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Abstract. We introduce and study a closure operator on the digital plane Z2. The closure operator is
shown to provide connectedness that allows for a digital analogue of the Jordan curve theorem. This
enables using the closure operator for structuring the digital plane in order to study and process digital
images. An advantage of the closure operator over the Khalimsky topology on Z2 is demonstrated, too.

1. Introduction

Since the digital images are digital approximations of the real ones, to be able to study them, we need
to equip the digital planeZ2 with a structure that would behave analogously to the Euclidean topology on
the real plane. In particular, such a structure is required to satisfy a digital analogue of the Jordan curve
theorem (recall that the Jordan curve theorem states that every simple closed curve in the Euclidean plane
separates this plane into precisely two connected components). In digital images, the digital simple closed
curves satisfying a digital analogue of the Jordan curve theorem (the so-called Jordan curves) represent
borders of imaged objects. The classical, graph-theoretic approach to the problem of providing the digital
plane with a convenient structure is based on using the well-known binary relations of 4-adjacency and
8-adjacency on Z2 - cf. [7–9, 12]. Since neither of the two binary relations itself allows for an analogue of
the Jordan curve theorem, a combination of them has to be used - one for Jordan curves and the other for
their complements. To eliminate this disadvantage, a topological approach to the problem was proposed in
[5] that is based on employing the so-called Khalimsky topology as the basic structure on the digital plane
for the study of digital images. The topological approach was then developed by many authors - see, e.g.,
[2, 6, 11].

In [10], a combination of the classical and topological approaches was used to obtain connectedness
structures on Z2, namely closure operators induced by sets of walks in a graph with the vertex set Z2. In
the present note, we use solely the topological approach. We directly define a closure operator on Z2 and
show that it allows for an analogue of the Jordan curve theorem. This enables the operator to be used for
studying and processing digital images. We also show that the closure operator defined provides a richer
variety of Jordan curves than the Khalimsky topology.
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2. Preliminaries

By a closure operator c on a set X, we mean a map c: exp X→ exp X (where exp X denotes the power set
of X) which is

(i) grounded (i.e., c∅ = ∅),
(ii) extensive (i.e., A ⊆ X⇒ A ⊆ cA), and
(iii) monotone (i.e., A ⊆ B ⊆ X⇒ cA ⊆ cB).

The pair (X, c) is then called a closure space and every subset A ⊆ X with cA = A is said to be closed. A subset
A ⊆ X is said to be open if its complement X − A is closed. Closure spaces were studied by E. Čech in [1]
(who called them topological spaces).

A closure operator c on X that is
(iv) additive (i.e., c(A ∪ B) = cA ∪ cB whenever A,B ⊆ X) and
(v) idempotent (i.e., ccA = cA whenever A ⊆ X)

is called a Kuratowski closure operator or a topology and the pair (X, c) is called a topological space.
Given a cardinal n > 1, a closure operator c on a set X and the closure space (X, c) are called an Sn-closure

operator and an Sn-closure space (briefly, an Sn-space), respectively, if the following condition is satisfied:
A ⊆ X⇒ cA =

⋃
{cB; B ⊆ A, card B < n}.

S2-topologies (S2-topological spaces) are called Alexandroff topologies (Alexandroff spaces). Of course, any
S2-closure operator is additive and any Sn-closure operator is an Sm-closure operator whenever n < m.
Evidently, if n ≤ ℵ0, then any additive Sn-closure operator is an S2-closure operator. We will use the fact
that every Sn-closure operator c on a set X is given by determining cA for all non-empty subsets A ⊆ X with
card A < n.

For closure spaces, we use some concepts that are natural extensions of certain basic concepts known
for topological spaces - see, e.g., [3]. In particular, a closure space (Y, d) is said to be a subspace of a closure
space (X, c) if dA = cA ∩ Y for every subset A ⊆ X. We then say that Y is a subspace of (X, c). Further, a
closure space (X, c) is connected if ∅ and X are the only subsets of X that are both closed and open. Given
a closure space (X, c), a subset A ⊆ X is said to be connected in (X, c) if A is a connected subspace of (X, c).
And a component of a closure space (X, c) is a maximal (with respect to set inclusion) connected subset of
the space. We will employ the obvious fact that the union of a sequence of connected subsets of a closure
space is connected if every pair of consecutive terms of the sequence has a nonempty intersection.

If (X, c) is a closure space and A ⊆ X a subset such that the subspace X − A has exactly two components
(say B and C), then A is said to separate (X, c) into precisely two components (namely, B and C).

