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Abstract. In the present paper we introduce the Bézier variant of the Szász-Durrmeyer type operators,
involving the Poisson-Charlier polynomials. Our study focuses on a direct approximation theorem in terms
of the Ditzian-Totik modulus of smoothness and the rate of convergence for differential functions whose
derivatives are of bounded variation.

1. Introduction

In 1912 Bernstein [5] presented for any real-valued function f : [0, 1]→ R the well known linear positive
operators

Bn( f ; x) =

n∑
k=0

(
n
k

)
xk(1 − x)n−k f

(
k
n

)
,

as a useful and interesting tool for the proof of the Weierstrass approximation theorem. Thanks to some
important properties as uniform approximation, shape preservation and variation diminishing, Bernstein
polynomials have opened a new era in the approximation theory. These polynomials together with Bézier
curves play an important role in computer aided geometric design, as well as in other areas of computer
science. Powerful algorithms for their construction and visualization are available in the literature. They are
used for the design of curves and could be taken as starting point for several generalizations. Among other
polynomials with influence in applied mathematics, we recall here the class of orthogonal polynomials.
Although the orthogonal polynomials are of particular importance in applied mathematics, they appear
quite rarely in the approximation process by linear and positive operators. As we can see in [20], one
example in this sense could be the operators constructed by Cheney and Sharma for a fixed t ≤ 0, f ∈ C[0, 1]
and x ∈ [0, 1)

Pn( f ; x) = (1 − x)n+1
· e

tx
1−x

∞∑
k=0

L(n)
k (t)xk f

(
k

k+n

)
,
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where L(n)
k (t) denotes the Laguerre polynomials. It is know that (see [18])

L(n)
k (t) =

k∑
j=0

(
n + k
k − j

)
(−t) j

j!
.

Also in [20], Varma and Taşdelen proposed for research a problem which requested to find a generalization
of the Szász operators [19], involving the orthogonal polynomials. As a solution of the recalled problem,
they considered the linear positive operators based on the Poisson-Charlier polynomials [18], with the
generating function of the form

e−t
(
1 +

t
a

)u

=

∞∑
k=0

C(a)
k (u) ·

tk

k!
, |t| < a, (1)

and the explicit representation

C(a)
k (u) =

k∑
ν=0

(−1)k−ν
(
k
ν

)
a−ν(u)ν,

where (m)r denote the rising factorial given by (m)0 = 1, (m)r = m(m + 1) · · · (m + r − 1), for r ≥ 1. We note
that for a > 0 and u ≥ 0 the Poisson-Charlier polynomials are positive. However, depending on the context,
the generating function of the Poisson-Charlier polynomials could also be

et
(
1 −

t
a

)u
=

∞∑
k=0

C(a)
k (u) ·

tk

k!
, |t| < a. (2)

The generating function written at (2) can be obtained from the relation (1) by changing the variable t := −t.
Taking into account the definitions of the Laguerre, as well as of the Poisson-Charlier polynomials, in [12]
is presented an interesting relationship between these two ortoghonal polynomials, given by

C(a)
n (u) =

n∑
ν=0

(−1)n−ν
(
n
ν

)
a−ν(u)ν = a−n

· n! · L(u−n)
n (a), (3)

which means that the Poisson-Charlier polynomials are a parametric reshuffling of the classical Laguerre
polynomials. More detalis about these orthogonal polynomials can be found in [18] and [12]. Based on
this relationship (3), the unknown reviewer of the present paper suggested to present some advantages
(if there exists), concerning the use of the Poisson-Charlier polynomials instead of the classical Laguerre
polynomials. At this moment, in literature we may find many articles that have the Poisson-Charlier
polynomials as a central study issue at the expense of the classical Laguerre polynomials, but we cannot
present some advantages of their use. If there exists, we let an open door for other researchers to bring
them to the light. We return to our problem, so the explicit solution of the problem proposed by Varma and
Taşdelen was to introduce the following positive linear operators

