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Pseudoanalytic Extension on F(p,p — 2, s) Spaces and Applications

Ruishen Qian?

#School of Mathematics and Statistics Lingnan Normal University Zhanjiang 524048, Guangdong, P. R. China

Abstract. In this paper, we generalized the main results in [9]. As an applications, we give a characteriza-
tion of the closure of F(p,p — 2, s) spaces in Lipschitz-type spaces A, by pseudoanalytic extension.

1. Introduction

Let D be the unit disk in the complex plane C and H(ID) be the class of functions analytic in ID. For
0 < p < o0, H? denotes the Hardy space, which consisting of all functions f € H(ID) satisfied (see [13])
27

1 .
WA, = sup 5 | |f(re®)PdO < oo.
<r<

As usual, H* is the set of bounded analytic functions in ID and A denotes the disc algebra.
Let0 <p <oo, -2 <g<o0s>0. The F(p,q,s) ([27]) space is the set of all f € H(ID) such that

sup | 1 @P(~12P) (1~ lpa2)P) dA(z) < o,
aeD JDD
where @,(z) = =

1-az

and dA(z) = Zdxdy. When q = p — 2, F(p,p — 2,5) is Mobius invariant Besov-type
spaces. When 0 < s < 1, F(2,0,s) = Qs ([24, 25]); If s = 1, F(2,0,1) = BMOA, the space of analytic
functions in the Hardy space H!(ID) whose boundary functions have bounded mean oscillation. When s >
1, F(2,0,s) = B (the Bloch space).

Let w : [0, 0) — R be a right-continuous with w(0) = 0. If w is increasing and @)
t > 0, there exists constant C(w) such that

+~ is nonincreasing for
0 00
f @dﬂé f %dtsC(w)-w(é),
0 5

then we say that w is a regular majorant, where 0 < 6 < 1.
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Given a regular majorant w and a compact set E C C, the Lipschitz-type spaces A, (E) consists of those
functions f : E — C, such that

If(z) - f(w)l

:z,weE,z;&w} < 0.
w(lz —wl)

Iflla, = SUP{

In this paper, we shall be concerned with the space A, =: AN A, (E). When w(t) = t%,0 < a < 1, it give the
classical Lipschitz space A,. For more informations on A, we refer to [4] and the paper referin there.

Pseudoanalytic extension, as explained in [10], an analytic function in ID can be extended to D, = {z :
|z| > 1} as a C' function whose Cauchy-Riemann d-derivative becomes appropriately small. There are many
applications for pseudoanalytic extension, for example: K-property ([9]); inner-outer factorization ([10]);
Bernstein-type inequality related to kernel of H? spaces ([6]) and so on.

In this paper, we generalize the main results in [9] to F(p,p — 2,s) spaces. Moreover, we also give an
application on our result to studying the closure of F(p, p — 2, 5) spaces in Lipschitz-type spaces A, (denoted
by Ca, (A, NF(p,p — 2,5))) by pseudoanalytic extension.

In this paper, the symbol f ~ g means that f < g < f. We say that f < g if there exists a constant C such
that f < Cg.

2. Auxiliary results

If Q is a measurable subset of C and Q varies over all discs in C, |Q| will denote the measure (area) of Q.
Let w be a positive measurable function on C. We say that w is an A;-weight (t > 1) if (see [22])

1 1 1 t-1
sgp(@wi(z)dA(Z))(@fQ—th(Z)dA(z)) < oo,

Remark 1. Let t > 1 and w be an A;-weight and T be a Calderon-Zygmund operator. It is well know that
(see [22])

f ITf(@)'w(z)dA() < f f@)I'w(2)dAGR), for all feL'(w).
C C

Here L!(w) denote the space of functions f € L which satisfy

fc If @)'w(z)dA(z) < .

The following lemma generalized [9, Proposition 1].

- S
Lemma 1. Suppose that 1 <p < o0,0<s<1,p+s>2,z€ Canda € D. Then |1 - |Z|2|p Z‘I—l—z - 1' is an
Pa(2)l
Ap-weight.
Proof. Since
IR I S I € 0 e Vi
lpa(2)I? Iz —as
Let
(1= laPy |l = 12
M,(z) = e
and
2P =1

Ntl(z) - |Z _ a|25
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It is easily to see that M,(z) is an A,-weight if and only if N,(z) is an A,-weight. Now, we adopt and modify
the method in [9, Proposition 1]. Suppose that N,(z) = J(z)K,(z), where

p—2+s _ 1 _ 1
7, Ki(@) = T Ko(2) = e

J2) = |1z~ 1

From [22, page 218], we known that Ko(z) is an A;-weight (f > 1). Since K,(z) are translates of Ky(z), we have
K,(z) is also an A;-weight, that is,