We will work with some basic graph-theoretic concepts only - we refer to [4] for them. By a graph
we understand an undirected simple graph without loops, i.e., a pair G = (V,E) where V is set and
E ⊆ {{x, y}; x, y ∈ V, x , y}. The elements of V are called vertices of G and those of E are called edges of
G. Two vertices x, y ∈ V are said to be adjacent (to each other) if {x, y} ∈ E. Recall that a walk in G is a
(finite) sequence (x0, x1, ..., xn), n a non-negative integer, of vertices of G such that, for every i ∈ {0, 1, ...,n−1},
xi and xi+1 are adjacent. If, moreover, the vertices x0, x1, ..., xn are pair-wise different, then (x0, x1, ..., xn) is
called a path. A sequence (x0, x1, ..., xn) of vertices of a graph G is called a circle in G if n > 2, x0 = xn, and
(x0, x1, ..., xn−1) is a path in G.

We will employ also simple directed graphs without loops that will be called directed graphs for short.
Thus, a directed graph is a pair G = (V,E) where, unlike the (undirected) graphs, E ⊆ {(x, y) ∈ V × V; x , y}.
If x and y are vertices of G, i.e., elements of V, we say that there is an edge from x to y if (x, y) ∈ E. If (V,E)
is a directed graph, then its symmetrization is the (undirected) graph (V,E′) where E′ = {{x, y}; (x, y) ∈ E or
(y, x) ∈ E}.

Definition 2.1. Let c be a closure operator on Z2. A circle (z0, z1, ..., zn) in a graph G with the vertex
set Z2 is said to be a simple closed curve in G with respect to c if it is a minimal (with respect to set
inclusion) circle in G that is a connected subset of (Z2, c), i.e., if, for every circle (t0, t1, ..., tm) in G with
{t0, t1, ..., tm−1} ⊆ {z0, z1, ..., zn−1}, we have {t0, t1, ..., tm−1} = {z0, z1, ..., zn−1} or {t0, t1, ..., tm−1} is not a connected
subset of (Z2, c). A simple closed curve in G with respect to c is called a Jordan curve (with respect to c) if it
separates the space (Z2, c) into exactly two components.
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Figure 1: The Khalimsky topology on Z2.

Let z = (x, y) ∈ Z2 be a point. We put

H(z) = {(x + i, y); i ∈ {−1, 0, 1}},
V(z) = {(x, y + i); i ∈ {−1, 0, 1}},
D(z) = {(x + i, y + i); i ∈ {−1, 0, 1}},
D′(z) = {(x + i, y − i); i ∈ {−1, 0, 1}}.

Next, we put

A(z) = H(z) ∪ V(z) ∪D(z) ∪D′(z)).

In the literature, the points of H(z) ∪ V(z) and A(z) different from z are said to be 4-adjacent and 8-adjacent
to z, respectively. In this note, for all z ∈ Z2, each of the sets H(z), V(z), D(z), D′(z) will be called a basic
segment. Note that basic segments may be considered to be digital (three-element) line segments (where
H(z) is oriented horizontally, V(z) is oriented vertically, and D(z) and D′(z) are oriented diagonally in Z2).

For any z = (x, y) ∈ Z2, we put

v{z} =


A(z) if x, y are odd,
H(z) if x is odd and y is even,
V(z) if x is even and y is odd,
{z} otherwise.

Evidently, z ∈ v{z} and the conjunction of u ∈ v{t} and z ∈ v{u} implies z ∈ v{t} whenever z,u, t ∈ Z2.
Because of this fact, it is easy to see that, putting v∅ = ∅ and vB =

⋃
z∈B v{z} whenever ∅ , B ⊆ Z2, we

get an Alexandroff topology v on Z2. This topology is simply the Khalimsky topology discussed [5], i.e., the
topology on Z2 obtained as the topological product of two copies of the topology on Z generated by the
subbase (of open sets) {{2k − 1, 2k, 2k + 1}; k ∈ Z}. The Alexandroff topological space (Z2, v) is called the
Khalimsky plane. The Khalimsky topology v is demonstrated in Figure 1. For any point z ∈ Z2, a point
t ∈ Z2, t , z, belongs to v{z} if and only if there is an edge from z to t in the directed graph a section of which
is displayed in Figure 1. The directed graph shows that the Khalimsky plane is connected.

