is said to be submultiplicative, if

ϕ(uv) ≤ ϕ(u)ϕ(v)

for u, v ≥ 0.

Definition 2.9. ([10]) A functionϕ : [0,+∞)→ [0,+∞) is said to belong to the classF ifϕ (u) > 0 is nondecreasing
and continuous for u ≥ 0 and

1
p
ϕ (u) ≤ ϕ

(
u
p

)
for p > 0.

Lemma 2.10. ([25]) Assume that a ≥ 0, p ≥ q ≥ 0 and p , 0, then for any ε > 0 we have

a
q
p ≤

q
pε

q−p
p a +

p−q
p ε

q
p .

3. Main results

Theorem 3.1. Let h and u be nonnegative and locally integrable functions defined on [0,T) with T ≤ +∞, and f be
a nonnegative, nondecreasing, and continuous function on [0,T) such that f is bounded on [0,T) i.e.

∣∣∣ f (t)
∣∣∣ ≤ M for

all t ∈ [0,T) . Let p, q, ε, λ, k positive numbers such that p ≥ q. If

up (t) ≤ h (t) + f (t)

t∫
0

(
t − ρ

) λ
k −1 uq (ρ) dρ (2)

then

u (t) ≤

h1 (t) +

∞∑
i=1

ki−1(Γk(λ))i

Γk(iλ)
(

f1 (t)
)i

t∫
0

(
t − ρ

)i λk −1 h1
(
ρ
)

dρ


1
p

,

where

h1 (t) = h (t) + k
λ

p−q
p ε

q
p t

λ
k f (t) (3)

and

f1 (t) =
q
pε

q−p
p f (t) . (4)
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Proof. Define a function z by

z (t) = up (t) . (5)

Substituting (5) in (2) and using Lemma 2.10, we obtain

z (t) ≤ h1 (t) + f1 (t)

t∫
0

(
t − ρ

) λ
k −1 z

(
ρ
)

dρ (6)

where h1and f1 are defined as in (3) and (4) respectively.
We can also choose a function χ : [0,T)→ R+ satisfying

χz (t) = f1 (t)

t∫
0

(
t − ρ

) λ
k −1 z

(
ρ
)

dρ. (7)

From (6) and (7) we deduce

z (t) ≤ h1 (t) + χz (t) . (8)

substituting z (t) in the right side of (8) we get

z (t) ≤ h1 (t) + χh1 (t) + χ2z (t) .

By repeating n-times with n > 1, the substitution process we can conclude that

z (t) ≤
n−1∑
i=0

χih1 (t) + χnz (t) , for n ≥ 1. (9)

Let’s show now that

χnz (t) ≤ kn−1(Γk(λ))n

Γk(nλ)
(

f1 (t)
)n

t∫
0

(
t − ρ

)n λ
k −1 z

(
ρ
)

dρ (10)

for n ≥ 1 and t ∈ [0,T).
It is clear that relation (10) is true for n = 1. Suppose this is true for all k ≤ n, for k = n + 1 the induction

hypothesis and using the fact that f1 is nondecreasing, we have

χn+1z (t) = χχnz (t)

= f1 (t)

t∫
0

(
t − ρ

) λ
k −1 χnz

(
ρ
)

dρ

≤ f1 (t)

t∫
0

(
t − ρ

) λ
k −1

 kn−1(Γk(λ))n

Γk(nλ)
(

f1
(
ρ
))n

ρ∫
0

(
ρ − τ

)n λ
k −1 z (τ) dτ

 dρ

≤
kn−1(Γk(λ))n

Γk(nλ)
(

f1 (t)
)n+1

t∫
0

(
t − ρ

) λ
k −1


ρ∫
0

(
ρ − τ

)n λ
k −1 z (τ) dτ

 dρ.

