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Abstract. In this paper, we first generalize the theorem about the existence of an enveloping action to
a partial twisted smash product. Then we construct a Morita context between the partial twisted smash
product and the twisted smash product related to the enveloping action. Finally, we present versions of the
duality theorems of Blattner-Montgomery for partial twisted smash products.

1. Introduction

Partial group actions were considered first by Exel in the context of operator algebras and they turned
out to be a powerful tool in the study of C∗-algebras generated by partial isometries on a Hilbert space in
[11]. A treatment from a purely algebraic point of view was given recently in [8], [9], [10]. In particular,
the algebraic study of partial actions and partial representations was initiated in [9] and [10], motivating
investigations in diverse directions. Now, the results are formulated in a purely algebraic way independent
of the C∗-algebraic techniques which originated them.

The concepts of partial actions and partial coactions of Hopf algebras on algebras were introduced by
Caenepeel and Janssen in [6]. In which they put the Galois theory for partial group actions on rings into
a broader context, namely, the partial entwining structures. In particular, partial actions of a group G
determine partial actions of the group algebra kG in a natural way. Further developments in the theory of
partial Hopf actions were done by Lomp in [14].

Alves and Batista extended several results from the theory of partial group actions to the Hopf algebra
setting, they constructed a Morita context relating the fixed point subalgebra for partial actions of finite
dimensional Hopf algebras, and constructed the partial smash product in [1]. Later, they constructed a
Morita context between the partial smash product and the smash product related to the enveloping action,
defined partial representations of Hopf algebras and showed some results relating partial actions and partial
representations in [2].
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Furthermore, they proved a dual version of the globalization theorem: every partial coaction of a Hopf
algebra admits an enveloping coaction. They explored some consequences of globalization theorems in
order to present versions of the duality theorems of Cohen-Montgomery and Blattner-Montgomery for
partial Hopf actions in [3]. Recently, they introduced partial representations of Hopf algebras and gave the
paradigmatic examples of them, namely, the partial representation defined from a partial action and the
partial representation related to the partial smash product in [5]. Alves, Batista, Dokuchaev and Paques
introduced the notion of a twisted partial Hopf action as a unified approach for twisted partial group
actions, partial Hopf actions and twisted actions of Hopf algebras, they established the conditions on
partial cocycles in order to construct partial crossed products, and explored the relations between partial
crossed products with partial cleft extensions of algebras in [4]. Chen and Wang introduced the twisted
partial coactions of Hopf algebras and studied their properties in [7]. Recently, the first author introduced
the notion of partial representation of partial twisted smash products and explored its relationship with
partial actions of Hopf algebras in [13].

Therefore, one is prompted to ask several questions:
• How can we give an enveloping action for such a partial twisted smash product ?
• How can we construct a Morita context between the partial twisted smash product A ~H and the

twisted smash product B ~H?
•How can we explore some consequences of globalization theorems in order to present versions of the

duality theorems of Blattner-Montgomery for partial twisted smash products?
The aim of this paper is to answer these questions.
In Section 3, we prove the existence of an enveloping action for such a partial twisted smash product. In

Section 4, we construct a Morita context between the partial twisted smash product A ~H and the twisted
smash product B ~ H, where H is a Hopf algebra which acts partially on the unital algebra A, B is an
enveloping action for partial actions. This result can also be found in [2] for the context of partial group
actions. In Section 5, we explore some consequences of globalization theorems in order to present versions
of the duality theorems of Blattner-Montgomery for partial twisted smash products.

2. Preliminaries

Throughout the paper, let k be a fixed field and all algebraic systems are supposed to be over k. Let M
be a vector space over k and let idM the usual identity map. For the comultiplication ∆ in a coalgebra C with
a counit εC, we use the Sweedler-Heyneman’s notation (see Sweedler [15]): ∆(c) = c(1) ⊗ c(2), for any c ∈ C.

We first recall some basic results and propositions that we will need later from [1],[2] and [13].

