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Abstract. In this work, we propose a stochastic method which gives an estimated solution for a linear
calibration problem with α−mixing random data. We establish exponential inequalities of Fuk Nagaev
type, for the probability of the distance between the approximate solutions and the exact one. Furthermore,
we build a confidence domain for the so mentioned exact solution. To check the validity of our results, a
numerical example is proposed.

1. Introduction

Calibration is a classical problem which appears often in a regression setup under fixed design. In
calibration, also called inverse regression, interest centers on estimating an unknown value of an exogenous
variable x, which corresponds to an observed value of an endogenous variable y. Some influential and
relevant works on calibration have been published. In 1991, a review of statistical calibration is given by
Osborne [17]. In 1992, Sarndal [20] and Deville [6] published respectively a book (which became a reference
for the survey statistician) and the article entitled ”Calibration Estimators in Survey Sampling”. Calibration
problems arise often in the experimental sciences (Martens [15] and Frank[11]), in the field of chemometrics,
(Garcia-Dorado [12]) in experimental cardiology. Experimental data are always noisy. A natural way to
deal with the treatement of the errors is to consider the probabilistic framework (Aiane [2]) and random
variables are used to represent noisy data. In a precedent publication, Zerouati [23] proposed a stochastic
method for linear calibration problem with independent random data. One notes that, independent random
data failed for modeling some phenomena. Indeed, dependent random data are more adjusted to reality. In
this context, (Doukhan [7] and [8]), studied stochastic algorithms with a weakly dependence noise. In this
paper, one considers a non restrictive mixing condition to characterize the dependence between the data
random errors. We suppose them to be strong mixing or α−mixing (Aiane [1]). The notion of α−mixing
was firstly introduced by Rosenblatt [19] and the central limit theorem has been established. The strong
mixing random variables have many interests in linear processes and found many applications.

2. Preliminaries

Definition 2.1. Let (Ω,F,P) be a probability space and we note Fk
−∞
⊂ F (respectively, F+∞

n+k ⊂ F) the σ- algebra
generated by ei, i ≤ k (respectively by ei, i ≥ n + k).
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The sequence (en)n∈N (N is the set of nonnegative natural numbers) is said to be α−mixing (or strongly mixing),
if

α (n) = sup
k

sup
A∈Fk

−∞

sup
B∈F+∞

n+k

|P (A ∩ B) − P (A) P (B)| →
n→∞

0.

The sequence (en)n∈N∗ (N∗ =N\{0}) is said to be algebraically α−mixing with rate b > 1 if

∃ C > 0, α (n) ≤ Cn−b.

We say that the sequence of random variables (zn)n converges almost completely (a.co.) if

∀ε > 0,
+∞∑
n=1

P {‖zn‖ > ε} < +∞.

The aim of this work is to propose a stochastic method which gives an estimated solution for a linear cal-
ibration problem with α−mixing random data. We establish exponential inequalities of Fuk- Nagaev type,
for the probability of the distance between the approximate solutions and the exact one. These inequal-
ities yield almost complete convergence (a.co) with convergence rate of approximate solution sequence.
Furthermore, we build a confidence domain for the so mentioned exact solution.

The paper is organized as follows: In section 3, the statement of the problem is described. In section 4,
some known results concerning the estimation of the operator of linear calibration problem are recalled .
In section 5, some new results were established by using stochastic methods. Therefore a stable solution is
obtained. In section 6 the validity of our approach is illustrated by a numerical example. We finish by a
conclusion.

3. Statement of the problem

A large variety of problems arising from various domains of applied sciences can be often regarded
mathematically as an integral equation

A : L2 [a, b] −→ L2 [a, b]
x 7→ Ax = u, u is given.

where

Ax (t) =

∫ b

a
K (t, s) x (s) ds. (1)

The kernel K satisfies∫ b

a

∫ b

a
K (t, s)2 dsdt < +∞.

The operator A is compact, hence its inverse exists but it is not continuous [3].
Moreover if

K (t, s) = K (s, t) (2)

A is self-adjoint
In the integral equation

Ax = u (3)
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A satisfies the assumption:
(H1) A is compact, self-adjoint (and the sequence of normalized eigenfunctions φi of A corresponding

to the eigenvalues λi different from zero form an orthonormal basis in L2 [a, b]).
〈., .〉will denote the inner product of L2 [a, b] and ‖.‖will be the associated norm.
Denote by uex the exact value of the unknown second member of equation (3) and by xex the element of

L2 [a, b] for which the existence and uniqueness is known and which satisfies

Axex = uex.