By interchanging the order of integration taking into account that 0 ≤ τ ≤ ρ ≤ t, and making the change of
variable ρ = w (t − τ) + τ, we get
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χn+1z (t) ≤
kn−1(Γk(λ))n

Γk(nλ)
(

f1 (t)
)n+1

t∫
0


t∫
τ

(
t − ρ

) λ
k −1 (

ρ − τ
)n λ

k −1 dρ

 z (τ) dτ

≤
kn−1(Γk(λ))n

Γk(nλ)
(

f1 (t)
)n+1

×

t∫
0


t∫
τ

(t − τ)
λ
k −1 (1 − w)

λ
k −1 wn λ

k −1 (t − τ)n λ
k −1 (t − τ) dw

 z (τ) dτ

≤
kn−1(Γk(λ))n

Γk(nλ)
(

f1 (t)
)n+1

t∫
0

(t − τ)(n+1) λk −1


1∫
0

(1 − w)
λ
k −1 wn λ

k −1dw

 z (τ) dτ

≤
kn−1(Γk(λ))n

Γk(nλ)
(

f1 (t)
)n+1

t∫
0

(t − τ)(n+1) λk −1 (kBk (nλ, λ)) z (τ) dτ

≤
kn−1(Γk(λ))n

Γk(nλ)

(
kΓk(nλ)Γk(λ)
Γk((n+1)λ)

) (
f1 (t)

)n+1

t∫
0

(t − τ)(n+1) λk −1 z (τ) dτ

≤
kn(Γk(λ))n+1

Γk((n+1)λ)
(

f1 (t)
)n+1

t∫
0

(t − τ)(n+1) λk −1 z (τ) dτ.

Now, we will prove that

lim
n→+∞

χnz (t) = 0 for each t ∈ [0,T) .

It’s obvious when n tends towards +∞, nλ
k − 1 will be very big. Hence (t − τ)n λ

k −1
≤ tn λ

k −1 for all τ ∈ [0, t].
Since z is nonnegative and locally integrable on [0,T), z is integrable on [0, t]. So, z is bounded on [0, t] there
exist L > 0 such that for all τ ∈ [0, t] : |z (τ)| ≤ L. From these arguments and the assumptions given, we
conclude from (10)

χnz (t) ≤ L kn−1(Γk(λ))n

Γk(nλ) tn λ
k

(
q
pε

q−p
p M

)n

≤ L
kn−1

(
k
λ
k −1

Γ( λk )
)n

k
nλ
k −1

Γ( nλ
k )

tn λ
k

(
q
pε

q−p
p M

)n

≤ L (Γ( λk ))n

Γ( nλ
k )

(
q
pε

q−p
p t

λ
k M

)n
. (11)

By virtue of Stirling’s formula, (11) gives

χnz (t) ≤ L
(

k
λ2π

) 1
2

(
q
pε

q−p
p

(
tek
λ

) λ
k M Γ

(
λ
k

))n

nn λ
k −

1
2

,

which implies

χnz (t)→ 0 as n→ +∞. (12)

Taking the limit on both sides of (9) and using (12) we obtain

z (t) ≤ h1 (t) +

∞∑
i=1

ki−1(Γk(λ))i

Γk(iλ)
(

f1 (t)
)i

t∫
0

(
t − ρ

)i λk −1 h1
(
ρ
)

dρ. (13)
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Combining (5) and (13), we get the desired result.

Corollary 3.2. Under the assumptions of Theorem 3.1, and additionally if we choose p = q = 1, if

u (t) ≤ h (t) + f (t)

t∫
0

(
t − ρ

) λ
k −1 u

(
ρ
)

dρ

then

u (t) ≤ h (t) +

∞∑
i=1

ki−1(Γk(λ))i

Γk(iλ)
(

f (t)
)i

t∫
0

(
t − ρ

)i λk −1 h
(
ρ
)

dρ.

Remark 3.3. Corollary 3.2 will be reduced to Theorem 1 from [51], if we take k = 1.

Remark 3.4. In Corollary 3.2 if we put f (t) = kφ(t), we obtain

u (t) ≤

h (t) +

+∞∑
i=1

(k2Γk(λ)φ(t))i

kΓk(iλ)

t∫
0

(
t − ρ

)i λk −1 h
(
ρ
)

dρ

 ,
which is the correct expression of Theorem 2.1 from [34].

Corollary 3.5. Under the assumptions of Theorem 3.1, and additionally h(t) is a nondecreasing function on [0,T).
If (2) is satisfied, then one has the following estimate

u (t) ≤
{
h1 (t) Ek,λ,k

(
kΓk (λ) f1 (t) t

λ
k

)} 1
p ,

where h1and f1 are defined as in (3) and (4) respectively.