2.1. Left module algebra Let H be a Hopf algerba and B an algebra. B is said to be a left H-module algebra
if there exists a k-linear map . = {. : H ⊗ B→ B} satisfying the following conditions:

h . (ab) = (h(1)) . a)(h(2) . b),
1H . a = a,
h . (1 . a) = h1 . a,

for all h, 1 ∈ H and a, b ∈ B.
2.2. Partial left module algebra Let H be a Hopf algerba and A an algebra. A is said to be a partial left
H-module algebra if there exists a k-linear map ⇀= {⇀: H ⊗ A→ A} satisfying the following conditions:

h ⇀ (ab) = (h(1)) ⇀ a)(h(2) ⇀ b),
1H ⇀ a = a,
h ⇀ (1⇀ a) = (h(1) ⇀ 1A)(h(2)1⇀ a),

for all h, 1 ∈ H and a, b ∈ A.
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2.3. Right module algebra Let H be a Hopf algebra and B an algebra, B is said to be a right H-module
algebra if there exists a k-linear map / = {/ : B ⊗H→ B} satisfying the following conditions:

(ab) / h = (a / h(1))(b / h(2)),
a / 1H = a,
(a / 1) / h = a / 1h,

for all h, 1 ∈ H and a, b ∈ B.
2.4. Partial right module algebra Let H be a Hopf algebra and A an algebra, A is said to be a partial right
H-module algebra if there exists a k-linear map ↼= {↼: A ⊗H→ A} satisfying the following conditions:

(ab) ↼ h = (a ↼ h(1))(b ↼ h(2)),
a ↼ 1H = a,
(a ↼ 1) ↼ h = (1A ↼ h(1))(a ↼ 1h(2)),

for all h, 1 ∈ H and a, b ∈ A.
2.5. H-bimodule algebra Let H be a Hopf algebra and B an algebra. B is called a H-bimodule algebra if the
following conditions hold:

(i) B is not only a left H-module algebra with the left module action ., but also a right H-module algebra
with the right module action /.

(ii) These two module structure maps satisfy the compatibility condition, i.e., (h . a) / 1 = h . (a / 1) for
all a ∈ B and h, 1 ∈ H.
2.6. Partial H-bimodule algebra Let H be a Hopf algebra and A an algebra. A is called a partial H-bimodule
algebra if the following conditions hold:

(i) A is not only a partial left H-module algebra with the partial left module action ⇀, but also a partial
right H-module algebra with the partial right module action ↼.

(ii) These two partial module structure maps satisfy the compatibility condition, i.e., (h ⇀ a) ↼ 1 = h ⇀
(a ↼ 1) for all a ∈ A and h, 1 ∈ H.

3. Enveloping actions

In the context of partial actions of Hopf algebras, it is proved that a partial action of a Hopf algebra on
a unital algebra A admits an enveloping action (B, θ) if and only if each of the ideals θ(A) D B is a unital
algebra in [2]. In this section, we mainly extend this famous result to partial twisted smash products.

Recall from [13] that let H be a Hopf algebra with an antipode S and A a partial H-bimodule algebra.
We first propose a multiplication on the vector space A ⊗H:

(a ~ h)(b ~ 1) = a(h(1) ⇀ b ↼ S(h(3))) ~ h(2)1,

for all a, c ∈ A and 1, h ∈ H. It is obvious that the multiplication is associative. In order to make it to be an
unital algebra, we project onto the

A ~H = (A ⊗H)(1A ⊗ 1H).

Then we can deduce directly the form and the properties of typical elements of this algebra

a ~ h = a(h(1) ⇀ 1A ↼ S(h(3))) ⊗ h(2),

and finally verify that the product among typical elements satisfy

(a ~ h)(b ~ 1) = a(h(1) ⇀ b ↼ S(h(3))) ~ h(2)1, (3. 1)

for all h, 1 ∈ H and a, b ∈ A. Then A ~H is an associative algebra with a multiplication given by Eq.(3.1) and
with the unit 1A ~ 1H, and call it by a partial twisted smash product, where 1A is the unit of A.
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Example 3.1. As a k-algebra, the four dimensional Hopf algebra H4 is generated by two symbols c and x which satisfy
the relations c2 = 1, x2 = 0 and xc + cx = 0. The coalgebra structure on H4 is determined by

∆(c) = c ⊗ c, ∆(x) = x ⊗ 1 + c ⊗ x, ε(c) = 1, ε(x) = 0.

