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Abstract. Given a graph G and a positive integer i, an i-packing in G is a subset W of the vertex set of G
such that the distance between any two distinct vertices from W is greater than i. The packing chromatic
number of a graph G, χρ(G), is the smallest integer k such that the vertex set of G can be partitioned into sets
Vi, i ∈ {1, . . . , k}, where each Vi is an i-packing. In this paper, we present some general properties of packing
chromatic numbers of finite super subdivisions of graphs. We determine the packing chromatic numbers of
the finite super subdivisions of complete graphs, cycles and some neighborhood corona graphs.

1. Introduction

In this paper, we consider only finite, simple graphs. We will use the following definitions and notations.
For a given graph G, the vertex set of G is denoted by V(G) and the edge set by E(G). The (open) neighborhood
of a vertex u ∈ V(G) is the set of all vertices adjacent to u: NG(u) = {v ∈ V(G)|uv ∈ E(G)} (we often drop the
subscript if the graph G is clear from context). The degree of u, denoted by degG(u) (or shorter deg(u)), is
|NG(u)|. Further, the minimum degree of G, denoted by δ(G), is defined to be δ(G) =min{deg(v)|v ∈ V(G)}.

The distance between two vertices u, v ∈ V(G), denoted by dG(u, v) (or d(u, v) in the case when a graph G
is clear from context), is the length of a shortest u, v-path. The maximum of {dG(x, y)|x, y ∈ V(G)} is called
the diameter of G and is denoted by diam(G). Given a positive integer i, an i-packing in G is a subset W
of the vertex set of G with the property that the distance between any two distinct vertices from this set
is greater than i. Note that this concept generalizes the notion of an independent set, which is equivalent
to a 1-packing. Further, the packing chromatic number of a given graph G, χρ(G), is defined as the smallest
integer k such that the vertex set of G can be partitioned into sets V1, V2, . . . , Vk, where Vi is an i-packing for
each i ∈ {1, 2, . . . , k}. The corresponding mapping c : V(G)→ [k], satisfying the property that c(u) = c(v) = i
implies dG(u, v) > i, is called a k-packing coloring. In the case when k = χρ(G), we say that k-packing coloring
is optimal.

The concept of the packing chromatic number was introduced in 2008 by Goddard et al. [15]. First, it
was presented under the name broadcast chromatic number, and the current name was given in [6]. The
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concept arose from the area of frequency assignment in wireless networks [12, 27] and also has several
additional applications, such as in resource replacement and biological diversity [6].

The packing chromatic number has been investigated in a number of papers, for example, there exist
more than 10 papers, which were published only in the last two years (see [1, 2, 4, 5, 9, 16, 19, 20, 22, 23, 26]).
This confirms a wide interest given to this concept. One of the main areas of investigation has been to
determine the packing chromatic numbers of infinite graphs such as infinite grids, lattices, distance graphs,
etc. [3, 6, 10, 11, 13, 21]. For instance, in the last paper in a series Barnaby et al. [3] prove that the packing
chromatic number of the infinite square lattice is between 13 and 15. A lot of attention has been also
given to the question of boundedness of the packing chromatic numbers in the class of cubic graphs. The
question was answered in the negative by Balogh, Kostochka and Liu [1] and there is also known an explicit
construction of an infinite family of subcubic graphs with unbounded packing chromatic number (see [5]).
Note that the problem of determining the packing chromatic number is computationally (very) hard [12] as
its decision version is NP-complete even when restricted to trees (see also a more recent investigation [19]).

It is known that the packing chromatic number satisfies the hereditary property in the sense that a
graph cannot have smaller packing chromatic number that its subgraphs. The behaviour of the invariant
under some local operations, as edge-contraction, vertex-deletion, edge-deletion, and edge subdivision was
investigated in [7], while the packing chromatic number of subdivision of a given graph (a graph obtained
from a given graph G by subdividing every edge of G, denoted by S(G)) was considered, for example
in [6]. In particular, it was proven that for any connected graph G with at least three vertices, we have:
ω(G) + 1 ≤ χρ(S(G)) ≤ χρ(G) + 1 (recall that ω(G) denotes the clique number of G, i.e. the number of the
vertices in a maximum clique of G).

Further, given a graph G and a positive integer m, the finite super subdivision of G, denoted by FSSDm(G),
is the graph obtained from G by replacing each of its edges with a complete bipartite graph K2,m. In other
words, FSSDm(G) is obtained from G by first multiplying each of its edges m times and then making the
subdivision graph from the resulting multigraph. Note that the subdivision of a given graph G, S(G),
is equivalent to FSSDm(G), when m = 1, and hence finite super subdivision graphs are in some way a
generalization of subdivision graphs.

A (finite) super subdivision of a graph was considered in several papers (see e.g. [18, 24, 25, 28]), but it
is known only a little about the packing chromatic numbers of super subdivision graphs. Actually, we have
found only one paper considering the packing chromatic number of such graphs (written by William and
Roy [28]). Moreover, the authors of the mentioned paper determined only the packing chromatic number
of finite super subdivision of star graphs, and hence, we consider this topic.

In the first part of the paper, we present some general properties of packing chromatic numbers of finite
super subdivisions of graphs. More precisely, we give a lower and an upper bound for χρ(FSSDm(G)), where
G is an arbitrary connected graph with at least three vertices and m is any positive integer. Namely, we
prove that ω(G) + 1 ≤ χρ(FSSDm(G)) ≤ χρ(G) + 1, which generalizes the result for subdivision of graph from
[6]. Further, we prove that the packing chromatic numbers of graphs FSSDm(G), FSSDm+1(G), FSSDm+2(G),
. . . are equal, when m is large enough, i.e. it is greater than χρ(G)

δ(G) . In addition, we determine also the packing
chromatic numbers of super subdivision graphs G in the case when G is a bipartite graph, a complete graph
or a cycle.