Ln( f ; x, a) =

∞∑
k=0

Wa
n,k(x) f

(
k
n

)
= e−1

(
1 − t

a

)(a−1)nx
∞∑

k=0

C(a)
k (−(a − 1)nx)

k!
f
(

k
n

)
, (4)

for a > 1 and x ∈ [0,∞). In the case when a → ∞ and taking x − 1
n instead of x, these operators (4)

become the well-known Szász operators [19]. Based on the operators (4), for γ > 0 and f ∈ Cγ[0,∞) =
{ f ∈ C[0,∞) | f (t) = O(tγ) as t → ∞} Kajla and Agrawal [11] introduced the following Durrmeyer type
modification defined as follows

Sn,a( f ; x) =

∞∑
k=0

Wa
n,k(x)

1
B(k + 1,n)

∫
∞

0

tk

(1 + t)n+k+1
f (t)dt, (5)
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where n > γ, a > 1 and B(k + 1,n) is the beta function given by

B(x, y) =

∫
∞

0

tx−1

(1 + t)x+y dt =
Γ(x) · Γ(y)
Γ(x + y)

, for x, y > 0.

Also in [11], some interesting and nice properties for the presented operators (5) are established. The
Bézier variant of Bernstein-Durrmeyer operators was introduced by Zeng and Chen in [23]. Srivastava and
Gupta [14] got the rate of convergence for the Bézier variant of the Bleimann Butzer and Hahn operators
for functions with bounded variation. In 2007, Guo et al. [9] studied Baskakov-Bézier operators and
established direct, inverse and equivalence approximation theorems with the help of Ditzian-Totik modulus
of smoothness. Very recently, Agrawal et al. [3] introduced mixed hybrid operators for which they got direct
results and the rate of convergence for differential functions whose derivatives are of bounded variation.
Many other interesting Bézier type operators were studied by several researchers, and the reader is invited
to see [1], [2], [4], [6], [8], [10], [13], [15], [16], [17], [21], [22]. For θ ≥ 1 we consider the Bézier variant of the
operators Sn,a f , defined by

Sa
n,θ( f ; x) =

∞∑
k=0

Q(θ)
n,k,a(x)

1
B(k + 1,n)

∫
∞

0

tk

(1 + t)n+k+1
f (t)dt, (6)

where Q(θ)
n,k,a(x) =

(
Ja
n,k(x)

)θ
−

(
Ja
n,k+1(x)

)θ
, with Ja

n,k(x) =

∞∑
v=k

Wa
n,v(x). Alternatively, we may rewrite the operators

(6) as

Sa
n,θ( f ; x) =

∞∫
0

Pn,θ,a(x, t) f (t)dt, x ∈ [0,∞), (7)

where

Pn,θ,a(x, t) =

∞∑
k=0

Q(θ)
n,k,a(x)

1
B(k + 1,n)

tk

(1 + t)n+k+1
.

For θ = 1, the operators Sa
n,θ f reduce to the operators Sn,a f .

The aim of this paper is to introduce the Bézier variant (6) of the Szász-Durrmeyer type operators,
involving the Poisson-Charlier polynomials. Our further study focuses on a direct approximation theorem
in terms of the Ditzian-Totik modulus of smoothness and the rate of convergence for differential functions
whose derivatives are of bounded variation on every finite subinterval of (0,∞), for the presented operators
(6).

2. Auxiliary results

Let N be the set of positive integers and N0 = N ∪ {0}. Throughout this paper, C denotes a positive
constant independent of n and x, not necessarily the same at each occurrence. For these new operators
(6) we establish some auxiliary results. The monomials ek(x) = xk, for k ∈ N0 called test functions play an
important role in uniform approximation by linear positive operators. We recall some results established
in [11].