We denote by K the connectedness graph of the Khalimsky topology, i.e., the graph with the vertex setZ2

such that, for all z, t ∈ Z2, z and t are adjacent if and only if they are different and {z, t} is a connected subset
of the Khalimsky plane. Of course, K is the symmetrization of the graph shown in Figure 1.

The following statement (Jordan curve theorem for the Khalimsky plane) immediately follows from [5]:

Theorem 2.2. Every simple closed curve C in the graph K having at least four points is a Jordan curve with respect to
the Khalimsky topology v and has the property that its union with any of the two components of the subspaceZ2

− C
of (Z2, v) is connected.

It is evident that a circle C in the graph K is a simple closed curve with respect to the Khalimsky topology
if and only if, for every point z ∈ C, C has exactly two points adjacent to z. Hence, simple closed curves
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Figure 2: The closure operator w.

with respect to the Khalimsky topology may never turn at the acute angle π
4 (in fact, they may turn only

at the points whose coordinates have the same parity). The Jordan curves with respect to the Khalimsky
topology v determined in Theorem 2.2 will be briefly called Jordan curves in the Khalimsky plane (Z2, v). It
is a disadvantage of the Khalimsky topology that Jordan curves in the Khalimsky plane may not turn at the
acute angle π

4 . Therefore, we will introduce a closure operator onZ2 which does not have this disadvantage,
i.e., which allows the Jordan curves in a graph with the vertex set Z2 to turn, at some points, at the acute
angle π

4 .

3. An S3-Closure Operator on Z2

For every point z ∈ Z2, we put

w{z} =


H(z) if z = (4k + 2, y) where k ∈ Z and y , 4l + 2 for every l ∈ Z,
V(z) if z = (x, 4l + 2) where l ∈ Z and x , 4k + 2 for every k ∈ Z,
A(z) if z = (4k + 2, 4l + 2), k, l ∈ Z,
{z} otherwise

and, for every two-element subset {z, t} ⊆ Z2, we put w{z, t} = w{z} ∪ w{t} ∪ 〈z, t〉, where

〈z, t〉 =


H(z) if z = (4k + 2 + i, l) and t = (4k + 2, l), k, l ∈ Z, i ∈ {−1, 1},
V(z) if z = (k, 4l + 2 + i) and t = (k, 4l + 2), k, l ∈ Z, i ∈ {−1, 1},
D(z) if z = (4k + 2 + i, 4l + 2 + i) and t = (4k + 2, 4l + 2), k, l ∈ Z, i ∈ {−1, 1},
D′(z) if z = (4k + 2 + i, 4l + 2 − i) and t = (4k + 2, 4l + 2), k, l ∈ Z, i ∈ {−1, 1},
{z, t} otherwise.

Evidently, we have B ⊆ wB and B ⊆ D⇒ wB ⊆ wD whenever B,D ⊆ Z2 are subsets with cardB,cardD <
3. Because of this fact, it is easy to see that, putting v∅ = ∅ and vB =

⋃
{wD; D ⊆ B, cardD < 3} whenever

∅ , B ⊆ Z2, we get an S3-closure operator w on Z2.
The closure operator w is demonstrated in Figure 2. For any point z ∈ Z2, a point u ∈ Z2, u , z, belongs

to w{z} if and only if there is an edge from z to u in the directed graph demonstrated in the left part of Figure
2. If {z, t} ⊆ Z2 is a two-element subset, then a point u ∈ Z2 with u < w{z} ∪w{t} belongs to w{z, t} if and only
if, in the directed graph demonstrated in the right part of Figure 2, z and t are the end points of a dotted line
segment containing no other point of Z2 (the dotted line segments are not edges of the graph) and there is
an edge from z or t to u such that the points z, t,u lie on a line (so that the set {z, t,u} is a basic segment with
t ∈ w{z} or z ∈ w{t} - cf. the directed graph in the left part of the figure).

A sequence S of pair-wise different points of Z2 is called a w-connected element if

(1) S = (z0, z1) where z1 ∈ w{z0} or z0 ∈ w{z1} or
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(2) S = (z0, z1, z2) where

(a) z1 ∈ w{z0} and z2 ∈ w{z0, z1} or

(b) z1 ∈ w{z2} and z0 ∈ w{z1, z2}.

It is evident that every w-connected element is a connected subset of (Z2,w).