1 1
e (IQI[ K(Z)dA(Z)) |Q|fQK,1(Z) )

—)and Qbe any disc. Let 1 + 1 = 1. Then, for any 2 € D, we have

<. )

Letre(l,

- 2+s

P
1 1 1
(l—QlLNa (z)dA(z))[@j(;—N;ll (Z)dA(z)}
p-1
1
(IQIf T (Z)dA(Z))[|Q|fQ JERN . (Z)]

< K, (2)dA )
[i‘:g”z)] (IQIf 2)dAk)

1 1 7 1 1
— = d
X(|Q|fQ]M(z) ()) ><[|c2|fQK;.1()“‘(")J

By direct calculation (or see [9, page 484]), we obtain

-1

<

p—l

1
dA 0.
[i‘e‘é”(z)] [lQlfw@ ‘Z’] <

p-1
1 1
— | ——dA
al. Ve (Z)]

p-1

1
(l—QlfQNa (z)dA(z))
1 1 N
(IQlfK (z)dA(z)) [lQlfQKpl()dA(Z)]

If2—s<p<2 1teasﬂytoseethat— > 1. If p > 2, noted that r € (1,

deduce that - pTl >1. Lett= pli

Thus,

1,1 _
= 2+s) and ; + ;; = 1, we can also

> 1. Combined with (), we have

1 1
(IQIf K 20ac) [IQIf K,l()d“‘(z)]
-1
1
(IQIf K (Z)dA(Z)) [IQIf %(Z)dA(Z)

p-1
-

< 00,
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Therefore,

1 1 1
(@LNH (z)dA(z)) |_Q|fQ—N:11 (Z)dA(z)

for any a € ID. The proof is completed. [

p-1

< 0o,

3. Pseudoanalytic extension on F(p,p — 2, s)

Now, let us consider the pseudoanalytic extension on F(p,p — 2,5).
Theorem 1. Suppose thatp > 1,0 <s <1,p+s>2and f € [pcp<e H?. Then the following are equivalent:
(1) feFp,p—-2,5);
@)

sup |f @P (1= 2Py

aeD | a( )|2

(3) There exists a function F € C}(ID,) satisfying

- l)sdA(Z) < 00,

F(z)=0(1), as z— oo, (a)
lim F(re”) = f(¢"), a.e and in L'(-m, 7)) for all q€[1,00), (b)
sup f OF@P (2P = 1Y 2(Ipa(2)P — 1Y dA(z) < oo. ©

Proof. (1) & (2). Since F(p, p — 2, 5) space is Mobius invariant, we only need to prove that (the case a = 0)
[ ir@ra-epyiae
- [ Ir@ra- ey - viae
- [ rer B e,

On the one hand, it is obvious that
1- 2\p—2+s
[ irera-epreeiae < | irert——do.
D D |z[*
On the other hand, let

271
My S =5 [ \Feerao,

Bearing in mind that M, (r, f')? is an increasing function of r, we have
(1= |z2)p=2+s 1 , s
f f@F = p—dA@ = | My, fY A=~y
<M f (1- Z)P ~2+s,1- str+4sf Mp(r f)p(l Z)Iﬂ 24,
<(C(p,s) +4°) j: My (r, f)P(1 - Py =24 pdy

< fD P - 2P dAG),
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where
1
2 2\p—2+5,1-2
~ fo (1 —royp==*5ri=—=dr

ﬁl(l — r2)P-24spdy
2

C(p,9)

< 00,

We get the desired result.
(1) = (3). Suppose f € F(p,p —2,5), letz" = % and
Fiz) = f(z"), zeD..

Hence, F € C!(ID,) and satisfies (a) and (b). Leta € ID. Using the fact that |§F(z)| = |f'(z")llz'[>, making
change of variables z = w*, and combining with (1) & (2), we deduce that

fD BEQP (2P - 179 ()  1¥dAR)

= fD If @)1 = [wPY (o) = 1) dAw)
1
lp(w)I?

- fD I @)P (L~ P2 — 1Y dA(w) < co.

(3) = (1). Letz € D and R > 1. Using Cauchy-Green formula we obtain

_ 1 gw) .~ 1 9g(w)
fe) = f| ac f dA(w).