Lemma 2.1. [11] For any n ∈N, n > 2, the images of test functions by Durrmeyer type operators (5) are given by

Sn,a(e0; x) = 1, Sn,a(e1; x) =
nx + 2
n − 1

, Sn,a(e2; x) =
1

(n − 2)(n − 1)

(
n2x2 + nx

(
6 +

1
a − 1

)
+ 7

)
.
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Lemma 2.2. [11] For any n ∈N, n > 2, the computation of the central moments up to the second order for Durrmeyer
type operators (5) is given by

Sn,a(e1 − x; x) =
x + 2
n − 1

, Sn,a

(
(e2 − x)2; x

)
=

1
(n − 2)(n − 1)

(
nx

(
2 +

1
a − 1

)
+ x2(n + 2) + 8x + 7

)
.

Lemma 2.3. Let f be a real-valued function continuous and bounded on [0,∞), with ‖ f ‖ = sup
x∈[0,+∞)

| f (x)|, then

|Sn,a( f )| ≤ ‖ f ‖.

Lemma 2.4. Let f be a real-valued function continuous and bounded on [0,∞), then |Sa
n,θ( f )| ≤ θ‖ f ‖.

Proof. Applying the well known property |aα − bα| ≤ α|a − b|, with 0 ≤ a, b ≤ 1, α ≥ 1 and the definition of
Q(θ)

n,k,a(x), we have

0 <
(
Ja
n,k(x)

)θ
−

(
Ja
n,k+1(x)

)θ
≤ θ(Ja

n,k(x) − Ja
n,k+1(x)) = θWa

n,k(x). (8)

Hence, from the definition of Sa
n,θ( f ) operators and Lemma 2.3, we get

|Sa
n,θ( f )| ≤ θ|Sn,a( f )| ≤ θ‖ f ‖.

Lemma 2.5. Let x ∈ (0,∞), then for θ ≥ 1 and sufficiently large n, we have

i) ζn,θ,a(x, y) =

∫ y

0
Pn,θ,a(x, t)dt ≤

θλ(a)
n

φ2(x)
(x − y)2 , 0 ≤ y < x,

ii) 1 − ζn,θ,a(x, z) =

∫
∞

z
Pn,θ,a(x, t)dt ≤

θλ(a)
n

φ2(x)
(z − x)2 , x < z < ∞,

where λ(a) is a positive constant depending on a.

Proof. i) Using Lemma 2.4 and (Eq. (2.2) from [11]), we get

ζn,θ,a(x, y) =

y∫
0

Pn,θ,a(x, t)dt ≤

y∫
0

( x − t
x − y

)2

Pn,θ,a(x, t)dt

≤ Sa
n,θ((t − x)2; x) (x − y)−2

≤ θSn,a((t − x)2; x)(x − y)−2
≤
θλ(a)

n
φ2(x)

(x − y)2 , 0 ≤ y < x.

ii) Analogously could be proved the second relation.

In order to present our further results, we recall from [7] the definitions of the Ditizian-Totik modulus of
smoothness. Let φ(x) =

√
x(1 + x), and 0 ≤ η ≤ 1, then

ωφη ( f , t) = sup
0<h≤t

sup
x±hφη(x)/2≥0

{ ∣∣∣∣∣ f (x +
hφη(x)

2

)
− f

(
x −

hφη(x)
2

)∣∣∣∣∣ },
and the appropriate Peetre’s K-functional is defined by

Kφη ( f , t) = inf
1∈Vη

{‖ f − 1‖ + t‖φη1′‖}, t > 0,

where Vη = {1 ∈ C[0,+∞) | 1 ∈ ACloc[0,+∞), ‖φη1′‖ < ∞}. Based on the theory from [7], it is well known that
Kφη ( f , t) ∼ ωφη ( f , t), which means that there exists a constant M > 0, such that

M−1ωφη ( f , t) ≤ Kφη ( f , t) ≤Mωφη ( f , t). (9)
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3. Direct Theorem

Now we are able to prove the following direct approximation theorem in terms of the Ditzian-Totik
modulus of smoothness.