Definition 3.1. A sequence (z0, z1, ..., zn) of points of Z2 is called a w-walk if there is an increasing sequence
(i0, i1, ..., im) of non-negative integers with i0 = 0 and im = n such that (zi| i j ≤ i ≤ i j+1) is a w-connected
element for every j ∈ {0, 1, ...,m − 1}.

Note that every one-term sequence (with the term being a point of Z2) is a w-walk.

Example 3.2. The sequence (z0, z1, ..., z6) = ((1, 1), (2, 1), (2, 2), (3, 3), (4, 4), (3, 4), (2, 4)) is a w-walk because the
sequence (i0, i1, i2, i3, i4) = (0, 1, 2, 4, 6) has the property that (zi| i j ≤ i ≤ i j+1) is a w-connected element for
every j ∈ {0, 1, 2, 3} - see Figure 2.

Lemma 3.3. A subset B ⊆ Z2 is connected in (Z2,w) if and only if every pair of points z, t ∈ B can be joined by a
w-walk contained in B (i.e., there is a w-walk (z0, z1, ..., zn) such that z0 = z, zn = t and zi ∈ B for every i ∈ {0, 1, ...,n}).

Proof. If B = ∅, then the statement is trivial. Let B , ∅. If any two vertices from B can be joined by a w-walk
contained in B, then B is clearly connected in (Z2,w). Conversely, let B be connected in (Z2,w) and suppose
that there are vertices z, t ∈ B which can not be joined by a w-walk contained in B. Let D be the set of all
vertices from B which can be joined with z by a w-walk contained in B. Let u ∈ wD ∩ B be a vertex and
assume that u < D. Then there is a point s ∈ D with u ∈ w{s} or there is a subset {s, r} ⊆ D with r ∈ w{s} and
u ∈ w{s, r}. Thus, z and s can be joined by a w-walk (z = z0, z1, ..., zn = s) contained in B and also s and u can
be joined by a w-walk contained in B, namely the w-connected element (s,u) or (s, r,u). It follows that z and
u can be joined by the w-walk (z = z0, z1, ..., zn = s,u) or (z = z0, z1, ..., zn = s, r,u) contained in B, which is a
contradiction. Therefore, u ∈ D, i.e., wD ∩ B = D. Consequently, D is closed in the subspace B of (Z2,w).
Further, let u ∈ w(B−D)∩B be a vertex and assume that u ∈ D. Then u < B−D, hence there is a point s ∈ B−D
with u ∈ w{s} or there is a subset {s, r} ⊆ B −D with r ∈ w{s} and u ∈ w{s, r}. We get a w-connected element
(s,u) or (s, r,u). Since z can be joined with u by a w-walk (z = z0, z1, ..., zn = u) contained in B (because we
have assumed that u ∈ D) and u can be joined with s by a w-walk contained in B, namely the w-connected
element (u, s) or (u, r, s), z and s can be joined by the w-walk (z = z0, z1, ..., zn = u, s) or (z = z0, z1, ..., zn = u, r, s)
contained in B. This is a contradiction with s < D. Thus, u < D, i.e., w(B − D) ∩ B = B − D. Consequently,
B−D is closed in the subspace B of (Z2,w). Hence, B is the union of the nonempty disjoint sets D and B−D
closed in the subspace B of (Z2,w). But this is a contradiction because B is connected in (Z2,w). Therefore,
any two points of B can be joined by a w-walk contained in B.

We denote by H the graph with the vertex set Z2 such that, for all z, t ∈ Z2, z and t are adjacent in H if
and only if they are different and one of the following two conditions is satisfied:

(1) z ∈ w{t} or t ∈ w{z},

(2) there is a point u ∈ Z2, z , u , t, such that either z ∈ w{u} and t ∈ w{u, z} or t ∈ w{u} and z ∈ w{u, t}.

A section of the graph H is demonstrated in Figure 3.

Proposition 3.4. The closure space (Z2,w) is connected.

Proof. It may easily be seen that every pair of points z, t ∈ Z2 may be joined by a path (z0, z1, ..., zn) in
H. It is evident that every edge of H is an edge of the symmetrization of one of the two directed graphs
demonstrated in Figure 2 (the set of edges of H is the union of the sets of edges of the symmetrizations of the
two directed graphs). Clearly, for every i ∈ {0, 1, ...,n − 1}, one of the following two conditions is satisfied:
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Figure 3: A section of the graph H.

(i) (zi, zi+1) is a w-connected element,

(ii) there is a w-connected element (t0, t1, t2) such that {zi, zi+1} = {t1, t2}.