Then H4 has the basis l (identity), c, x, cx. We now consider the dual H∗4 of H4. We have H4 � H∗4 (as Hopf algebras)
via

1 7→ 1∗ + c∗, c 7→ 1∗ − c∗, x 7→ x∗ + (cx)∗, cx 7→ x∗ − (cx)∗.

Here {1∗, c∗, x∗, (cx)∗} denote the dual basis of {1, c, x, cx}. Let T = 1∗ − c∗, P = x∗ + (cx)∗, TP = x∗ − (cx)∗. We get
another basis {1,T,P,TP} of H∗4. Recall from [6] if A is the subalgebra k[x] of H4, it is shown that A is a right partial
H4-comodule algebra with the coaction

ρ(1) =
1
2

(1 ⊗ 1 + 1 ⊗ c + 1 ⊗ cx), ρr(x) =
1
2

(x ⊗ 1 + x ⊗ c + x ⊗ cx).

By similar way we can show that A is a left partial H4-comodule algebra with the coaction

ρ(1) =
1
2

(1 ⊗ 1 + c ⊗ 1 + cx ⊗ 1), ρl(x) =
1
2

(1 ⊗ x + c ⊗ x + cx ⊗ x).

It is clear that A is a partial H4-bicomodule algebra. Then A is a partial H∗4-bimodule algebra via

f ⇀ a =
∑

< f , a[1] > a[0], a ↼ 1 =< 1, a[−1] > a[0], a ∈ A, f , 1 ∈ H∗.

Therefore we can obtain the partial twisted smash product k[x] ~ H∗4, we only consider the elements P,T of H∗4 as
follows, then

(x ⊗ T)(x ⊗ P) = x(T(1) ⇀ x ↼ S∗(T(3))) ⊗ T(2)P

=
∑

x(T ⇀ x ↼ S∗(T)) ⊗ TP

=
∑

x < T,
1
2

(1 + c + cx) > x < T,
1
2

(1 + c + cx) > ⊗TP = 0.

Definition 3.2. Let H be a Hopf algebra and A,B be two partial H-bimodule algebras. A morphism of algebras
θ : A→ B is said to be a morphism of partial H-bimodule algebras if θ(h ⇀ a ↼ k) = h ⇀ θ(a) ↼ k for all h, k ∈ H
and a ∈ A. If, in addition, θ is an isomorphism, the partial actions are called equivalent.

Motivated by the ideas of [2], we have the following lemmas of partial H-bimodule algebras.

Lemma 3.3. Let H be a Hopf algebra, B a H-bimodule algebra and A an ideal of B with unity 1A. Then H acts
partially on A by h ⇀ a = 1A(h . a), a ↼ h = (a / h)1A, for all a ∈ A, b ∈ B and h ∈ H.

Lemma 3.4. Let H be a Hopf algebra and A an algebra. Then (A,⇀,↼) is a partial H-bimodule algebra.

Recall from [2] that if B is an H-module algebra and A is a right ideal of B with unity 1A, the induced
partial action on A is called admissible if B = H B A.

Definition 3.5. Let H be a Hopf algebra, B an H-bimodule algebra and A an ideal of B with unit 1A. The induced
partial actions on A is called admissible if B = H . A /H.

Definition 3.6. Let A be a partial H-bimodule algebra. An enveloping action for A is a pair (B, θ), where
(a) B is an H-bimodule algebra;
(b) The map θ : A→ B is a monomorphism of algebras;
(c) The sub-algebra θ(A) is an ideal in B;
(d) The partial action on A is equivalent to the induced partial action on θ(A);
(e) The induced partial action on θ(A) is admissible.
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As we know, it is straightforward that Hom(H ⊗H,A) has an structure of H-bimodule given by

(h . f )(k ⊗ k′) = f (kh ⊗ k′)

and

(h / f )(k ⊗ k′) = f (k ⊗ hk′).

Lemma 3.7. Let ϕ : A→ Hom(H ⊗H,A) be the map given by ϕ(a)(h ⊗ k) = h ⇀ a ↼ k, then we have
(i) ϕ is a linear injective map and an algebra morphism;
(ii) (ϕ(1A) / h′) ∗ (h . ϕ(a))) = ϕ((1A ↼ h′)(h ⇀ a)) for any h, h′ ∈ H and a ∈ A;
(iii) (ϕ(b) / h′) ∗ (h . ϕ(a))) = ϕ((b ↼ h′)(h ⇀ a)) for any h, h′ ∈ H and a, b ∈ A.