In the second part of the paper, we consider the packing chromatic numbers of finite super subdivision
graphs of neighborhood corona graphs. Recall that the neighborhood corona graph of graphs G (with |V(G)| =
n1) and H is the graph, obtained by one copy of G and n1 copies of H, such that each vertex of i-th copy of
H is adjacent to all neighbors of i-th vertex of G. This graph is denoted by G ?H. In particular, when H is
isomorphic to K1, G?H is called a splitting graph and is denoted by S′(G). Recall that neighborhood corona
graphs have some nice properties about their structure (see e.g. [17]), which motivated us to consider their
finite super subdivision graphs. In this paper, we provide the exact values for χρ(FSSDm(Kn ?Pp)), when m
is a positive arbitrary integer, and the upper bound for χρ(FSSDm(Cn ? Pp)). At the end, we provide some
remarks and open questions.
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2. Finite super subdivisions

In this section, we study general properties of finite super subdivision graphs.
We will use the following notations for the vertices of FSSDm(G). The vertices corresponding to the

vertices of G, are denoted by u1,u2, . . . ,un, and for any pair of vertices ui,u j, i, j ∈ {1, 2, . . . ,n}, i , j, we
denote the common neighbors of them by uk

i, j (these vertices will be called subdivided vertices), where
k ∈ {1, . . . ,m}. Further, recall two well known results of packing chromatic number, which will be used
several times in the sequel of this paper. While the first proposition states that the packing chromatic
number satisfies the hereditary property, the second provides the values of packing chromatic numbers for
cycles.

Proposition 2.1. [15] For any subgraph H of a given graph G,

χρ(H) ≤ χρ(G).

Proposition 2.2. [15] If Cn is any cycle of order n, then

χρ(Cn) =

{
3; n = 4k, k ≥ 1, or n = 3,
4; otherwise.

While the next proposition have been already proven for subdivisions of graph (i.e. graphs FSSDm(G),
when m = 1), we present its generalization (considering the number m). Namely, we provide the lower and
the upper bound for χρ(FSSDm(G)).

Proposition 2.3. If m ≥ 1 and G is a connected graph with at least three vertices, then

ω(G) + 1 ≤ χρ(FSSDm(G)) ≤ χρ(G) + 1.

Proof. It is known that the result holds for m = 1 [6]. Then, since for any m ≥ 1 FSSDm(G) contains a
subgraph isomorphic to FSSD1(G), Proposition 2.1 implies that ω(G) + 1 ≤ χρ(FSSD1(G)) ≤ χρ(FSSDm(G))
for each m ≥ 1. In order to provide the upper bound, denote by c any optimal packing coloring of G and
define a coloring c′ of FSSDm(G) as follows: c′(uk

i, j) = 1 and c′(ui) = c(ui) + 1 for any i, j ∈ {1, . . . ,n}, i , j, and
k ∈ {1, . . . ,m}. It is easy to check that c′ is a packing coloring. Namely, suppose that c′(ui) = c′(u j) = l ≥ 2 for
some i, j and color l. Then c(ui) = c(u j) = l − 1, which implies that dG(ui,u j) ≥ l and thus dFSSDm(G)(ui,u j) ≥
2l ≥ l + 1 for any l ≥ 2. Additionally, note that the distance between any two vertices both colored with
color 1 is at least 2. Therefore, c′ is a packing coloring of FSSDm(G) and since it uses color 1 and exactly
χρ(G) other colors, χρ(FSSDm(G)) ≤ χρ(G) + 1, what completes the proof.

Note that in the case of graphs G with χρ(G) = ω(G), the written bounds provide the exact values for
χρ(FSSDm(G)), m ≥ 1. For example, applying the written proposition, we derive the following corollary.

Corollary 2.4. For any n ≥ 3 and m ≥ 1, χρ(FSSDm(Kn)) = n + 1.

In addition, complete graphs (and other graphs G with χρ(G) = ω(G)) prove that the above written
bounds are sharp.

Since by Proposition 2.3, the packing chromatic number of the family of graphs {FSSD1(G), FSSD2(G),FSSD3(G), . . .}
is bounded from above, and by Proposition 2.1, χρ(FSSDm(G)) ≤ χρ(FSSDm+1(G)) for any graph G and any
m ≥ 1, we infer that the packing chromatic numbers of graphs FSSDm(G), FSSDm+1(G), FSSDm+2(G), . . . are
equal, when m is large enough. Hence, we are interested in question, for which m is χρ(FSSDm(G)) =
χρ(FSSDm+1(G)) = χρ(FSSDm+2(G)) = . . .. With the following two propositions, we prove that the written

equalities hold for any m greater than χρ(G)
δ(G) . In addition, we prove that in the case of complete graphs of

order at least 3, bipartite graphs of order at least 3 and cycles, the equality actually holds for any m ≥ 1.
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Proposition 2.5. Let G be a graph and m ≥ 1 a positive integer. If there exists an optimal packing coloring c of
FSSDm(G) which assigns to all subdivided vertices a color 1, then χρ(FSSDm(G)) = χρ(FSSDm+1(G)).

Proof. Let G be a graph, m ≥ 1 a positive integer and c an optimal packing coloring of FSSDm(G) which
assigns to all subdivided vertices a color 1. By setting c′(ui) = c(ui) for any ui, and assigning a color 1
to all other vertices of FSSDm+1(G), we get a χρ(FSSDm(G))-packing coloring of FSSDm+1(G) and hence,
χρ(FSSDm(G)) = χρ(FSSDm+1(G)).