For every i ∈ {0, 1, ...,n−1} satisfying condition (ii), in the sequence (z0, z1, ..., zn), we replace the subsequence
(zi, zi+1) with the w-walk (t1, t0, t1, t2) if (zi, zi+1) = (t1, t2) and with the w-walk (t2, t1, t0, t1) if (zi, zi+1) = (t2, t1)
(clearly, each of the two w-walks consists of two w-connected elements). Obviously, we obtain a w-walk
joining z and t. Therefore, (Z2,w) is connected by Lemma 3.3.

Let z = (x, y) ∈ Z2 be a point such that x = 4k + p and y = 4l + q for some k, l, p, q ∈ Z with p, q ∈ {1, 3}.
Then we define the fundamental triangle T(z) to be the subset of Z2 given as follows:

T(z) =


{(r, s) ∈ Z2; 4k ≤ r ≤ 4k + 4, 4l ≤ s ≤ 4l + 4k + 4 − r} if x = 4k + 1, y = 4l + 1, k, l ∈ Z,
{(r, s) ∈ Z2; 4k ≤ r ≤ 4k + 4, 4l ≤ s ≤ 4l + r − 4k} if x = 4k + 3, y = 4l + 1, k, l ∈ Z,
{(r, s) ∈ Z2; 4k ≤ r ≤ 4l, 4l + 4k + 4 − r ≤ s ≤ 4l + 4} if x = 4k + 3, y = 4l + 3, k, l ∈ Z,
{(r, s) ∈ Z2; 4k ≤ r ≤ 4k + 4, 4l + r − 4k ≤ s ≤ 4l + 4} if x = 4k + 1, y = 4l + 3, k, l ∈ Z.

Every fundamental triangle T(z) consists of fifteen points and forms a digital right triangle obtained
from a square with 5 × 5 points by dividing it by a diagonal. The (four types of) fundamental triangles
T(z) with the point z being marked by the bold dot are demonstrated (as subgraphs of the graph H) in the
following figures:
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Note that each side of a fundamental triangle consists of five points and that two different fundamental
triangles may have at most one side in common.

Remark 3.5. The following properties of fundamental triangles immediately follow from Lemma 3.3:

(1) Every fundamental triangle is connected (so that the union of two fundamental triangles having a
common side is connected) in (Z2,w).

(2) If we subtract from a fundamental triangle some of its sides, then the resulting set is still connected
in (Z2,w).

(3) If S1,S2 are fundamental triangles having a common side D, then the set (S1 ∪ S2)−M is connected in
(Z2,w) whenever M is the union of some sides of S1 or S2 different from D.

(4) Every connected subset of Z2 with at most two points is a subset of a fundamental triangle.

Lemma 3.6. For every circle C in the graph H that turns only at some of the points (4k, 4l), k, l ∈ Z, there are
sequences SF,SI of fundamental triangles, SF finite and SI infinite, such that, whenever S ∈ {SF,SI}, the following
two conditions are satisfied:

(a) Each term of S, excluding the first one, has a common side with at least one of its predecessors.
(b) C is the union of those sides of fundamental triangles in S that are not shared by two different fundamental

triangles from S.

Proof. Put C1 = C and let S1
1 be an arbitrary fundamental triangle with S1

1 ∩ C1 , ∅. For every k ∈ Z, 1 ≤ k,
if S1

1,S
1
2, ...,S

1
k are defined, let S1

k+1 be a fundamental triangle with the following properties: S1
k+1 ∩ C1 ,

∅, S1
k+1 has a side in common with S1

k which is not a subset of C1 and S1
k+1 , S1

i for all i, 1 ≤ i ≤ k.
Clearly, there will always be a (smallest) number k ≥ 1 for which no such fundamental triangle S1

k+1
exists. Denoting by k1 this number, we have defined a sequence (S1

1,S
1
2, ...,S

1
k1

) of fundamental triangles.
Let C2 be the union of those sides of fundamental triangles in (S1

1,S
1
2, ...,S

1
k1

) that are disjoint from C1

and are not shared by two different fundamental triangles in (S1
1,S

1
2, ...,S

1
k1

). If C2 , ∅, we construct a
sequence (S2

1,S
2
2, ...,S

2
k2

) of fundamental triangles in an analogous way to (S1
1,S

1
2, ...,S

1
k1

) by taking C2 instead
of C1 (and obtaining k2 analogously to k1). Repeating this construction, we get sequences (S3