However, in some categories of applied problems we find a class for which A is known only for some
points, furthermore the second member is only known approximately. A natural way to deal with this
situation is to consider the probabilistic framework.

The integral operator equation becomes a calibration problem which involves data collected in two
stages. In order to solve it, we proceed in two steps. The first one consists in estimating the operator (from
the first stage of data collection). Using Cuevas et al. results [4], an estimator ÂN for the underlying linear
operator A, is built. Then, we estimate the second member of the equation (3). Indeed, the data from the
second stage of experimentation consist of several observations of the response variable which corresponds
to an unknown value of the regressor variable. The strong law of large numbers gives the empirical mean
u as a natural exhaustive estimate.

Thus, the problem becomes to solve the following equation

ÂNx = u (4)

The operator ÂN is non injective (because of finite rank), thus the equation (4) is an ill-posed problem
and can not be solved by using classical methods ([9]; [22] and [21]).

In the second step, we establish the almost complete convergence of the sequence of approximate
solutions obtained when solving (4). Furthermore, we specify its convergence rate and we build a confidence
domain for the exact solution. These results are obtained after the establishment of our aim result, i.e. the
exponential inequalities for the probability of the distance between the approximate solution and the exact
one.

4. Estimation of the operator and the second member

4.1. Construction of the estimator
Based on the works of Cuevas et al. [4], we will use its estimator corresponding to our functional setup.

The functional framework involves some difficulties for the construction of a consistent estimator.
Statistical calibration involves data collected in two stages. In the first stage, several values of an

endogenous variable are observed, each corresponding to a known value of an exogenous variable. In
the second stage, one or more values of the endogenous variable are observed which correspond to an
unknown value of the exogenous variable.

In the first stage, we suppose that when carrying out N independent experiments, we obtain functional
data which consist of the pairs

(xiN (t) ,uiN (t)) ∈ L2 [a, b] × L2 [a, b] , i = 1, · · · ,N

observed according to the model

uiN (t) = AxiN (t) + eiN (t) , i = 1, · · · ,N. (5)

The data eiN are independent and identically distributed functional random variables.
For each i, xiN is a known fixed value of independent variable and uiN is the corresponding observed

response.
Moreover, we suppose that
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For i = 1, · · · ,N we have

E eiN (t) = 0 , E ‖eiN‖
2 = σ2

and there is C > 0 such that the random variables eiN fulfill Cramer’s assumption

E ‖eiN‖
p
≤

p!
2
σ2Cp−2 , p ≥ 2 (6)

where E represents the mathematical expectation.
An estimator ÂN (x1N, x2N, · · · , xNN,u1N,u2N, · · · ,uNN) which verifies the strong consistency to A. is de-

fined (see[4]) as follows:
It is assumed (see [4]) that for every N, the set of indices {1, ...,N} can be partitioned into m = mN subsets

J1N, J2N, ..., JmN with card JiN = kiN and kN = mini kiN →∞,m = mN→∞ such that for i = 1, ...,m the averages

xi = xiN =
1

kiN

∑
j∈Jin

x jN

are linearly independent. We define

ui = uiN =
1

kiN

∑
j∈Jin

u jN

ei = eiN =
1

kiN

∑
j∈JiN

e jN.

The closed linear spans

HN = L (x1N, x2N, ..., xmN)

fulfill

(H2) HN ⊂HN+1 and L
(
∪
N
HN

)
= L2 [a, b]

(H3) The smallest eigenvalue of the matrix Q with elements
〈
xiN, x jN

〉
,

1 ≤ i, j ≤ m is bounded below by a constant c0 > 0 for all N.
Let us consider

ui = Axi + ei

We can choose (see [4]) a conjugate system of functions x∗1, ..., x
∗
m such that〈

x∗r, xi
〉

= δir

(where δir is Kronecker’s symbol) i.e.,

x∗r =

m∑
j=1

(
Q−1

)
rj

x j

then ÂN the linear operator
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ÂNx (t) =

b∫
a

KN (s, t) x (s) ds

associated with the kernel

KN (s, t) =

m∑
i=1

x∗i (s) ui (t) .