Proposition 2.6. If G is any graph and m >
χρ(G)
δ(G) a positive integer, then

χρ(FSSDm(G)) = χρ(FSSDm+1(G)).

Proof. Let m >
χρ(G)
δ(G) be an arbitrary positive integer. Then m >

χρ(G)
degG(ui)

for each ui, i ∈ {1, . . . ,n}, and thus
m · degG(ui) > χρ(G). Clearly, degFSSDm(G)(ui) = degG(ui) · m for any ui, thus 1 + degFSSDm(G)(ui) > 1 + χρ(G).
By Proposition 2.3, it follows that 1 + degFSSDm(G)(ui) > χρ(FSSDm(G)).

Next, let c be any optimal packing coloring of FSSDm(G). Prove that, if c assigns a color 1 to a vertex
ui, i ∈ {1, . . . ,n}, then it uses at least 1 + degFSSDm(G)(ui) colors. Suppose that c(ui) = 1 for some i ∈ {1, . . . ,n}.
Then, the neighbors of ui get pairwise different colors (since they are pairwise at distance 2, but cannot be
colored with color 1) and hence c uses at least 1 + degFSSDm(G)(ui) colors (actually these colors are already
required for a packing coloring of vertices from NFSSDm(G)[ui]). But since 1 + degFSSDm(G)(ui) > χρ(FSSDm(G)),
c is not optimal and therefore, c(ui) , 1 for any i ∈ {1, . . . ,n}. Without loss of generality, we may assume that
all other (subdivided) vertices get color 1 (since they are pairwise at distance at least 2). Then, Proposition
2.5 implies the result.

Therefore, if m >
χρ(G)
δ(G) , then χρ(FSSDm(G)) = χρ(FSSDm+1(G)), but the case when m ≤ χρ(G)

δ(G) is still
opened. Clearly, also in this case for any graph G and any m ≥ 1 the following inequality holds:
χρ(FSSDm(G)) ≤ χρ(FSSDm+1(G)). As we will see, there exist graphs, for example cycles of order 2k + 1,
k ≥ 2 (see Propositions 2.2 and 2.8), which satisfy the property that χρ(G) = χρ(FSSDm(G)) for any m ≥ 1.
But for the others, there is a question of when there appear a change of the value of the packing chro-
matic number. More precisely, for which m we have χρ(FSSDm(G)) < χρ(FSSDm+1(G)) = χρ(FSSDm+i(G))
for any i ≥ 2? Based on the Proposition 2.5, we derive that a necessary condition for the inequality of
χρ(FSSDm(G)) and χρ(FSSDm+1(G)) is that any optimal packing coloring of FSSDm(G) assigns to at least one
of the subdivided vertices a color greater than 1. For example, any optimal packing coloring of FSSD1(K2)
assigns to a subdivided vertex a color 2 and we have: 2 = χρ(FSSD1(K2)) < χρ(FSSDm(K2)) = 3, m ≥ 2.
Also for the Petersen graph, χρ(FSSD1(P)) = 5 (see [8]) and it is easy to observe that there exists an optimal
packing coloring FSSDm(P), m ≥ 2, which assigns to all subdivided vertices a color 1, which implies that
χρ(FSSDm(P)) = χρ(FSSDm+1(P)) ≥ 6 for any m ≥ 2. We have to mention that we were not able to find any
other graph G such that χρ(FSSD1(G)) < χρ(FSSD2(G)), and in addition, we have not found any graphs G
with the property that χρ(FSSDm(G)) < χρ(FSSDm+1(G)) for any m ≥ 2. Hence, there arises an open question
of whether there exists a graph G with the written property.

We continue with the consideration of packing chromatic numbers of finite super subdivision graphs
of bipartite graphs and (other) cycles. While the result has been already known for all bipartite graphs (it
follows from Proposition 3.3. in [15]), we give the exact values also for cycles.

Proposition 2.7. For any bipartite graph G of order at least 3 and any m ≥ 1,

χρ(FSSDm(G)) = 3.
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Proposition 2.8. If n ≥ 3 and m ≥ 1, then

χρ(FSSDm(Cn)) =

{
3; n is even,
4; n is odd.

Proof. Let n ≥ 3 and m ≥ 1 be arbitrary integers. If n is even, then Proposition 2.7 implies the result.
Otherwise, note that FSSDm(Cn) contains a subgraph, which is isomorphic to a cycle C2n. Since in this
case 2n is not a multiple of 4 and 2n , 3, the results from Proposition 2.1 and Proposition 2.2 imply that
χρ(FSSDm(Cn)) ≥ 4. To show that χρ(FSSDm(Cn)) ≤ 4, color all vertices uk

i, j, i, j ∈ {1, . . . ,n}, i , j, k ∈ {1, . . . ,m},
with color 1 and the consecutive vertices u1,u2, . . . ,un one after another using the following pattern of colors:
2, 3, 2, 3, . . . , 2, 3, 4. Clearly, this is a 4-packing coloring of FSSDm(Cn), thus χρ(FSSDm(Cn)) = 4.

3. Finite super subdivision graphs of neighborhood corona graphs

We continue with determining the packing chromatic numbers of finite super subdivision graphs of
neighborhood corona graphs. Note that neighborhood corona graphs were defined in Section 1.