Theorem 3.1. Let f ∈ CB[0,∞), then for any x ∈ [0,+∞) yields∣∣∣Sa
n,θ( f ; x) − f (x)

∣∣∣ ≤ Cωφη
(

f ,
φ1−η(x)
√

n

)
, (10)

where C is an absolute constant.

Proof. Using the definition of Kφη ( f , t), for fixed n, x, η we can choose 1 = 1n,x,η ∈ Vη, such that

‖ f − 1‖ +
φ1−η(x)
√

n
‖φη1′‖ ≤ 2Kφη

(
f ,
φ1−η(x)
√

n

)
. (11)

Since Sa
n,θ(e0; x) = 1, we may write∣∣∣Sa
n,θ( f ; x) − f (x)

∣∣∣ ≤ 2‖ f − 1‖ + |Sa
n,θ(1; x) − 1(x)|. (12)

Using the representation 1(t) = 1(x) +

∫ t

x
1′(u)du, we get

∣∣∣Sa
n,θ(1; x) − 1(x)

∣∣∣ =

∣∣∣∣∣∣Sa
n,θ

(∫ t

x
1′(u)du; x

)∣∣∣∣∣∣ ≤ Sa
n,θ

∣∣∣∣∣∣
(∫ t

x
1′(u)du; x

)∣∣∣∣∣∣ ≤ ∥∥∥φη1′∥∥∥ Sa
n,θ

(∣∣∣∣∣∣
∫ t

x

du
φη(u)

∣∣∣∣∣∣ ; x
)
. (13)

Applying the Hölder’s inequality and the relation |a + b|p ≤ |a|p + |b|p, for a, b ∈ R, 0 ≤ p ≤ 1, we have∣∣∣∣∣∣
∫ t

x

du
φη(u)

∣∣∣∣∣∣ ≤ |t − x|1−η
∣∣∣∣∣∣
∫ t

x

du
φ(u)

∣∣∣∣∣∣η ≤ |t − x|1−η
∣∣∣∣∣∣
∫ t

x

du
φ(u)

∣∣∣∣∣∣η
(

1
√

1 + x
+

1
√

1 + t

)η
(14)

≤ |t − x|
2η

xη/2
(
(1 + t)−η/2 + (1 + x)−η/2

)
.

Combining (13) and (14), we get∣∣∣Sa
n,θ(1; x) − 1(x)

∣∣∣ ≤ 2η‖φη1′‖
{
φ−η(x)Sa

n,θ(|t − x|; x) + x−η/2Sa
n,θ

(
|t − x|

(1 + t)η/2
; x

) }
. (15)

In order to estimate the second term on the right hand side of (15), we note that for any m ≥ 0, the inequality

Sa
n,θ((1 + t)−m; x) ≤ Cm,a(1 + x)−m (16)

holds, where Cm,a is a constant that depends on m and a. To prove (16), we remark that the presented
inequality holds for m = 0. For m > 0, we may write

Sa
n,θ((1 + t)−m; x) =

∞∑
k=0

Q(θ)
n,k(x)

B(k + 1,n)

∫
∞

0

tk

(1 + t)n+k+m+1
dt =

∞∑
k=0

Q(θ)
n,k(x)Γ(n + k + 1)Γ(n + m)

Γ(n + m + k + 1)Γ(n)
(17)

≤ θ(1 + x)−m
∞∑

k=0

e−1
(
1 −

1
a

)(a−1)nx C(a)
k (−(a − 1)nx)

k!
·

xk

(1 + x)n+k−m

Γ(n + k + 1)Γ(n + m)
Γ(n + m + k + 1)Γ(n)

.