Proof. From Theorem 3.1 we have

u (t) ≤

h1 (t) +

∞∑
i=1

ki−1(Γk(λ))i

Γk(iλ)
(

f1 (t)
)i

t∫
0

(
t − ρ

)i λk −1 h1
(
ρ
)

dρ


1
p

. (14)

Using the fact that h is a nondecreasing function, (14) gives

u (t) ≤

h1 (t)

1 +

+∞∑
i=1

ki−1(Γk(λ))i

Γk(iλ)
(

f1 (t)
)i

t∫
0

(
t − ρ

)i λk −1 dρ




1
p

≤

h1 (t)

1 +

+∞∑
i=1

ki(Γk(λ))i

iλΓk(iλ)
(

f1 (t)
)i ti λk




1
p

≤

h1 (t)

1 +

+∞∑
i=1

(
kΓk(λ) f1(t)t

λ
k

)i

Γk(iλ+k)




1
p

≤

h1 (t)
+∞∑
i=0

(
kΓk(λ) f1(t)t

λ
k

)i

Γk(iλ+k)


1
p

≤

{
h1 (t) Ek,λ,k

(
kΓk (λ) f1 (t) t

λ
k

)} 1
p ,

which is the desired result.
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Remark 3.6. Corollary 3.5 will be reduced to Corollary 2 from [51], if we take k = p = q = 1.

Remark 3.7. In Corollary 3.5 if we put f (t) = kφ(t) and choose p = q = 1, we obtain

u (t) ≤ h (t) Ek,λ,k(k2Γk (λ)φ (t) t
λ
k ),

which is the correct expression of Corollary 2.3 from [34].

Theorem 3.8. Let h and u be nonnegative and locally integrable functions defined on [0,T) with T ≤ +∞, and f and
w be a nonnegative, nondecreasing, and continuous function on [0,T) such that f is bounded on [0,T) i.e.

∣∣∣ f (t)
∣∣∣ ≤M

for all t ∈ [0,T) and w ∈ F , subadditive and convex function. If

u (t) ≤ h (t) +

t∫
0

(
t − ρ

) λ
k −1 f

(
ρ
)

w
(
u
(
ρ
))

dρ (15)

then

u (t) ≤ w−1

w (h (t)) +

∞∑
i=1

ki−1(Γk(λ))i

Γk(iλ) (tw (M))i

t∫
0

(
t − ρ

)i λk −1 w
(
h
(
ρ
))

dρ

 ,
wherew (h (t)) +

∞∑
i=1

ki−1(Γk(λ))i

Γk(iλ) (tw (M))i

t∫
0

(
t − ρ

)i λk −1 w
(
h
(
ρ
))

dρ

 ∈ Dom w−1.

Proof. By applying w in both sides of (15), we get

w (u (t)) ≤ w

h (t) +

t∫
0

(
t − ρ

) λ
k −1 f

(
ρ
)

w
(
u
(
ρ
))

dρ

 .
Using the fact that w is continous and subadditive, we get

w (u (t)) ≤ w (h (t)) + w


t∫
0

(
t − ρ

) λ
k −1 f

(
ρ
)

w
(
u
(
ρ
))

dρ

 . (16)

Applying Jensen’s inequality to (16), we obtain

w (u (t)) ≤ w (h (t)) + t

t∫
0

w
((

t − ρ
) λ

k −1 f
(
ρ
)

w
(
u
(
ρ
)))

dρ.
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Since w ∈ F , and f is bounded, then

w (u (t)) ≤ w (h (t)) + t

t∫
0

w
((

t − ρ
) λ

k −1 f
(
ρ
)

w
(
u
(
ρ
)))

dρ

≤ w (h (t)) + t

t∫
0

w

 1
1

w(u(ρ))

(
t − ρ

) λ
k −1 f

(
ρ
) dρ

≤ w (h (t)) + t

t∫
0

1
1

(t−ρ)
λ
k −1

w(u(ρ))

w
(

f
(
ρ
))

dρ

≤ w (h (t)) + t

t∫
0

(
t − ρ

) λ
k −1 w

(
u
(
ρ
))

w
(

f
(
ρ
))

dρ

≤ w (h (t)) + t w (M)

t∫
0

(
t − ρ

) λ
k −1 w

(
u
(
ρ
))

dρ.