Assume (H2) , (H3) together with:

lim
N→∞

min
1≤i≤m

ki

mN log mN
= ∞.

Then, the estimator ÂN satisfies (see [4], theorem 1, page 290)

lim
N→∞

∥∥∥∥ÂN − A
∥∥∥∥ = 0 completely.

4.2. Estimation of the second member
The second member of Ax = u is observed with α−mixing random errors and the data from the second

stage of experimentation consist of n observations of the response variable, uN+1, ...,uN+n, assumed to be
related to a single unknown regressor value xex. To simulate the process of the error mesurements on uex
we set

uN+ j = uex + eN+ j j = 1, ...,n
= Axex + eN+ j j = 1, ...,n

where
(
eN+ j

)
j
is a sequence of identically distributed and algebraically α−mixing with rate b > 1 functional

random variables, defined on (Ω,F ) with values in L2 [a, b].
We substitute to uex the averages un of the sample (given by the strong law of large numbers) defined

by:

un =
1
n

n∑
j=1

uN+ j

where un is an approximate value of uex since un converges to uex, as n→∞.
The problem becomes solving the following equation

ÂNx = un. (7)

This is a typical feature of an ill-posed problem. For this, Lavrentiev [13] has replaced equation (7)
by another one, precisely(

ÂN + γI
)

x = un (8)

where I is the operator identity and γ a positive real. The solution X
γ

n of (8) is defined by

X
γ

n :=
(
ÂN + γI

)−1
(un) .
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Under some assumptions on the parameterγ and on the class of possible solutions, the previous problem
is stable for small variations of un and can be solved for all un of L2 [a, b].

The invertibility of the operator
(
ÂN + γI

)
is deduced from the following result (see [16], Proposition

3.3)
Assume that Ã, B̃ ∈ L(X,Y), are linear operators between two Banach spaces X,Y. If Ã is invertible and∥∥∥∥Ã−1

∥∥∥∥ ∥∥∥∥Ã−B̃
∥∥∥∥ < 1

then B̃ is also invertible and

∥∥∥B̃−1
∥∥∥ ≤

∥∥∥∥Ã−1
∥∥∥∥

1 −
∥∥∥∥Ã−1

∥∥∥∥ ∥∥∥∥Ã−B̃
∥∥∥∥ ,

∥∥∥∥B̃−1
− Ã−1

∥∥∥∥ ≤
(∥∥∥∥Ã−1

∥∥∥∥ ∥∥∥∥Ã−B̃
∥∥∥∥) ∥∥∥∥Ã−1

∥∥∥∥
1 −

∥∥∥∥Ã−1
∥∥∥∥ ∥∥∥∥Ã−B̃

∥∥∥∥ .

Taking Ã = A + γI and B̃ = ÂN + γI, we prove that ÂN + γI is invertible since the assumptions of the
proposition are fulfilled. Indeed, the positivity of A ensures the strict positivity of its eigenvalues [18] and
hence the operator A + γI is invertible and its inverse is defined by

(
A + γI

)−1
(
φi

)
=

1
γ + λi

φi

where λi are the eigenvalues of the operator A corresponding to the eigenfunctions φi. Hence,∥∥∥(A + γI
)−1

∥∥∥ ≤ 1
γ

(9)

and

∥∥∥∥∥( ÂN + γI
)−1
− (A + γI)−1

∥∥∥∥∥ ≤
∥∥∥∥ÂN − A

∥∥∥∥
γ2

(
1 −

∥∥∥(A + γI
)−1

∥∥∥ ∥∥∥∥ÂN − A
∥∥∥∥) . (10)

5. Results

Theorem 5.1. For the model defined by (1), and (5) assume that (H1) holds and that A is positive. The operator,
ÂN being a strongly consistent estimator of A (i.e.