By using the ratio test, it follows that for each x > 0, the series on the right hand side (17) is convergent.
Lemma 2.4, the Cauchy-Schwarz inequality and the estimation presented in [11] (equation (2.2)), lead us to

Sa
n,θ(|t − x|; x) ≤

(
Sa

n,θ((e1 − x)2; x)
)1/2
≤

√
θλ(a)φ(x)
√

n
. (18)
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Using again the same estimation presented in [11] (equation (2.2)), form the relation (16) we get

Sa
n,θ

(
|t − x|

(1 + t)η/2
; x

)
≤ θSn,a

(
|t − x|

(1 + t)η/2
; x

)
≤ θ

(
Sn,a((e1 − x)2; x)

)1/2 (
Sn,a((1 + t)−η; x)

)1/2 (19)

≤ C1

√
θλ(a)φ(x)
√

n
(1 + x)−η/2.

Replacing the inequalities (18) and (19) in the relation (15), it follows∣∣∣Sa
n,θ(1; x) − 1(x)

∣∣∣ ≤ C||φη1′||
φ1−η(x)
√

n
. (20)

Combining the relations (9), (11), (12) and (20), we get the desired result (10).

4. Rate of Convergence

Let f ∈ DBVγ(0,∞), γ ≥ 0, be the class of differentiable functions defined on (0,∞), whose derivatives f ′

are of bounded variation on every finite subinterval of (0,∞) and | f (t)| ≤Mtγ, for all t > 0 and some M > 0.
The functions f ∈ DBVγ(0,∞) could be represented

f (x) =

∫ x

0
1(t)dt + f (0),

where 1 is a function of bounded variation on each finite subinterval of (0,∞).

Theorem 4.1. Let f ∈ DBVγ(0,∞), θ ≥ 1 and
∨b

a( f ′x) be the total variation of f ′x on [a, b] ⊂ (0,∞). Then, for every
x ∈ (0,∞) and sufficiently large n, we have

∣∣∣Sa
n,θ( f ; x) − f (x)

∣∣∣ ≤ √θ
θ + 1

∣∣∣∣∣ f ′(x+) + θ f ′(x−)
∣∣∣∣∣
√
λ(a)

n
φ(x) +

√
λ(a)

n
φ(x)

θ3/2

θ + 1

∣∣∣∣∣ f ′(x+) − f ′(x−)
∣∣∣∣∣

+
θλ(a)(1 + x)

n

[
√

n ]∑
k=1

x∨
x−x/k

( f ′x) +
x
√

n

x∨
x−x/

√
n

( f ′x) +
θλ(a)(1 + x)

n

[
√

n ]∑
k=1

x+x/k∨
x

( f ′x) +
x
√

n

x+x/
√

n∨
x

( f ′x),

where λ(a) is a positive constant depending on a and the auxiliary function f ′x is defined by

f ′x(t) =


f ′(t) − f ′(x−), 0 ≤ t < x

0, t = x
f ′(t) − f ′(x+) x < t ≤ 1.

Proof. Since
∫
∞

0
Pn,θ,a(x, t)dt = Sa

n,θ(e0; x) = 1, we can write

Sa
n,θ( f ; x) − f (x) =

∫
∞

0

(
f (t) − f (x)

)
Pn,θ,a(x, t)dt =

∫
∞

0

( ∫ t

x
f ′(u)du

)
Pn,θ,a(x, t)dt. (21)

Using the definition of the function f ′x , for any f ∈ DBVγ(0,∞), it follows

f ′(t) =
1

θ + 1

(
f ′(x+) + θ f ′(x−)

)
+ f ′x(t) (22)

+
1
2

(
f ′(x+) − f ′(x−)

)(
sgn(t − x) +

θ − 1
θ + 1

)
+ δx(t)

(
f ′(x) −

1
2

(
f ′(x+) + f ′(x−)

))
,
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where

δx(t) =

{
1 , x = t
0 , x , t.

It is clear that∫
∞

0
Pn,θ,a(x, t)

t∫
x

(
f ′(x) −

1
2

(
f ′(x+) + f ′(x−)

))
δx(u)dudt = 0.