Proof. It is easy to see that ϕ is linear, because the partial action is bilinear. Since ϕ(a)(1H ⊗1H) = a, it follows
that it is also injective. For any a, b ∈ A and h, k ∈ H, we have

ϕ(ab)(h ⊗ k) = h ⇀ (ab) ↼ k)
= [h(1) ⇀ a ↼ k1][h(2) ⇀ b ↼ k2]
= ϕ(a)(h(1) ⊗ k(1))ϕ(b)(h(2) ⊗ k(2)) = ϕ(a) ∗ ϕ(b)(h ⊗ k).

Therefore ϕ is multiplicative.
For the third claim, we have the following calculation:

ϕ((b ↼ h′)(h ⇀ a))(k ⊗ k′)
= k ⇀ (b ↼ h′)(h ⇀ a) ↼ k′

= [k(1) ⇀ b ↼ h′k′(1)][1A ⇀ k′(2)][k(2) ⇀ h ⇀ a ↼ k′(3)]

= [k(1) ⇀ b ↼ h′k′(1)][k(2)h ⇀ a ↼ k′(2)]

= ϕ(b)(k1 ⊗ h′k′(1))ϕ(a)(k(2)h ⊗ k′(2))

= (ϕ(b) / h′)(k1 ⊗ k′(1))(h . ϕ(a))(k(2) ⊗ k′(2))

= ϕ((b ↼ h′)(h ⇀ a))(k ⊗ k′).

Therefore, (ϕ(b) / h′) ∗ (h . ϕ(a))) = ϕ((b ↼ h′)(h ⇀ a)). One may obtain the second item by setting b = 1A. �

Proposition 3.8. Let ϕ : A → Hom(H ⊗ H,A) be the map defined in Lemma 3.7 and B = H . ϕ(A) / H the
H-submodule of Hom(H ⊗H,A). Then

(i) B is an H-module subalgebra of Hom(H ⊗H,A);
(ii) ϕ(A) is an ideal in B with unity ϕ(1A).

Proof. The proof is similar to the proof of [2]. �

By Lemma 3.7 and Proposition 3.8, we obtain the main result of this section.

Theorem 3.9. Let A be a partial H-bimodule algebra and ϕ : A →Hom(H ⊗H,A) the map given by ϕ(a)(h ⊗ k) =
h ⇀ a ↼ k. Assume that B = H . ϕ(A) /H, then (B, ϕ) is an enveloping action of A.

We will call (B, ϕ) the standard enveloping action of A.

Proposition 3.10. Let A be a partial H-bimodule algebra and ϕ : A→ Hom(H,A) the map given by ϕ(a)(h ⊗ k) =
h ⇀ a ↼ k. Assume that B = (ϕ(A), ., /), then ϕ(A) is an ideal of B if and only if

k ⇀ (h ⇀ a) ↼ k′ = [k(1)h ⇀ a ↼ k′(1)][k(2) ⇀ 1A ↼ k′(2))].
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Proof. Suppose that ϕ(A) is an ideal of B. We know that

ϕ(h ⇀ a) = ϕ(1A) ∗ (h . ϕ(a)) = (h . ϕ(a)) ∗ ϕ(1A).

Then, these two functions coincide for all k, k′ ∈ H,

ϕ(h ⇀ a)(k ⊗ k′) = (h . ϕ(a)) ∗ ϕ(1A)(k ⊗ k′).

The left-hand side of the previous equality leads to

ϕ(h ⇀ a)(k ⊗ k′) = k ⇀ (h ⇀ a) ↼ k′.

While the right-hand side means

(h . ϕ(a)) ∗ ϕ(1A)(k ⊗ k′) = (h . ϕ(a))(k(1) ⊗ k′(1))ϕ(1A)(k(2) ⊗ k′(2))

= ϕ(a)(k(1)h ⊗ k′(1))ϕ(1A)(k(2) ⊗ k′(2))

= [k(1)h ⇀ a ↼ k′(1)][k(2) ⇀ 1A ↼ k′(2))].