∥∥∥∥ÂN − A
∥∥∥∥ → 0, a.s.), assume that the following assumptions are

fulfilled.
(H4) The error trajectories eN+1, ..., eN+n are identically distributed and algebraically α−mixing, with rate b > 1

and if

∃ p > 2,∃ θ > 2 and M > 0 such that

∀ t > M, P (‖e1‖ > t) ≤ t−p, and s
−

(b+1)p
b+p

n = o
(
n−θ

)
with s−2

n =

n∑
i=1

n∑
j=1

∣∣∣∣cov
(
‖ei‖ ,

∥∥∥e j

∥∥∥)∣∣∣∣
(H5) let γ = γ (N,n) a sequence of parameters be chosen such that, as n, N→∞,

γ −→ 0, γ2 ln n→ +∞, s
−

(b+1)p
b+p

n (ln n)
3
2

(b+1)p
b+p −2 nγ−

(b+1)p
b+p −→ 0 .
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and

∥∥∥∥ÂN − A
∥∥∥∥

γ2 −→ 0, a.s

Then, for all ε > 0,

P
{∥∥∥∥X

γ

n − xex

∥∥∥∥ > ε} ≤ C exp

−nε2
0γ

2δ2

8
+
ε4

0γ
4δ4

64


+ 2

(b+1)p
b+p n (ln n)

3
(b+1)p

b+p
2 −2 (ε0δ)−

(b+1)p
b+p s

−
(b+1)p

b+p
n γ−

(b+1)p
b+p (11)

with
δ = 1 −

∥∥∥(A + γI)−1
∥∥∥ ∥∥∥∥ÂN − A

∥∥∥∥
Proof. The following identity

P
{∥∥∥∥X

γ

n − xex

∥∥∥∥ > ε}
= P


∥∥∥∥∥∥∥(ÂN + γI

)−1
Axex +

1
n

n∑
i=1

(
ÂN + γI

)−1
eN+i − xex

∥∥∥∥∥∥∥ > ε


gives

P
{∥∥∥∥X

γ

n − xex

∥∥∥∥ > ε}

≤ P


∥∥∥∥∥∥∥1

n

n∑
i=1

(
ÂN + γI

)−1
eN+i

∥∥∥∥∥∥∥ > ε −
∥∥∥∥∥(ÂN + γI

)−1
Axex − xex

∥∥∥∥∥
 (12)

We first prove [4] that:∥∥∥∥∥(ÂN + γI
)−1

Axex − xex

∥∥∥∥∥ −→ 0, a.s.

According to (10) we get∥∥∥∥∥(ÂN + γI
)−1

Axex − xex

∥∥∥∥∥ ≤

∥∥∥∥∥(ÂN + γI
)−1

Axex −
(
A + γI

)−1 Axex

∥∥∥∥∥
+

∥∥∥(A + γI
)−1 Axex − xex

∥∥∥
≤

∥∥∥∥ÂN − A
∥∥∥∥

γ2δ
‖Axex‖ +

∥∥∥(A + γI
)−1 Axex − xex

∥∥∥ .
From the assumption (H5) we have∥∥∥∥ÂN − A

∥∥∥∥
γ2δ

−→ 0, a.s., as N, n→∞.

If

xex =
∑

i

µiφi

then (H1) involves

Axex =
∑

i

λiµiφi
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and (
A + γI

)−1 Axex − xex =
∑

i

µi

(
λi

λi + γ
− 1

)
φi.

Since
(
φi

)
i
is an Hilbertian basis, we obtain

∥∥∥(A + γI
)−1 Axex − xex

∥∥∥2
=

∑
i

µ2
i

(
λi

λi + γ
− 1

)2

.

The dominated convergence theorem implies that the right-hand side tends to zero asγ→ 0, since
∑
i
µ2

i < ∞.

Consequently, for N, n large enough, we have∥∥∥∥∥(ÂN + γI
)−1

Axex − xex

∥∥∥∥∥ ≤ ε2 .
Hence, the inequality (12) becomes

P
{∥∥∥∥X

γ

n − xex

∥∥∥∥ > ε} ≤ P


∥∥∥∥∥∥∥1

n

n∑
i=1

(
ÂN + γI

)−1
eN+i

∥∥∥∥∥∥∥ > ε
2

 . (13)

We define

∆ =
∥∥∥(A + γI)−1

∥∥∥ ∥∥∥∥ÂN − A
∥∥∥∥ ;

it holds

∆ ≤
1
γ

∥∥∥∥ÂN − A
∥∥∥∥ .