Using the definition of the operators (7), then simple computations lead us to

E1 =

∫
∞

0

( ∫ t

x

1
θ + 1

(
f ′(x+) + θ f ′(x−)

)
du

)
Pn,θ,a(x, t)dt (23)

=
1

θ + 1

∣∣∣∣∣ f ′(x+) + θ f ′(x−)
∣∣∣∣∣ ∫ ∞

0
|t − x|Pn,θ,a(x, t)dt ≤

1
θ + 1

(
f ′(x+) + θ f ′(x−)

) (
Sa

n,θ((e1 − x)2; x)
)1/2

≤

√
θ

θ + 1

∣∣∣∣∣ f ′(x+) + θ f ′(x−)
∣∣∣∣∣
√
λ(a)

n
φ(x)

and

E2 =

∫
∞

0

( ∫ t

x

1
2

(
f ′(x+) − f ′(x−)

)(
sgn(u − x) +

θ − 1
θ + 1

)
du

)
Pn,θ,a(x, t)dt (24)

≤
θ

θ + 1

∣∣∣∣∣ f ′(x+) − f ′(x−)
∣∣∣∣∣ ∫ ∞

0
|t − x|Pn,θ,a(x, t)dt =

θ
θ + 1

∣∣∣∣∣ f ′(x+) − f ′(x−)
∣∣∣∣∣Sa

n,θ (|t − x| ; x)

≤
θ

θ + 1

∣∣∣∣∣ f ′(x+) − f ′(x−)
∣∣∣∣∣ (Sa

n,θ

(
(e1 − x)2; x

))1/2
≤
θ3/2

θ + 1

∣∣∣∣∣ f ′(x+) − f ′(x−)
∣∣∣∣∣
√
λ(a)

n
φ(x).

Involving the relations (21)–(24), we obtain the following estimate

∣∣∣Sa
n,θ( f ; x) − f (x)

∣∣∣ ≤ ∣∣∣An,θ,a( f ′x , x) + Bn,θ,a( f ′x , x)
∣∣∣ +

√
θ

θ + 1

∣∣∣∣∣ f ′(x+) + θ f ′(x−)
∣∣∣∣∣
√
λ(a)

n
φ(x) (25)

+
θ3/2

θ + 1

∣∣∣ f ′(x+) − f ′(x−)
∣∣∣ √λ(a)

n
φ(x),

where

An,θ,a( f ′x , x) =

∫ x

0

( ∫ t

x
f ′x(u)du

)
Pn,θ,a(x, t)dt and Bn,θ,a( f ′x , x) =

∫
∞

x

( ∫ t

x
f ′x(u)du

)
Pn,θ,a(x, t)dt.

For a complete proof of the theorem, it remains to estimate the terms An,θ,a( f ′x , x) and Bn,θ,a( f ′x , x). Since∫ b

a dtζn,θ,a(x, t) ≤ 1, for all [a, b] ⊆ (0,∞), using integration by parts and applying Lemma 2.5 with y =

x − (x/
√

n), it follows∣∣∣An,θ,a( f ′x , x)
∣∣∣ =

∣∣∣∣∣∣
∫ x

0

( ∫ t

x
f ′x(u)du

)
dtζn,θ,a(x, t)

∣∣∣∣∣∣ =

∣∣∣∣∣∫ x

0
ζn,θ,a(x, t) f ′x(t)dt

∣∣∣∣∣ ≤ ( ∫ y

0
+

∫ x

y

) ∣∣∣ f ′x(t)
∣∣∣ ∣∣∣ζn,θ,a(x, t)

∣∣∣ dt

≤ θ
λ(a)φ2(x)

n

∫ y

0

x∨
t

( f ′x)(x − t)−2dt +

∫ x

y

x∨
t

( f ′x)dt

≤ θ
λ(a)φ2(x)

n

∫ y

0

x∨
t

( f ′x)(x − t)−2dt +
x
√

n

x∨
x−x/

√
n

( f ′x).
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Taking u = x/(x − t) into account, we get

θ
λ(a)φ2(x)

n

∫ x−x/
√

n

0
(x − t)−2

x∨
t

( f ′x)dt = θ
λ(a)(1 + x)

n

∫ √
n

1

x∨
x−x/u

( f ′x)du

≤ θ
λ(a)(1 + x)

n

[
√

n ]∑
k=1

∫ k+1

k

x∨
x−x/u

( f ′x)du ≤ θ
λ(a)(1 + x)

n

[
√

n ]∑
k=1

x∨
x−x/k

( f ′x).