Conversely, suppose that the equality

k ⇀ (h ⇀ a) ↼ k′ = [k(1)h ⇀ a ↼ k′(1)][k(2) ⇀ 1A ↼ k′(2))]

holds for all a ∈ A and h, k, k′ ∈ H. Then ϕ(1A) is a central idempotent in B. Therefore ϕ(A) = ϕ(1A)Bϕ(1A)
is an ideal in B. �

Definition 3.11. Let A be a partial H-bimodule algebra. An enveloping action (B, θ) of A is minimal if for every
H-submodule M of B, θ(1A)Mθ(1A) = 0 implies M = 0.

Lemma 3.12. Let ϕ : A → Hom(H ⊗ H,A) be as above and consider the H-submodule B = H . ϕ(A) / H. Then,
(B, ϕ) is a minimal enveloping action of A.

Proof. We only need to check that the minimality condition holds for cyclic submodules. Let M = H .
(
∑n

i=1 hi . ϕ(ai) / ki) /H, and suppose that θ(1A)Mθ(1A) = 0. This means that for each h, k ∈ H,

0 = θ(1A) ∗ (
n∑

i=1

hhi . ϕ(ai) / kik) ∗ θ(1A)

=

n∑
i=1

ϕ(hhi ⇀ ai ↼ kik)

= ϕ(
n∑

i=1

(hhi ⇀ ai ↼ kik).

Since ϕ is injective, then
∑n

i=1(hhi ⇀ ai ↼ kik) = 0. But

n∑
i=1

(hi . ϕ(ai) / ki)(h ⊗ k) =

n∑
i=1

ϕ(ai))(hhi ⊗ kik) = ϕ(
n∑

i=1

(hhi ⇀ ai ↼ kik) = 0,

for each h, k ∈ H. Hence we conclude that
∑n

i=1 hi . ϕ(ai) / ki = 0. �
By Definition 3.11 and Lemma 3.12, we have the following theorem.

Theorem 3.13. Every partial H-bimodule algebra has a minimal enveloping action, and any two minimal enveloping
actions of A are isomorphic as H-bimodule algebras.
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4. A Morita context

In this section, we will construct a Morita context between the partial twisted smash product A ~H and
the twisted smash product B ~H, where B is an enveloping action for the partial twisted smash product.

Lemma 4.1. Let A be a partial H-bimodule algebra and (B, θ) an enveloping action, then there is an algebra
monomorphism from the partial twisted smash product A ~H into the twisted smash product B ~H.

Proof. Define Φ : A ⊗ H → B ~ H by a ⊗ h 7→ θ(a) ~ h for h, 1 ∈ H and a, b ∈ A. We first check that Φ is a
morphism of algebras as follows:

Φ((a ⊗ h)(b ⊗ 1)) = Φ(a(h(1) ⇀ b ↼ S(h(3))) ⊗ h(2)1).
= θ(a(h(1)) ⇀ b ↼ S(h(3))) ~ h(2)1

= θ(a)(h(1) . θ(b) / S(h(3))) ~ h(2)1

= (θ(a) ~ h)(θ(b) ~ 1)
= Φ(a ⊗ h)Φ(b ⊗ 1).

Next, we will verify that Φ is injective. For this purpose, take x =
∑n

i=1 ai ⊗ hi ∈ kerΦ and choose {ai}
n
i=1

to be linearly independent. Since θ is injective, we conclude that θ(ai) are linearly independent. For each
f ∈ H∗,

∑n
i=1 θ(ai) f (hi) = 0, it follows that f (hi) = 0, so hi = 0. Therefore we have x = 0 and Φ is injective, as

desired.
Since the partial twisted smash product A ~H is a subalgebra of A ⊗ H, it is injectively mapped into

B ~H by Φ. A typical element of the image of the partial twisted smash product is

Φ((a ⊗ h)(1A ⊗ 1H)) = Φ(a ⊗ h)Φ(1A ⊗ 1H)
= (θ(a) ~ h)(θ(1A) ~ 1H)
= θ(a(h(1) . θ(1A) / S(h(3)))) ~ h(2)1.