2 ik 02 T Ji<wl<k W — Z
Notice the fact that
Luz (wg (—w:)2 dw — 0, as R — co.
We deduce
f(2) = _% fD | (Zg_(a;;z o)
Let G be defined by

Let T denote the Calderén-Zygmund operator defined by

Tg(z) = p.v.fc (Zf(_w;)sz(w).

It is not hard to see that

f'(z) = —%(TG)(Z), z € D.

Hence, using the boundedness of Calderén-Zygmund operators (see Remark 1) and Lemma 1, we deduce
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that
[rr@ra-epy| Lo -1l aae
- fD (O~ kY2 | s 1| a4
< e -1 [ aae
Sfc'c(z)'p 1P |<pa2z>|2 1| )

< fD C 9g@ (12 - 1) _2(|(pu(z)|2—1)sdA(z)<oo.

The proof is completed. [

Remark 2. Such function F is said to be a pseudonalytical extension of f, clearly it is not uniquelly
determined by f.

Remark 3. T is also known as Ahlfors - Beoruling operator, which appears in discussions related to different
topics in complex analysis, like Beltrami equation.

Given a function v € L¥(JID), the associated Toeplitz operator T, is defined by

1 [ a9f©
<va><z>-2—mfm M, femzep,

Recall that a subspace X of H' is said to have the K-property if T5(X) € X for any ¢ € H”.

Corollary 1. Letp > 1,0 <s <1land p +s > 2. The F(p,p — 2, 5) has the K-property.

Proof. The proof is similar to [9, Theorem 2]. For completeness, we give the proof. Suppose that f €
F(p,p—2,s), h € H®. We need to show that

g1=T;f € F(p,p = 2,9).
Since, by definition of Toeplitz operator, g; is the orthogonal projection of fh onto H2, then, we have
fli=q+7,
where g, € HS. Therefore, we obtain that
g1=fh—g; ae ondD.

From Theorem 1, we know that there is a function F € C}(ID,) satisfying (), (b) and (c). We let

H(z) = h(z*), Gz =:92(z"), Gi(z) =:F(z)H(z)—Ga(z) z€D,.
Hence, using the fact that
Fop=f, Hbp=h Giop =792

we get
Gilop = g1-
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Since H and G; are holomorphic in ID,, we obtain

dH=0, dG,=0.
Thus, we have 5G1 =H-JF on D,. Furthermore,

10G1| < IHllwlFI.

3245

It is clear that Gy is C!-smooth in ID, and bounded at . Using the fact of above and Theorem 1, we easy to

get (a), (b) and (c) hold true with G; and g, in place of F and f. The proof is completed. [

4. Closure of F(p, p — 2, s) spaces in A,

Let us recall the following result.

Lemma 2. [4, Lemma 7] Let w be a reqular majorant. Suppose that f € A. Then f € A, if and only if there exists

a bounded function g € C(D,) satisfying ‘ ‘
lim g(re'”) = f(e");

(2P - 1)

S 20(z)| < 0.
i T
Moreover,
(21> - 1)
1A, mfsup —19g(2)!.
zen, @(lzI* = 1)

Lemma 3. Let w be a reqular majorant. Then

f w(lwP - 1) A@W) < w(l—lzlz), ,eD.
D z

, ([l = Dlw — z|? (1-1z1?)

Proof. Making change of variable w = 1, v € D, we have

w(jwf - 1) CoeED
fpﬁ (P =D —zp A = fD —ﬂ ST dA(0)
w(L)
- fD =P o2 A@
1 w( 1r2r
<f (1-r)(1- r2|z|2)

Lett = 5. Then % = 1+t and rdr =

f - r2)<1 - r2|z|2> rdr

w(t)
S’fo e

L © w(t)
= I A—; | —
fo Ht+ (- 2P)] ”f1_|z|z T+ (-2l

5 +1)2 We obtain




R. Qian / Filomat 34:10 (2020), 3239-3249 3246

Note that S
w(t) w(t)
jo‘ Tdt+6£ —dt < C(a)) CL)((S)
We have
fo a)(t)dt < w(©)
and
5 f w(t)dt < w(®).
5
Thus,
R0 1 (Fap,  wl-kP
d A\ P i i el
fo RN (1—|Z|2)f0 =
and * (t) * w(t) w(l—|z%)
w(t w(t — |z
j;—|z|2 tt+ (1 - |Z|2)]dt : ‘E e 28 T (1-1z%
That is

P - 1) w1 — 12P)
- > "~z A
fDE (0P - Dw - 22 @ = Ty

The proof is completed. [

Theorem 2. Letp > 1,0 <s <1, p+s > 2and w be a regular majorant. If f € A, then the following statements
are equivalent.