Hence, we reach the following estimation

∣∣∣An,θ,a( f ′x , x)
∣∣∣ ≤ θλ(a)(1 + x)

n

[
√

n ]∑
k=1

x∨
x−x/k

( f ′x) +
x
√

n

x∨
x−x/

√
n

( f ′x). (26)

Using again the integration by parts and applying Lemma 2.5 with z = x + x/
√

n, it follows

|Bn,θ,a( f
′

x, x)| =
∣∣∣∣∣ ∫ ∞

x

(∫ t

x
f ′x(u)du

)
Pn,θ,a(x, t)dt

∣∣∣∣∣ (27)

=

∣∣∣∣∣ ∫ z

x

(∫ t

x
f ′x(u)du

)
dt(1 − ζn,θ,a(x, t)) +

∫
∞

z

(∫ t

x
f ′x(u)du

)
dt(1 − ζn,θ,a(x, t))

∣∣∣∣∣
=

∣∣∣∣∣[ (∫ t

x
f ′x(u)du

)
(1 − ζn,θ,a(x, t))

]z

x
−

∫ z

x
f ′x(t)(1 − ζn,θ,a(x, t))dt

+

∫
∞

z

(∫ t

x
f ′x(u)du

)
dt(1 − ζn,θ,a(x, t))

∣∣∣∣∣
=

∣∣∣∣∣ (∫ z

x
f ′x(u)du

)
(1 − ζn,θ,a(x, z)) −

∫ z

x
f ′x(t)(1 − ζn,θ,a(x, t))dt

+
[ (∫ t

x
f ′x(u)du

)
(1 − ζn,θ,a(x, t))

]∞
z
−

∫
∞

z
f ′x(t)(1 − ζn,θ,a(x, t))dt

∣∣∣∣∣
=

∣∣∣∣∣ ∫ z

x
f ′x(t)(1 − ζn,θ,a(x, t))dt +

∫
∞

z
f ′x(t)(1 − ζn,θ,a(x, t))dt

∣∣∣∣∣
< θ

λ(a)φ2(x)
n

∫
∞

z

t∨
x

( f ′)x(t − x)−2dt +

∫ z

x

t∨
x

( f ′x)dt

≤ θ
λ(a)φ2(x)

n

∫
∞

x+x/
√

n

t∨
x

( f ′x)(t − x)−2dt +
x
√

n

x+x/
√

n∨
x

( f ′x).

Taking u = x/(t − x) into account, we get

θ
λ(a)φ2(x)

n

∫
∞

x+x/
√

n

t∨
x

( f ′x)(t − x)−2dt = θ
λ(a)φ2(x)

xn

∫ √
n

0

x+x/u∨
x

( f ′x)du (28)

≤ θ
λ(a)(1 + x)

n

[
√

n ]∑
k=1

∫ k+1

k

x+x/u∨
x

( f ′x)du ≤ θ
λ(a)(1 + x)

n

[
√

n ]∑
k=1

x+x/k∨
x

( f ′x).

Using the relations (27)–(28), we get the following estimation

|Bn,θ,a( f
′

x, x)| ≤ θ
λ(a)(1 + x)

n

[
√

n ]∑
k=1

x+x/k∨
x

( f ′x) +
x
√

n

x+x/
√

n∨
x

( f ′x). (29)

The relations (25), (26) and (29) lead us to the desired result.
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functions, Appl. Math. Comput. 259 (2015), 533–539

[5] Bernstein S.N., Demonstration du theoreme de Weierstrass fondee sur le calcul de probabilities, Commun. Soc. Math. Kharkow 13
(1912-1913), No. 2, 1–2
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