And this completes the proof. �

Take M = Φ(A ⊗ H) = {
∑n

i=1 θ(ai) ~ hi; ai ∈ A} and take N as the subspace of B ~ H generated by the
elements (h(1) . θ(a) / S(h(3))) ⊗ h(2) with h ∈ H and a ∈ A.

Proposition 4.2. Let H be a Hopf algebra with an invertible antipode S and A a partial H-bimodule algebra. Suppose
that θ(A) is an ideal of B, then M is a right B ~H module and N is a left B ~H module.

Proof. In order to prove M is a right B ~H module, let θ(a) ~ h ∈M and b ~ k ∈ B ~H. Then

(θ(a) ~ h)(b ~ k) = θ(a)(h(1)) . b / S(h(3))) ~ h(2)k.

Which lies in Φ(A ⊗H) because θ(A) is an ideal in B.
Now we show that N is a left B ~H module. Let (h(1) . θ(a) / S(h(3))) ~ h(2), where h ∈ H is a generator of

N, then we have

(b ~ k)(h(1) . θ(a) / S(h(3))) ~ h(2))
= b(k(1)h(1)) . θ(a) / S(k(3)h(3))) ~ k(2)h(2)

= [(ε(k(1)h(1) . b)(k(2)h(2)) . θ(a)] / S(k(4)h(4))) ~ k(3)h(3)

= [((k(2)h(2)S(k(1)h(1)) . b(k(3)h(3)) . θ(a)] / S(k(5)h(5))) ~ k(4)h(4)

= [(k(2)h(2) . ((S(k(1)h(1)) . b)(k(2)h(2)) . θ(a)] / S(k(4)h(4))) ~ k(3)h(3)

= [(k(2)h(2)) . (S(k(1)h(1)) . b)θ(a)] / S(k(4)h(4))) ~ k(3)h(3).

Because θ(A) is an ideal of B, it follows that N is a left B ~H module. �
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By Proposition 4.2, we can define a left A ~H module structure on M and a right A ~H module structure
on N induced by the monomorphism Φ as follows:

(ah(1) ⇀ 1A ↼ S(h(3)) ⊗ h(2)) I (θ(b)) ~ k)
= (θ(a)h(1) . θ(1A) / S(h(3)) ~ h(2))(θ(b)) ~ k),

((k(1)) . θ(b) / S(k(3))) ~ k(2)) J (ah(1) ⇀ 1A ↼ S(h(3)) ⊗ h(2))
= ((k(1)) . θ(b) / S(k(3))) ~ k(2))(θ(a)h(1) . θ(1A) / S(h(3)) ~ h(2)).

Proposition 4.3. Under the same hypotheses of Proposition 4.2, M is indeed a left A ~H module with the map I
and N is a right A ~H module with the map J.

Proof. We first claim that A ~H IM ⊆M. In fact,

(ah(1) ⇀ 1A ↼ S(h(3)) ⊗ h(2)) I (θ(b)) ~ k)
= (θ(a)(h(1) . θ(1A) / S(h(3)) ~ h(2))(θ(b)) ~ k)
= θ(a)(h(1) . θ(1A) / S(h(5)))(h(2)) ⇀ θ(b) ↼ S(h(4))) ~ h(3)k(2)

= θ(a)((h(1)) . θ(b) / S(h(3))) ~ h(2)k(2).

Which lies inside M because θ(A) is an ideal of B.
Next, we verify that N J A ~H ⊆ N. Use a similar method to N that is a left B ~ H module, and the

equality holds because θ(1A) is a central idempotent. �
The last ingredient for a Morita context is to define two bimodule morphisms. Now define

σ : N ⊗A~H M→ B ~H and

τ : M ⊗B~H N→ A ~H � Φ(A ~H).

As M,N and A ~H are viewed as subalgebras of B ~H, these two maps can be taken as the usual multipli-
cation on B ~H. The associativity of the product assures us that these maps are bimodule morphisms and
satisfy the associativity conditions. Therefore, we have the following results.

Proposition 4.4. The partial twisted smash product A ~H is Morita equivalent to the twisted smash product B~H.