Now, putting z (t) = w (u (t)) and using Theorem 3.1 with p = q = 1, we get

z (t) ≤

w (h (t)) +

∞∑
i=1

ki−1(Γk(λ))i

Γk(iλ) (t w (M))i

t∫
0

(
t − ρ

)i λk −1 w
(
h
(
ρ
))

dρ

 ,
which implies that

u (t) ≤ w−1

w (h (t)) +

∞∑
i=1

ki−1(Γk(λ))i

Γk(iλ) (t w (M))i

t∫
0

(
t − ρ

)i λk −1 w
(
h
(
ρ
))

dρ

 .
The proof is completed.

Theorem 3.9. Under the hypothesis of Theorem 3.8, we have

u (t) ≤ h (t) +

∞∑
i=1

ki−1(Γk(λ))i

Γk(iλ)
(
w (1) f (t)

)i−1

t∫
0

(
t − ρ

)i λk −1 w (1) f
(
ρ
)

h
(
ρ
)

dρ.

Proof. Using (15) and the fact that w ∈ F , we have

u (t) ≤ h (t) +

t∫
0

(
t − ρ

) λ
k −1 f

(
ρ
)

u
(
ρ
)

w (1) dρ. (17)

Multiplying both sides of (17) by w (1) f (t) and letting w (1) f (t) u (t) = z (t), we get

z (t) ≤ w (1) f (t) h (t) + w (1) f (t)

t∫
0

(
t − ρ

) λ
k −1 z

(
ρ
)

dρ. (18)
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Now applying Theorem 3.1 with p = q = 1 for (18) we obtain

z (t) ≤ w (1) f (t)

h (t) +

∞∑
i=1

ki−1(Γk(λ))i

Γk(iλ)
(
w (1) f (t)

)i−1

t∫
0

(
t − ρ

)i λk −1 w (1) f
(
ρ
)

h
(
ρ
)

dρ

 .
Since w (1) f (t) u (t) = z (t), we conclude the desired result.

Theorem 3.10. Let h and u be nonnegative and locally integrable functions defined on [0,T) with T ≤ +∞, and f , 1
and w be a nonnegative, nondecreasing, and continuous function on [0,T) such that f and 1 are bonded on [0,T) i.e.∣∣∣ f (t)

∣∣∣ ≤M and
∣∣∣1 (t)

∣∣∣ ≤ L for all t ∈ [0,T) and w ∈ F , subadditive, submultiplicative and convex function. If

u (t) ≤ h (t) + 1 (t)

t∫
0

(
t − ρ

) λ
k −1 f

(
ρ
)

w
(
u
(
ρ
))

dρ (19)

then

u (t) ≤ w−1

w (h (t)) +

∞∑
i=1

ki−1(Γk(λ))i

Γk(iλ) (t w (L) w (M))i

t∫
0

(
t − ρ

)i λk −1 w
(
h
(
ρ
))

dρ

 ,
wherew (h (t)) +

∞∑
i=1

ki−1(Γk(λ))i

Γk(iλ) (t w (L) w (M))i

t∫
0

(
t − ρ

)i λk −1 w
(
h
(
ρ
))

dρ

 ∈ Dom w−1.

Proof. By applying w in both sides of (19), we get

w (u (t)) ≤ w

h (t) + 1(t)

t∫
0

(
t − ρ

) λ
k −1 f

(
ρ
)

w
(
u
(
ρ
))

dρ

 .
Using the fact that w is continous, subadditive and submultiplicative, we get

w (u (t)) ≤ w (h (t)) + w
(
1 (t)

)
w


t∫
0

(
t − ρ

) λ
k −1 f

(
ρ
)

w
(
u
(
ρ
))

dρ

 .
By an argument similar as in Theorem 3.8 we applying Jensen’s inequality and the fact that w ∈ F , f and 1
are bounded functions, we get

w (u (t)) ≤ w (h (t)) + t w (L) w (M)

t∫
0

(
t − ρ

) λ
k −1 w

(
u
(
ρ
))

dρ.