1,S
3
2, ...,S

3
k3

),
(S4

1,S
4
2, ...,S

1
k4

), etc. We put S = (S1
1,S

1
2, ...,S

1
k1
,S2

1,S
2
2, ...,S

2
k2
,S3

1,S
3
2, ...,S

3
k3
, ...) if Ci , ∅ for all i ≥ 1 and S =

(S1
1,S

1
2, ...,S

1
k1
,S2

1,S
2
2, ...,S

2
k2
, ...,Sl

1,S
l
2, ...,S

l
kl

) if Ci , ∅ for all i with 1 ≤ i ≤ l and Ci = ∅ for i = l + 1.
Further, let S′1 = T(z) be a fundamental triangle such that z < S whenever S is a term of S. Having

defined S′1, let S′ = (S′1,S
′

2, ...) be a sequence of fundamental triangles defined analogously to S (by taking
S′1 instead of S1

1). Then one of the sequences S, S′ is finite and the other is infinite. Indeed, S is finite
(infinite) if and only if its first term equals such a fundamental triangle T(z) for which z = (k, l) ∈ Z2 has the
property that the cardinality of the set {(x, l) ∈ Z2; x > k}∩C is odd (even). The same is true forS′. If we put
{SF,SI} = {S,S′}where SF is finite and SI is infinite, then the conditions (a) and (b) are clearly satisfied.

Now we are ready to prove the main result of this note:
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Figure 4: A Jordan curve in (Z2,w).

Theorem 3.7. Every circle C in the graph H that turns only at some of the points (4k, 4l), k, l ∈ Z, is a Jordan curve
with respect to the closure operator w and has the property that its union with any of the two components of the
subspace Z2

− C of (Z2,w) is connected.

Proof. Clearly, every circle in the graph H that turns only at some of the points (4k, 4l), k, l ∈ Z, is a simple
closed curve in (Z2,w).

Let C be a circle in the graph H that turns only at some of the points (4k, 4l), k, l ∈ Z. By Lemma 3.6,
there are sequences SF and SI of fundamental triangles, SF finite and SI infinite, such that, whenever
S ∈ {SF,SI}, the conditions (a) and (b) are satisfied. Let SF and SI denote the union of all terms of SF and
SI, respectively. Then SF ∪ SI = Z2 and SF ∩ SI = C. Let S∗F and S∗I be the sequences obtained from SF and
SI by subtracting C from each term of SF and SI, respectively. Let S∗F and S∗I denote the union of all terms
of S∗F and S∗I , respectively. Then S∗F and S∗I are connected by Remark 3.5(1)-(3) and it is clear that S∗F = SF −C
and S∗I = SI − C. So, S∗F and S∗I are the components of Z2

− C by Remark 3.5(4) (SF − C is called the inside
component and SI −C is called the outside component). Thus, C is a Jordan curve with respect to the closure
operator w. The rest of the statement is evident.

Jordan curves in the graph H with respect to the closure operator w will be briefly called Jordan curves
in the closure space (Z2,w). The possible turning points of the Jordan curves in the closure space (Z2,w)
determined in Theorem 3.7 are the points represented by bold dots in Figure 3. Thus, the Jordan curves in
(Z2,w) have at least 12 points and they may turn, at some points, at the acute angle π

4 .

Example 3.8. Consider the subset of Z2 shown in Figure 4, which represents the border of letter K. This
set is a circle C in the graph H satisfying the condition of Theorem 3.7 and, therefore, it is a Jordan curve
in (Z2,w). But the set is not a Jordan curve in the Khalimsky plane because C turns at the acute angle π

4 at
some (precisely four) of its points. In order that C be a Jordan curve in the Khalimsky plane, we have to
delete the eight points denoted by the ringed dots. But this would cause a considerable deformation of C.

4. Conclusion

We have found a structure on the digital plane Z2, the closure operator w, which provides the plane
with a connectedness allowing for a digital analogue of the Jordan curve theorem. This means that the
closure operator w may be used as a background structure on the digital plane for the study and processing
of digital pictures. An advantage of the Jordan curves in the closure space (Z2,w) over the Jordan curves in
the Khalimsky plane is that they may turn, at some points, at the acute angle π

4 . Thus, the closure operator
w provides a richer variety of Jordan curves than the Khalimsky topology. In then forthcoming research,
we will focus on extending the closure operator w onto the digital spaceZ3 so that a digital analogue of the
Jordan surface theorem (also known as 3D Jordan-Brouwer separation theorem) can be proved.
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