In the sequel of this paper we consider finite super subdivision graphs of the following neighborhood
corona graphs: Kn ? Pp and Cn ? Pp, where n ≥ 3 and p ≥ 1. We use the following notations of the
vertices of FSSDm(Kn ? Pp) respectively FSSDm(Cn ? Pp). The vertices of Kn ? Pp respectively Cn ? Pp,
which are corresponding to the vertices from V(Kn) respectively V(Cn), are denoted by u1,u2, . . . ,un. For
any ui, i ∈ {1, . . . ,n}, denote the corresponding copy of Pp by Pi,p and the vertices of Pi,p by vi,1, where
1 ∈ {1, 2, . . . , p} (in particular, when p = 1, these vertices are denoted by vi). The common neighbors of ui
and u j, where i, j ∈ {1, 2, . . . ,n}, i , j, are denoted by uk

i, j, where k ∈ {1, 2, . . . ,m}. Analogously, the vertices

which connect vi,1 and vi,h, where i ∈ {1, 2, . . . ,n} and 1, h ∈ {1, 2, . . . , p}, 1 , h, are denoted by vk
i,1,h, where

k ∈ {1, 2, . . . ,m}. Finally, the vertices connecting u j and vi,1, where i, j ∈ {1, 2, . . . ,n}, i , j and 1 ∈ {1, 2, . . . , p},
are labeled by sk

j,i,1, where k ∈ {1, 2, . . . ,m}. In particular, if p = 1, then the common neighbors of ui and v j

are denoted by sk
i, j for any i, j ∈ {1, 2, . . . ,n} i , j, and k ∈ {1, 2, . . . ,m}.

Before determining χρ(FSSDm(Kn ? Pp)) we need the following lemma.

Lemma 3.1. Let n ≥ 3, p ≥ 2 and m ≥ 1 be arbitrary integers. Then, for any a-packing coloring c of the graph
FSSDm(Kn ? Pp), where a ≤ n + 3, the following holds:

1. c(ui) , 1 for all i ∈ {1, 2, . . . ,n};
2. c(vi,1) , 1 for all i ∈ {1, 2, . . . ,n} and 1 ∈ {1, 2, . . . , p}.

Proof. Let n ≥ 3, p ≥ 2, m ≥ 1 be arbitrary integers, and let c be an arbitrary a-packing coloring of
FSSDm(Kn ? Pp), where a ≤ n + 3.

First we prove that c(ui) , 1 for all i ∈ {1, 2, . . . ,n}. Suppose to the contrary that c(ui) = 1 for some
i ∈ {1, . . . ,n} and without loss of generality, assume that i = 1. Note that u1 has m(n − 1) + m(n − 1)p
neighbors. Since m ≥ 1 and p ≥ 2, we derive that u1 has actually at least 3n − 3 neighbors, which are
pairwise at distance 2 and hence c assigns them pairwise different colors from {2, 3, . . .}. Therefore, c uses
at least 3n − 3 + 1 = 3n − 2 colors, which is more than a, a contradiction to c being an a-packing coloring.
Hence, c(ui) , 1 for all i ∈ {1, . . . ,n} and without loss of generality, we may assume that c(uk

i, j) = 1 for all
i, j ∈ {1, . . . ,n}, i , j, and k ∈ {1, . . . ,m}.

Next, we prove that c(vi,1) , 1 for all i ∈ {1, 2, . . . ,n} and 1 ∈ {1, 2, . . . , p}. Again, suppose to the contrary
that c(vi,1) = 1 for some i and 1, say c(v2,1) = 1. Note that v2,1 has at least mn neighbors. If m ≥ 2, then
deg(v2,1) ≥ 2n and hence c uses at least 2n + 1 different colors, which is more than a, a contradiction.
Therefore, in the remainder of the proof, we only need to consider the case when m = 1. We distinguish
three cases with respect to n.
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Case 1. n ≥ 5.
In this case, c assigns to (at least) four vertices s1

i,2,1, i ∈ {1, 3, 4, . . . ,n}pairwise different colors from {2, 3, 4, . . .},
and note that at least three of the mentioned vertices receive colors from {3, 4, . . .} by c. Since these colors
cannot be used for packing coloring of the vertices from {u1,u2, . . . ,un}, Corollary 2.4 implies that c uses at
least n + 4 colors, a contradiction.

Case 2. n = 4.
Vertices s1

1,2,1, s1
3,2,1, s1

4,2,1 and v1
2,1,2 receive four different colors by c. Note that, if c(s1

1,2,1), c(s1
3,2,1), c(s1

4,2,1) ∈
{3, 4, . . .}, then by the same consideration as above follows a contradiction. Therefore, c(s1

i,2,1) = 2 for some
i ∈ {1, 3, 4}, say i = 1. If c(v1

2,1,2) = 3, then by using Corollary 2.4, we infer that c uses at least n + 3
colors for a packing coloring of the subgraph of FSSD1(Kn ? Pp), which is induced by the set of vertices
V(FFSD1(K4)) ∪ {s1

1,2,1, s
1
3,2,1, s

1
4,2,1, v2,1, v1

2,1,2}. Since a ≤ n + 3, the colors 2 and 3 must be used for a packing
coloring of the vertices from {u1,u2,u3,u4}, which implies c(u2) = 3. But then it is easy to check that there is
no available colors for at least one of the vertices v2,2, s1

1,2,2, s1
3,2,2 or s1

4,2,2 (note that at least one of them cannot
receive a color 1). The same result follows if c(v1

2,1,2) = 4. In the case when c(v1
2,1,2) ≥ 5, colors c(v1

2,1,2), c(s1
3,2,1)

and c(s1
4,2,1) cannot be used by c for packing coloring of the vertices of subgraph isomorphic to FSSD1(K4),

thus by Corollary 2.4, c uses more than a colors, a contradiction.
Case 3. n = 3.

Recall that c is an a-packing coloring of FSSD1(K3?Pp) and in this case a ≤ 6. Since c(ui) , 1 for all i ∈ {1, 2, 3},
let be c(u1) = b, c(u2) = c and c(u3) = d, where b, c, d are three pairwise distinct colors from {2, 3, . . . a}. We
consider five sub-cases with respect to the colors b, c, d.