We obtain∥∥∥∥∥(ÂN + γI
)−1

eN+i

∥∥∥∥∥ ≤ ∥∥∥∥∥(ÂN + γI
)−1

∥∥∥∥∥ ‖eN+i‖ .

And since∥∥∥∥∥(ÂN + γI
)−1

∥∥∥∥∥ ≤
∥∥∥(A + γI

)−1
∥∥∥

1 − ∆
,

so, from (9), we have∥∥∥∥∥( ÂN + γI
)−1

∥∥∥∥∥ ≤ 1
γ (1 − ∆)

.

From (H5) we deduce that 1
γ

∥∥∥∥ÂN − A
∥∥∥∥ ≤ 1/4 almost surely and consequently∥∥∥(A + γI)−1

∥∥∥ ∥∥∥∥ÂN − A
∥∥∥∥ < 1.

Hence

P


∥∥∥∥∥∥∥1

n

n∑
i=1

(
ÂN + γI

)−1
eN+i

∥∥∥∥∥∥∥ > ε
2


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becomes

P


∥∥∥∥∥∥∥1

n

n∑
i=1

eN+i

∥∥∥∥∥∥∥ > εδγ

2

 with δ = 1 − ∆.

Now, we show that

P


∥∥∥∥∥∥∥1

n

n∑
i=1

eN+i

∥∥∥∥∥∥∥ > εδγ

2

 < ∞ .

Applying directly proposition A.11 (Ferraty and Vieu [10]), we obtain

P


∥∥∥∥∥∥∥1

n

n∑
i=1

eN+i

∥∥∥∥∥∥∥ > εδγ

2

 ≤ C
(
1 +

n2ε2γ2δ2

4rs2
n

)− r
2

+ nr−1

(
2r

nεδγ

)q

; (14)

where

q =
(b + 1) p

b + p
.

We replace in (14) r and ε by

r = (ln n)2 and ε = ε0

√
n−2s2

n ln n;

we get

P


∥∥∥∥∥∥∥1

n

n∑
i=1

eN+i

∥∥∥∥∥∥∥ > ε0δγ
√

n−2s2
n ln n

2

 ≤ C

1 +
n2ε2

0γ
2δ2un

4 (ln n)2 s2
n

−
(ln n)2

2

+n (ln n)−2
(

2 (ln n)2

nε0δγ
√

un

)q

.

We set un = n−2s2
n ln n

(
lim un

n→∞
= 0

)
, then

P


∥∥∥∥∥∥∥1

n

n∑
i=1

eN+i

∥∥∥∥∥∥∥ > ε0δγ
√

un

2

 ≤ C

1 +
n−2ε2

0s2
n ln nγ2δ2n2

4 (ln n)2 s2
n

−
(ln n)2

2

+n (ln n)−2

 2 (ln n)2

n−1sn (ln n)
1
2 ε0δnγ


q

,

P


∥∥∥∥∥∥∥1

n

n∑
i=1

eN+i

∥∥∥∥∥∥∥ > ε0δγ
√

un

2

 ≤ C

1 +
ε2

0γ
2δ2

4 (ln n)

−
(ln n)2

2

+n (ln n)−2

2 (ln n)
3
2

ε0δsnγ

q

.

Using the fact ln (1 + x) = x − x2

2 + o
(
x2

)
when x close to 0, we get

P


∥∥∥∥∥∥∥1

n

n∑
i=1

eN+i

∥∥∥∥∥∥∥ > ε0δγ
√

un

2

 ≤ C
(
e−

ε2
0 ln n γ2δ2

8 +
ε4
0γ

4δ4

64

)
+2qn (ln n)

3q
2 −2 (ε0δ)−q s−q

n γ
−q
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to ensure

P


∥∥∥∥∥∥∥1

n

n∑
i=1

eN+i

∥∥∥∥∥∥∥ > εδγ

2

 ≤ C exp

−nε2
0γ

2δ2

8
+
ε4

0γ
4δ4

64


+ 2qn (ln n)

3q
2 −2 (ε0δ)−q s−q

n γ
−q. (15)

Finally (11) follows from (13) and (15).

Corollary 5.2. Under the assumptions of Theorem 2, the sequence
(
X
γ

n

)
converges almost completely to the exact

solution xex of equation (3).