Theorem 4.5. Let H be a Hopf algebra with invertible antipode, A a partial H-bimodule algebra, (B, θ) a unital
enveloping action, and suppose that θ(A) is an ideal of B. Let M and N be the bimodules defined above. Then
(A ~H,B ~H,M,N, σ, τ) is a strict Morita context.

Proof. By Proposition 4.4, we know (A ~H,B~H,M,N, σ, τ) is a Morita context. Next we need to show that σ
and τ are surjective, or, equivalently, MN = Φ(A ~H) and NM = B~H. Let us see first that MN ⊆ Φ(A ~H):

(θ(a) ~ h)(
∑

(k(1) . θ(b) / S(k(3))) ~ k(2))

=
∑

θ(a)[h(1) . (k(1) . θ(b) / S(k(3))) / S(h(3))] ~ h(2)k(2)

=
∑

θ(a)[h(1)k(1) . θ(b) / S(h(3)k(3)))] ~ h(2)k(2)

=
∑

θ(a)[h(1)k(1) . θ(b) / S(h(4)k(4)))][h(2)k(2) . θ(1A) / S(h(3)k(3)))] ~ h(2)k(2)

=
∑

θ(a)[h(1)k(1) . θ(b) / S(h(2k(2)))][h(3)k(3) . θ(1A) / S(h(4)k(4)))] ~ h(2)k(2)

=
∑

θ(a(h(1)k(1) . b / S(h(2k(2)))))[h(2)k(2) . θ(1A) / S(h(4)k(4)))] ~ h(3)k(3),

which is an element of Φ(A ~H).
Since∑

θ(a)(h(1) . θ(1A) / S(h(3))) ~ h(2) = (θ(a) ~ h)(θ(1A) ~ 1H),

and θ(1A) ~ 1H ∈ N, it follows that MN = Φ(A ~H).
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In order to prove NM = B~H, we only need to show that every element of the form (h(1) .θ(a)/S(h(2)))~k
is in NM, because this is a generating set for B ~H as a vector space. In fact, we have

(h(1) . θ(a) / S(h(2))) ~ k =
∑

((h(1) . θ(a) / S(h(3))) ~ h(2))(θ(1A) ~ S(h(4))k).

This can be easily seen as follows:∑
((h(1) . θ(a) / S(h(3))) ~ h(2))(θ(1A) ~ S(h(4))k)

= (h(1) . θ(a) / S(h(5)))(h(2) . θ(1A) / S(h(4))) ~ h(3)S(h(6))k
= (h(1) . θ(a) / S(h(3))) ~ h(2)S(h(4))k
= (h(1) . θ(a) / S(h(4))) ~ h(2)S(h(3))k
= (h(1) . θ(a) / S(h(3))) ~ ε(h(2))k
= (h(1) . θ(a) / S(h(2))) ~ k.

Therefore, NM = B ~H. �

5. Duality for partial twisted smash products

In this section, we explore some results of globalization theorems in order to present versions of the
duality theorems of Blattner-Montgomery for partial twisted smash products, generalizing the results of
[14].

Let H be a Hopf algebra which is finitely generated and projective as k-module with dual basis {(bi, pi) ∈
H ⊗ H∗|1 ≤ i ≤ n}. Assume that H∗ acts on H from the left by f → h =

∑
h(1) f (h(2)) and the right

by h ← f =
∑

h(2) f (h(1)), such that the smash product H#H∗ can be considered as an algebra whose
multiplication is given by

(h# f )(k#1) =
∑

h( f(1) → k)# f(2) ∗ 1,

for any h, k ∈ H and f , 1 ∈ H∗.

Lemma 5.1. [15] Let H be a finite dimensional Hopf algebra. Then the linear maps
(1) λ : H#H∗ → End(H), λ(h# f )(k) = h( f → k),
(2) ϕ : H∗#H→ End(H), ϕ( f #h)(k) = (k← f )h,

are isomorphisms of algebras, where h, k ∈ H and f , 1 ∈ H∗.

The partial twisted smash product A ~H in Proposition 3.3 becomes naturally a right H-comodule
algebra by

ρ = 1 ⊗ ∆ : A ~H ⊗H→ A ⊗H ⊗H, a ⊗ h 7→ a ⊗ h(1) ⊗ h(2).