Case 3.1. b = 2.
Vertex s1

1,2,1 can be colored only with color e ∈ {3, 4, . . . , a} by c, where e , c, d, and s1
3,2,1 can receive one of

the colors from {2, f } by c, where f ∈ {3, 4, . . . , a}, f , c, d, e.
If c(s1

3,2,1) = 2, then c(v1
2,1,2) ∈ { f , c}. The first case implies that c(v2,2) = c = 3. The second case yields that

c ≤ 4 and c(v2,2) ∈ {1, f }; if 1 is used, then c(s1
1,2,2) = f and c(s1

3,2,2) = e = 3.
If c(s1

3,2,1) = f , then c(v2,2) ∈ {1, c}; the first case implies that f = 3 (c(s1
1,2,2) = f = 3), and the second that

c = 3.
Next, consider the vertices s1

1,3,1, s1
1,3,2, v3,1 and v3,2. It is easy to observe that in each case there is no

available colors by c for at least one of the mentioned vertices, a contradiction to c being an a-packing
coloring.

Case 3.2. c = 2
In this case {c(s1

1,2,1), c(s1
3,2,1), c(v1

2,1,2)} = {2, e, f }, e, f ∈ {3, . . . , a}, e , f , e , b, d, f , b, d.
First, suppose that c(v1

2,1,2) = 2 (and c(s1
1,2,1) = e, c(s1

3,2,1) = f ). This implies that c(v2,2) = 1 and c(s1
1,2,2) =

f = 3, but then there is no available color for the vertex s1
3,2,2, which yields a contradiction to c being an

a-packing coloring. Therefore c(v1
2,1,2) , 2 and without loss of generality we may assume that c(s1

1,2,1) = 2
(and c(s1

3,2,1) = e, c(v1
2,1,2) = f ). Next distinguish three posibilities with respect to the colors c(v1,1) and c(v1,2).

Case 3.2.1. c(v1,1), c(v1,2) , 1.
The only possibility is that the vertices v1,1 and v1,2 receive colors 3 = b and 4 = f by c, which implies
c(v3,1) = c(v3,2) = 1. But then there is no available colors for s1

2,3,2, a contradiction to c being an a-packing
coloring.

Case 3.2.2. c(v1,1) = 1, c(v1,2) , 1 (the proof in the case when c(v1,1) , 1, c(v1,2) = 1 is analogous).
Vertex s1

2,1,1 can receive color e, if e = 3, or color f , if f ∈ {3, 4, 5}, by c.
If c(s1

2,1,1) = 3 (i.e. either e = 3 or f = 3), then c(v1,2) = f = 4 (and therefore c(s1
2,1,1) = e = 3), so v3,1 and

v3,2 can receive only color 1 by c, but then we have the same contradiction as in the situation 3.2.1. The case
when c(s1

2,1,1) = 4 = f yields c(v1,2) = 3 = b and again, the vertices v3,1 and v3,2 can receive only color 1 by c
(note that d, e ≥ 5), a contradiction. Therefore, c(s1

2,1,1) = 5 = f and then c(v1,2) = 3 = b, which yields that the
vertices v3,1 and v3,2 can receive only colors 1 and e = 4 by c. In each case it is impossible to color all of the
vertices from N(v3,1) ∪N(v3,2) by c, a contradiction to c being an a-packing coloring.

Case 3.2.3. c(v1,1) = c(v1,2) = 1.
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This implies that c(s1
3,1,1) is 2 or f = 3. If c(s1

3,1,1) = f = 3, then there is no available colors for s1
2,1,1. Thus

c(s1
3,1,1) = 2, which implies c(s1

3,1,2) = f = 3, but then there is no available colors for s1
2,1,2, a contradiction to c

being an a-packing coloring.
Case 3.3. b = 3 and c, d , 2 (i.e. c, d ∈ {4, . . . , a}).

In this case {c(s1
1,2,1), c(s1

3,2,1)} = {2, e}, where e ∈ {4, . . . , a}, e , c, d. First, consider the case when c(s1
1,2,1) = 2

and c(s1
3,2,1) = e. We derive that c(s1

1,3,1) = c(s1
1,3,2) = 1, hence the vertices v3,1 and v3,2 receive color 2 and

color e = 4 (thus, c , 4). But then, there is no available color for v1
2,1,2, a contradiction. If c(s1

1,2,1) = e and
c(s1

3,2,1) = 2, then the vertices s1
1,3,1, s1

1,3,2, s1
2,3,1, s1

2,3,2, v3,1 and v3,2 receive the colors from {1, 2}. But since it is
impossible to color all of the mentioned vertices with these two colors, we have a contradiction to c being
a packing coloring.

Case 3.4. c = 3 and b, d , 2 (i.e. b, d ∈ {4, . . . , a}).
This yields that {c(s1

1,2,1), c(s1
3,2,1)} = {2, e}, where e ∈ {4, . . . , a}, e , b, d. First assume that c(s1

1,2,1) = 2 and
c(s1

3,2,1) = e. The vertices s1
3,1,1, s1

2,1,1, s1
2,1,2, s1

3,1,2, v1,1 and v1,2 receive colors 1 and 2. Again, it is impossible to
color all of the mentioned vertices only with two colors, thus we have a contradiction. If c(s1

1,2,1) = e and
c(s1

3,2,1) = 2, then by considering the vertices s1
2,3,1, s1

1,3,1, s1
2,3,2, s1

1,3,2, v3,1 and v3,2 by analogous consideration
as above follows a contradiction.