Proof. Indeed, it is easy to find γ = γ (n,N) satisfying the assumption (H5) such that

P
{∥∥∥∥X

γ

n − xex

∥∥∥∥ > ε} ≤ Cn−γ
2
−ν0 ; (16)

hence, for all ε > 0,
∞∑

n=1

P
{∥∥∥∥X

γ

n − xex

∥∥∥∥ > ε} < +∞. (17)

Then the result follows.

Corollary 5.3. Under the assumptions of Theorem 2,

X
γ

n − xex = O(γ
√

n−2s2
n ln n) a.co.. (18)

Proof. We recall that X
γ

n − xex = O (un) a.co., where (un)n is a sequence of real positive numbers, if there exist
ε0 > 0 such that

+∞∑
n=1

P
{∥∥∥∥X

γ

n − xex

∥∥∥∥ > ε0un

}
< +∞.

If we apply the result (16) with ε = ε0γ
√

un, we obtain, for all ε0,

P
{∥∥∥∥X

γ

n − xex

∥∥∥∥ > ε0γ
√

un

}
≤ Cn−γ

2
−ν0 . (19)

The right-hand side of the precedent inequality is the term of convergent series. Thus we deduce (18).

Corollary 5.4. Under the assumptions of Theorem 2, for a given level β, there is a natural integer nβ for which:

P
{∥∥∥∥X

γ

nβ − xex

∥∥∥∥ ≤ ε} ≥ 1 − β, (20)

i.e., the exact solution xex of equation (3) belongs to the closed ball of center Xγ
nβ and radius εwith a probability greater

than or equal to 1 − β.

Proof. Indeed, we have

lim
n→+∞

Cn−γ
2
−ν0 = 0, (21)

which implies the existence of a natural integer nβ such that

n ≥ nβ =⇒ Cn−γ
2
−ν0 ≤ β; (22)

thus, (20) arises from (16) and (22).
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6. Numerical example

In this section, a simulation is proposed to illustrate the validity of the approximate solution X
γ

n.

Example 6.1. Let us consider the model

ui = Axi + ei

where
A : L2 [0, π] −→ L2 [0, π]

x 7→ Ax

is defined by the kernel

K (s, t) =


s(π−t)
π , 0 ≤ s ≤ t,

t(π−s)
π , t ≤ s ≤ π,

and

ui (t) =
1
2

sin 2t.

The design of repeated observations is used by taking the orthonormal basis xi (t) =
√

2
π sin it, hence the estimated

kernel given in the construction is

KN (s, t) =
2
π

m∑
i=1

sin (is) sin (it)
i2

.

The approximate solutions are given by

X
γ

n :=
(
ÂN + γI

)−1
(un) .

To characterize the strong mixing random errors (ei) , we consider an autoregressive model (ei)i of order 1 (see ([5]))
described as follows:

e0 = 0
ei+1 = ϕei + 1i

where 1i is a Gaussian white noise process, ϕ is a constant such that
∣∣∣ϕ∣∣∣ < 1. For the simulation of Gaussian random

variables
(
1i
)

i , we use the method of Box-Muller:

11 =
√
−2 ln (u1) cos (2πu2)

12 =
√
−2 ln (u1) sin (2πu2)

where u1 and u2 are uniform distributed random numbers.

The plots of the exact solution and results of simulation are shown on (a) Fig1 and (b) Fig2.
In this example, the exact solution is (x (t) = 2 sin (2t)) and the graphical results obtained for ϕ = 0, 65

and ϕ = 0, 80 are in good agreement with the exact solution.
The algorithm of the approximate solutions X

γ

n is implemented using MATLAB.

Conclusion 6.2. In this work, we have established exponential inequalities for the probability of the distance between
approximate solutions and the exact one for a linear calibration problem with α−mixing random data. A numerical
example was proposed as illustration. The numerical results show that the approximate solutions are in good agreement
with the exact one. The proposed method is applicable to linear problems with α−mixing random data. In a future
work, it is interesting to consider quasi associated random errors.
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(a) Fig1. plots of approximate solutions and the exact solution for phi=0.65
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(b) Fig2. plots of approximate solutions and the exact solution for phi=0.8
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