Let z (t) = w (u (t)). By using Theorem 3.1 with p = q = 1, we get

z (t) ≤

w (h (t)) +

∞∑
i=1

ki−1(Γk(λ))i

Γk(iλ) (t w (L) w (M))i

t∫
0

(
t − ρ

)i λk −1 w
(
h
(
ρ
))

dρ

 ,
which implies that

u (t) ≤ w−1

w (h (t)) +

∞∑
i=1

ki−1(Γk(λ))i

Γk(iλ) (t w (L) w (M))i

t∫
0

(
t − ρ

)i λk −1 w
(
h
(
ρ
))

dρ

 .
The proof is completed.
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4. Applications

In this section, we present some applications of the results. Let us consider the following fractional
dynamic equation

u (t) = F
(
t, Iαk u(t)

)
, (20)

where Iαk is the k-fractional Riemann-Liouville integral of order α and F : [0,T)×R2
→ R is continuous

function with T ≤ +∞.

Proposition 4.1. Assume that∣∣∣∣F (
t, Iαk u(t)

)∣∣∣∣ ≤ {
h (t) + kΓk(α) f (t) Iαk |u(t)|q

} 1
p , (21)

where h, f , p and q are defined as in Theorem 3.1. Then the solution u(t) of (20) has the following estimate

|u (t)| ≤

h1 (t) +

+∞∑
i=1

ki−1(Γk(α))i

Γk(iα)
(

f1 (t)
)i

t∫
0

(
t − ρ

)i αk −1 h1
(
ρ
)

dρ


1
p

, (22)

where h1 and f1 are given by (3) and (4) respectively.

Proof. Let u (t) be a solution of (20), using (21) and modulus, we obtain

|u (t)|p ≤ h (t) + f (t)

t∫
0

(
t − ρ

) λ
k −1

∣∣∣u (
ρ
)∣∣∣q dρ. (23)

Now, an application of Theorem 3.1 for (23) we get the estimate (22).

Proposition 4.2. Assume that∣∣∣∣F (
t, Iαk u(t)

)∣∣∣∣ ≤ h (t) + kΓk(α) f (t) Iαk uq(t), (24)

where h, f , p and q are defined as in Theorem 3.1 with p = q. Then (20) has at most one solution on [0,T).

Proof. Let u (t) and v (t) be tow solutions of (20) and (24), then we have

up (t) ≤ h (t) + f (t)

t∫
0

(
t − ρ

) λ
k −1 up (

ρ
)

dρ, (25)

and

vp (t) ≤ h (t) + f (t)

t∫
0

(
t − ρ

) λ
k −1 vp (

ρ
)

dρ. (26)

Making the difference between (25) and (26), and taking the absolute value at both sides of the resulting
equality, we get

|up (t) − vp (t)| ≤ f (t)

t∫
0

(
t − ρ

) λ
k −1 (|up (t) − vp (t)|) dρ. (27)

An application of Corollary 3.5 to (27) and since h1 (t) = h (t)+ k
λ

p−q
p ε

q
p t

λ
k t

λ
k f (t) = 0 it yields |up (t) − vp (t)| = 0,

which implies that the problem (20) and (24) admits a unique solution.
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5. Conclusion

The main contribution of this paper is the establishment of some new generalizations of nonlinear
Gronwall-Bellman-Bihari type inequalities with singular kernel associated with the Riemann-Liouville-type
k-fractional integral operator. By suitably choosing and/or changing the parameters in these inequalities,
from our main results, we can easily obtain additional (and further) fractional integral inequalities, some
of them are known in the literature, and extend other some existing ones. For example, by setting k = 1 or
k = p = q = 1, some Riemann-Liouville fractional integral inequalities studied by Ye, Gao and Ding in [51]
can be obtained; by choosing f (t) = kφ(t) and p = q = 1, some Riemann-Liouville type k-fractional integral
inequalities defined by Nisar et al. in [34] can be deduced. To illustrate the benefits and importance of the
obtained main findings, we note that they can be useful in the study of some properties of solutions for
some classes of nonlinear fractional differential equations.
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