Case 3.5. {b, c, d} = {4, 5, 6}.
Vertices s1

1,2,1 and s1
3,2,1 can receive only colors 2 and 3, thus c(v1

2,1,2) = c = 4. Without loss of generality, we
may assume that c(s1

1,2,1) = 2 and c(s1
3,2,1) = 3. Then the vertices s1

3,1,1 and s1
3,1,2 can get only colors 1 or 2, so

at least one of them is colored by 1, say s1
3,1,1. This yields that c(v1,1) = 2, c(v1,2) = 1 and c(v1

1,1,2) = 3, but then
there is no available colors for s1

2,1,2 and s1
3,1,2 (only one of them can get color 2), a contradiction to c being an

a-packing coloring.
By symmetry, we can switch the role of the colors b and d, and derive that our claim holds.

Theorem 3.2. If n ≥ 3, p ≥ 2 and m ≥ 1, then

χρ(FSSDm(Kn ? Pp)) = n + 3.

Proof. In order to show that χρ(FSSDm(Kn ? Pp)) ≤ n + 3 holds for any n ≥ 3, p ≥ 2 and m ≥ 1, we form a
(n + 3)-packing coloring of FSSDm(Kn ?Pp). First, color the vertices uk

i, j, vk
i,1,h and sk

i, j,1 for all i, j ∈ {1, 2, . . . ,n},
i , j, 1, h ∈ {1, 2, . . . , p}, 1 , h and k ∈ {1, . . . ,m}, with color 1. Then color the uncolored vertices, which
correspond to the vertices from V(Pi,p), i ∈ {1, . . . ,n}, one after another with the following pattern of colors:
2, 3, 2, 3, . . . Finally, color the vertices u1,u2, . . . ,un with n new colors. It is easy to check that the described
coloring is (n + 3)-packing coloring of a given graph, thus χρ(FSSDm(Kn ? Pp)) ≤ n + 3.

Next, prove that χρ(FSSDm(Kn?Pp)) ≥ n + 3 holds for any n ≥ 3, p ≥ 2 and m ≥ 1. First, consider a graph
FSSDm(Kn ? P2), where n ≥ 3 and m ≥ 1 are arbitrary integers. Denote by c an optimal packing coloring of
this graph. Note that c is an a-packing coloring, where a ≤ n + 3. Using Lemma 3.1 we infer that c(ui) , 1
and c(vi,1) , 1 for all i ∈ {1, 2, . . . ,n} and 1 ∈ {1, 2}. Let be A = {ui; 1 ≤ i ≤ n} ∪ {vi,1; 1 ≤ i ≤ n, 1 ≤ 1 ≤ 2}. Note
that all vertices from V(FSSDm(Kn ? P2)) \A (can) receive color 1 by c and all vertices from A receive colors
from {2, 3, . . . , a} by c. Since the vertices from A are pairwise at distance at most 4, we have: |c−1(i) ∩ A| = 1
for all i ∈ {4, 5, . . . , a}. In other words, for each color i ∈ {4, 5, . . . , a}, there is only one vertex from A, colored
by i. Then, since c is an optimal packing coloring of FSSDm(Kn ? P2), it assigns colors 2 and 3 to at most as
possible vertices. If there exists i ∈ {1, . . . ,n} such that c(ui) = 2 (respectively c(ui) = 3), then |c−1(2) ∩ A| ≤ 2
(respectively |c−1(3) ∩ A| ≤ 2). Otherwise, c can assign a color 2 (respectively 3) to at most n vertices (one
vertex in each P2 can be colored with color 2), which is more than 2. Therefore, c(ui) , 2 and c(ui) , 3
(and recall that c(ui) , 1) for all i ∈ {1, 2, . . . ,n}, which implies that c uses at least n + 3 colors. Hence,
χρ(FSSDm(Kn ? P2)) ≥ n + 3. Furthermore, since FSSDm(Kn ? Pp), m ≥ 1,n ≥ 3, p ≥ 2, contains a subgraph
isomorphic to FSSDm(Kn ? P2), χρ(FSSDm(Kn ? Pp)) ≥ χρ(FSSDm(Kn ? P2)) ≥ n + 3, what completes the
proof.



R. Lemdani et al. / Filomat 34:10 (2020), 3275–3286 3282

In Fig. 1 is shown a graph FSSDm(K3 ? P2) and its packing coloring, as is described in the proof of the
previous theorem. Note that all unlabeled vertices of presented graph receive a color 1.

Figure 1: FSSDm(K3 ? P2) and a packing coloring of this graph

We continue this section with determining the packing chromatic numbers of graphs FSSDm(Cn ? Pp),
n ≥ 3, p ≥ 2. While in the case of graphs FSSDm(Kn ? Pp), we provided the exact values of their packing
chromatic numbers, in the case of cycles the task gets much harder for us, hence we present only the upper
bound for χρ(FSSDm(Cn ? Pp)).

Theorem 3.3. If n ≥ 3, m ≥ 1 and p ≥ 2, then

χρ(FSSDm(Cn ? Pp)) ≤


6; n = 3,
7; n ≥ 4,n < {5, 7, 11},
8; n ∈ {5, 7, 11}.

Proof. In the case when n = 3 the result clearly holds, since C3 is isomorphic to K3 and thus FSSDm(K3 ? Pp)
is isomorphic to FSSDm(C3 ? Pp) for any m ≥ 1 and p ≥ 2. Thus, Theorem 3.2 yields the result.