(i) f €Ca,(AsNFp,p—2,59)).
(ii) Foranye >0,

M 2 _1ys 1%
fow) (|22 = 1)? (lpa(2)I° = 1)°dA(z) < oo,

where Q (F) = {ze D, : (') |0F(z)| > €} and F is pseudoanalytic extension of f.

w(z?-1)

Proof. (i) = (ii). Suppose that f € Ca (A, NF(p,p —2,5)) € A,. Then for any € > 0, there exist a function
geA, ﬂ F(p,p — 2,5), such that

€
||f_g“Am < E
From Lemma 2, there exist functions F, G € C'(ID,), such that
(12 - 1)
————|0F - G| < |If - gl
(P = 1) f-ah <5
Here F, G are its pseudoanalytic extension of f and g, respectively. Since
(2 - 1) (2P-1) = 5 (2 - 1)
I0F| < 0F — 9G| + ————|9G],
w(|z* - 1) w(jz* - 1) w(|z* - 1)

we have Q¢(F) € Q¢(G). By Theorem 1, we can deduce that
wP(l2I” - 1)
— —1)°dA(z
f U @F - 1d4q)

Z f BEEP (2P - 17 2P - 1Y dAG)

5

2

Zz f BEEI (2 = 17 2(pa@) - 1Y dA() < oo,
eP D,
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(ii) = (i). Let f € A,. Using Cauchy-Green formula we obtain

1 Fw) . 1 IF(w)
f2) = 5= fl dC fl dA(w).

2710 Jipj=g W — 2 T J1<pwl<k W —Z

wz

Noting the fact that f Wk (F(w) dw — 0, as R — oo, we obtain

1 JF(w)

fa)=-~ DJw_ZPmey
Let

o 1 OF(w)

mn-anm_#mw
and

1 JF
£(z) = f}D @ A w).

\Qe(F) (w - z)?

Hence, f'(z) = f]/(z) + f,(z). By Lemma 3,

4 ﬁ?ﬂf() £ = ﬁ?ﬂﬁ&ﬂ
N% L ||ZF_(u;|)l dA(w)
_ (|w|22—1) §F
A-iP) [ _ofwP-n

T =P Jp, (P - Diw - 2P
A=z o -1P) _
R D N R

which implies that f; € A,. Now, we are going to prove that f; € F(p,p — 2,5).
Let

) = OF(z), ze€QuP),
o, z € C\ Qu(F),

and

Tg(z) = p.o. fc ( j(f”:)sz(w).

It is easy to see that f{(z) = —1(TG)(z), z € ID. Hence, using the boundedness of the operator T and Lemma
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1, we obtain
fD i @P (L = 127721 = lpa(2)P) dA(z)

Zl P(1 _ |-12\P—2(1 _ 2\s
p jﬂ; (TG)@P(L = [2I) (1 — lpa(2)I") dA(2)

1 —
Pa@)P

S

- f (TGP (1—|Z|2)”2( 1) dA(z)
TJp

< f (TGP - P2 1| daw
C

lpa(2)I*
1

< G@)P|1 = |z]AP2
fcl @11 = |z PP
1

< f wP(1 - 2P .
“Jow T-EPE [P

b (|z* = 1) L
5 7 (Pa(@)F = 1)°dA(z) < oo.
Sfom (P — 1 P~ 17dAR) <

The proof is completed. [

S

dA@z)

-1

S

dA@)

1

Corollary 2. Let0 <s <1, p+s > 2 and w be a regular majorant. The Cg, (A, N F(p,p — 2,5)) has the
K-property.

Proof. Let f € Ca, (A, NF(p,p —2,5)), € H® and g be the orthogonal projection of f¢ onto H2. Then
f® = g+ j, where j € H2. By pseudoanalytic extension, similar to Corollary 1, there are functions G, F, ®, |
on D, with _
G=yg, F=f, ®=¢, J=j, on JD,
such that F® = G + J. Thus, : B
10G(2)| < [I@lleldF(2)], 2z € De.

Combined with Theorem 2, we have
wP()z> -1
[ P (g, - 17dAG)
{zeD,:

;‘(Tf‘;_ll’) Fc@ze (21> = 1)?

< f D=1 (0 )P — 1 dAE) < oo,
{z

D, 20 Gy ey (22 = 1)

" w(z2-1) llplleo

Thatis g € Ca, (A, N F(p,p — 2,5)). The proof is completed. [
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