For (a ⊗ h)1A ∈ A ~H, we have

ρ((a ⊗ h)1A) = a(h(1) ⇀ 1A ↼ S(h(2))) ⊗ h(3) ⊗ h(4),

which make A ~H into a right H-comodule algebra. Moreover, A ~H becomes a left H∗ module algebra,
where the action is defined by

f · ((a ⊗ h)1A) = a(h(1) ⇀ 1A ↼ S(h(3)))#( f → h(2)) = (a#( f → h))1A.

for all f ∈ H∗, h ∈ H, a ∈ A.
Similar to [14], we can define a homomorphism φ : A→ A ⊗ End(H) by

φ(a) =

n∑
i=1

(bi(1) ⇀ a ↼ S(bi(2))) ⊗ ϕ(S−1(pi) ⊗ 1H).

Then φ is an algebra homomorphism.
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Lemma 5.2. Let ψ : H#H∗ → A⊗ End(H) be the map defined by h# f 7→ 1⊗ λ(h# f ) for all h ∈ H and f ∈ H∗. Then
we have

φ(1A)ψ(h# f )φ(a) = φ(h(1) ⇀ a ↼ S(h(3)))ψ(h(2)# f ).

Proof. For any h ∈ H, f ∈ H∗ and a ∈ A, we have

φ(h(1) ⇀ a ↼ S(h(3)))ψ(h(2)# f )

=
∑

i

pi(h(1))φ(bi(1) ⇀ a ↼ S(bi(3)))ψ(h(2)# f )

=
∑

i, j

b j(1) ⇀ (bi(1) ⇀ a ↼ S(bi(3))) ↼ S(b j(3)) ⊗ ϕ(S−1(p j)#1H)λ(h← pi# f )

=
∑
k,r

(bk(1) ⇀ 1A ↼ S(bk(2)))(br(1) ⇀ a ↼ S(br(2))) ⊗ ϕ(S−1(pk)#1H)ϕ(S−1(pk(1))#1H)λ(h← pk(2)# f )

= φ(1A)
∑

r

(br(1) ⇀ a ↼ S(br(2))) ⊗ ϕ(S−1(pr)(2)#1H)λ(h← S(S−1(pr)(1))# f )

= φ(1A)
∑

r

(br(1) ⇀ a ↼ S(br(2))) ⊗ λ(h# f )ϕ(S−1(pr)#1H)

= φ(1A)ψ(h# f )φ(a).

The proof is completed. �

Theorem 5.3. Let H be a finitely generated projective Hopf algebra and A a partial H-bimodule algebra. Then the
map

Φ : A ⊗H#H∗ → A ⊗ End(H), a ⊗ h# f 7→ φ(a)ψ(h# f )

is an algebra homomorphism. The image of the restriction to A ~H#H∗ lies inside e(A ⊗ End(H))e, where e is the
idempotent defined by

e =

n∑
i=1

(bi(1) ⇀ 1A ↼ S(bi(2))) ⊗ ϕ(S−1(pi) ⊗ 1A).

Proof. For any a, b ∈ A, h, k ∈ H and f , 1 ∈ H∗, we have

Φ(a ⊗ h# f )Φ(b ⊗ k#1) = φ(a)ψ(h# f )φ(b)ψ(k#1)
= φ(a)φ(1A)ψ(h# f )φ(b)ψ(k#1)
= φ(a)φ(h(1) ⇀ b ↼ S(h(3)))ψ(h(2)# f )ψ(k#1)
= φ(a(h(1) ⇀ b ↼ S(h(3))))ψ(h(2)( f(1) → k)# f(2) ∗ 1)
= Φ(φ(a(h(1) ⇀ b ↼ S(h(3)))) ⊗ h(2)( f(1) → k)# f(2) ∗ 1)
= Φ((a ⊗ h# f )(b ⊗ k#1)).

Hence Φ is an algebra homomorphism. Since the image of the identity 1 = 1A ~ 1H#1H∗ of A ~H#H∗ under
the map Φ is e, e is an idempotent. Moreover, for any γ ∈ A ~H#H∗, we have

Φ(γ) = Φ(1Aγ1A) ∈ e(A ⊗ End(H))e,

as desired. And this completes the proof. �
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