Next, prove the desired bounds in the case when n ≥ 4. Hence, form a packing coloring c of a given
graph FSSDm(Cn ? Pp). First, let be c(uk

i, j) = c(vk
i,1,h) = c(sk

j,i,1) = 1 for all i, j ∈ {1, . . . ,n}, i , j, 1, h ∈ {1, . . . , p},
1 , h, k ∈ {1, . . . ,m}. Then, for each i ∈ [n] color the vertices from {vi,1; 1 ≤ 1 ≤ p} one after another with the
following sequence of colors: 2, 3, 2, 3, . . .. The remaining vertices of G (i.e. the vertices ui) are colored one
after another using the following pattern of colors.

Case 1. n = 4,n = 5.
In the case when n = 4 use the pattern 4567, and in the case when n = 5, color the vertices ui with color
pattern 45678.

Case 2. n � 0 (mod 6).
Use the color pattern 456457 for the packing coloring of the vertices ui.
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Case 3. n � 1 (mod 6).
In this case start the coloring of the consecutive vertices with the colors 7546574567456 and repeat the
pattern 457456. If n = 13, then the repeated block is omitted, and if n = 7, then assign to the vertices
ui, i ∈ [7], the colors of the following pattern: 4564578.

Case 4. n � 2 (mod 6).
Color the vertices one after another using this pattern of colors 75465745674564 and repeat the pattern
754654, if necessary. If n = 8, then use the color pattern: 75467456.

Case 5. n � 3 (mod 6).
When n � 3(mod 6), start the coloring of the vertices ui with the colors 4657, repeat the block 456457 and
end by 45675. Note that, the repeated block is omitted in the case when n = 9 (see Fig. 2).

Case 6. n � 4 (mod 6).
In this case repeat the sequence of colors 456457 and end by 4567.

Case 7. n � 5 (mod 6).
Start the coloring with the patten 754657456, repeat the block 457456 and end by 75467546. Note that the
repeated block can be omitted. In the case when n = 11, use the colors 75465745648.

Since in each case the described coloring is a packing coloring of a given graph, the proof is com-
pleted.

Figure 2: FSSD2(C9 ? P2) and a packing coloring of this graph

In the sequel of this section, we determine the packing chromatic numbers of graphs FSSDm(Kn ? Pp)
and FSSDm(Cn ? Pp), when p = 1. In other words, we consider so called splitting graph.

Proposition 3.4. If n ≥ 3 and m ≥ 1, then

χρ(FSSDm(S
′

(Cn))) =

{
3; if n is even,
5; if n is odd.
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Proof. Case 1. n is even.
Since FSSDm(S′(Cn)) contains a subgraph, which is isomorphic to FSSDm(Cn), by Propositions 2.1 and 2.8
follows that χρ(FSSDm(S′(Cn))) ≥ 3 for any m ≥ 1 and n ≥ 3.

In order to prove that χρ(FSSDm(S′ (Cn))) ≤ 3 holds for any m ≥ 1 and any even n ≥ 3, we form a
3-packing coloring of considered graph. First, color all vertices ui, i ∈ {1, . . . ,n}, one after another using the
following pattern of colors: 2, 3, 2, 3, . . . , 2, 3. Then, color each vertex vi, 1 ≤ i ≤ n, with the color, which is
assigned to ui (for example, see Fig. 3). The remaining vertices are colored with color 1. Clearly, this is a
3-packing coloring of considered graph and therefore χρ(FSSDm(S′ (Cn))) = 3 for any m ≥ 1 and any even
n ≥ 3.

Case 2. n is odd.
A graph FSSDm(S′ (Cn)) contains a subgraph, which is isomorphic to FSSDm(Cn), and analogically as above
by Propositions 2.1 and 2.8 follows that χρ(FSSDm(S′(Cn))) ≥ 4 for any m ≥ 1 and any odd n ≥ 3.

Next, suppose that χρ(FSSDm(S′ (Cn))) = 4 and let c be any 4-packing coloring of considered graph. If
c(ui) = 1 for some i ∈ {1, . . . ,n}, then all neighbors of ui get pairwise different colors. Since deg(ui) ≥ 4, c uses
at least 5 colors, a contradiction. Therefore, c(ui) ∈ {2, 3, 4} for all i ∈ {1, . . . ,n}. If there exists i ∈ {1, . . . ,n},
such that c(ui) = 4 and c(ui−1) = 2, c(ui+1) = 3 (resp., c(ui−1) = 3, c(ui+1) = 2), then there is no available color
for vi or its neighbor. Therefore, c(ui) = 4 implies that either c(ui−1) = 2 and c(ui+1) = 2 or c(ui−1) = 3 and
c(ui+1) = 3. But then, by replacing color 4 with color 3 (for each ui, when c(ui) = 4 and c(ui−1) = c(ui+1) = 2) or
color 2 (for each ui, when c(ui) = 4 and c(ui−1) = c(ui+1) = 3), we infer that χρ(FSSDm(Cn)) ≤ 3, a contradiction
to Proposition 2.8. Thus, χρ(FSSDm(S′ (Cn))) ≥ 5.

In order to show that χρ(FSSDm(S′ (Cn))) ≤ 5, we form a 5-packing coloring of considered graph. First,
color all vertices ui, 1 ≤ i ≤ n − 1, using the following pattern of colors: 2, 3, 2, 3, . . . , 2, 3. Then color
each vertex vi, 1 ≤ i ≤ n − 1, with the color assigned to ui, vertex un with color 4 and vertex vn with
color 5. The remaining vertices color by 1. This is a 5-packing coloring of a given graph and hence
χρ(FSSDm(S′ (Cn))) = 5.

Fig. 3 shows a graph FSSDm(S′(C4)) and its packing coloring, described in the previous proof.

Proposition 3.5. If n ≥ 3 and m ≥ 1, then

χρ(FSSDm(S′(Kn))) = n + 2.

Proof. First, show that χρ(FSSDm(S′(Kn))) ≤ n + 2 holds for any n ≥ 3 and m ≥ 1. Hence, form a (n + 2)-
packing coloring of FSSDm(S′(Kn)). First, color all vertices vi, 1 ≤ i ≤ n, with color 2, and all vertices ui,
1 ≤ i ≤ n, with pairwise different colors from {3, 4, . . . ,n + 2}. Finally, the remaining vertices of a given
graph color with color 1. Clearly, such coloring is (n + 2)-packing coloring of FSSDm(S′(Kn)) and thus
χρ(FSSDm(S′(Kn))) ≤ n + 2 for all n ≥ 3, m ≥ 1.

Next, prove that χρ(FSSDm(S′(Kn))) ≥ n + 2 holds for any n ≥ 3 and m ≥ 1. If n = 3, then Proposition
3.4 implies that χρ(FSSDm(S′(K3))) = 5 and we are done. Otherwise, let c be any optimal packing coloring
of FSSDm(S′(Kn)), where n ≥ 4. Note that c uses at most n + 2 colors. Suppose that there exists i ∈ {1, . . . ,n}
such that c(ui) = 1. Then, c(uk

i, j) , 1 and c(sk
i, j) , 1 for any j ∈ {1, . . . ,n}, i , j, and k ∈ {1, . . . ,m}. Since m ≥ 1,

c uses at least (n− 1) + (n− 1) colors different from 1, hence χρ(FSSDm(S′(Kn))) ≥ 2n− 1. Since 2n− 1 > n + 2
for any n ≥ 4, we have a contradiction to c being an optimal packing coloring of a given graph. Therefore,
c(ui) , 1 for any i ∈ {1, . . . ,n}. Then, suppose that there exists j ∈ {1, . . . ,n} such that c(v j) = 1. Without loss
of generality assume that c(v1) = 1, which implies that c(sk

i,1) , 1 for any i ∈ {2, 3, . . . ,n}. Recall that also
c(ui) , 1 for any i ∈ {1, . . . ,n}. Since the vertices from {u1,ui, sk

i,1; 2 ≤ i ≤ k} are pairwise at distance at most 3,
the only color which can be used at least twice for packing coloring of these vertices, is color 2. But since any
two vertices sk

i,1, i ∈ {2, . . . ,n}, and also any two vertices ui, i ∈ {1, . . . ,n} are pairwise at distance 2, c assigns
a color 2 to at most two of the mentioned vertices. Therefore, c uses at least (n − 1) + (n − 1) + 1 colors (at
least n− 1 colors for the neighbors of v1, beside that also n− 1 additional colors for the vertices ui and color
1), what is more than n + 2 for any n ≥ 4, a contradiction. Hence, c(vi) , 1 for any i ∈ {1, . . . ,n}. Without
loss of generality we may assume that c assigns to all vertices from V(FSSDm(S′(Kn))) \ {ui, vi; 1 ≤ i ≤ n} a
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Figure 3: FSSDm(S′(C4)) and a packing coloring of this graph

color 1. Note that any two vertices from A = {ui, vi; i = 1, . . . ,n} are at distance at most 4, which implies
|c−1(i) ∩ A| ≤ 1 for all i ≥ 4. If c assigns colors 2 and 3 to two vertices from {ui; 1, . . . ,n}, then at most one
vertex from {vi; 1, . . . ,n} receive color 2 and at most one receive a color 3. Using Corollary 2.4 and the fact
that n ≥ 4 we infer that c uses at least n + 3 colors, a contradiction. If c(ui) , 2 or c(ui) , 3 for all i ∈ {1, . . . ,n},
then all vertices vi (can) receive a color 2 respectively 3, which yields that c uses at least n + 2 colors (n + 1
colors for the vertices u1,u2, . . . ,un and a color 2 resp. 3). This completes the proof.

4. Concluding remarks

It is well known that some operations or only local changes of a given graph, can change its packing
chromatic number. While the packing chromatic number of a subdivision of a given graph has been
studied in a number of papers, we consider the operation of finite super subdivisions. Since some authors
considered subdivisions of graphs in relation to the concept of so called S = (s1, s2, . . . , sk)-packing coloring
(see e.g. [14]), it would be interesting to consider such coloring and the influence of the operation of finite
super subdivisions on it.

There are some additional open problems about finite super subdivisions of graphs that follows directly
from our work. Namely, as we mentioned, we have found only two graphs G such that χρ(FSSD1(G)) <
χρ(FSSD2(G)). Therefore, an open problem is to determine all graphs G such that χρ(FSSD1(G)) <
χρ(FSSD2(G)). In addition, we have not found any graph G with the property that χρ(FSSDm(G)) <
χρ(FSSDm+1(G)) for any m ≥ 2, and it would be interesting to know whether there exists any such graph G.

Another natural problem that arises from Theorem 3.3, is to determine the exact values of packing
chromatic numbers of graphs FSSDm(Cn?Pp). We propose also a problem of providing the packing chromatic
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number of finite super subdivisions of some other classes of graphs (not necessarily neighborhood corona
graphs).

Acknowledgements

J.F. acknowledges the financial support from the Slovenian Research Agency (P1-0403, J1-9109 and
J1-1693).

References

[1] J. Balogh, A. Kostochka, X. Liu, Packing chromatic number of subcubic graphs, Discrete Mathematics 341 (2018) 474–483.
[2] J. Balogh, A. Kostochka, X. Liu, Packing chromatic number of subdivisions of cubic graphs, Graphs and Combinatorics 35 (2019)

513–537.
[3] M. Barnaby, F. Raimondi, T. Chen, J. Martin, The packing chromatic number of the infinite square lattice is between 13 and 15,

Discrete Applied Mathematics 225 (2017) 136–142.
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