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Abstract. We denote the collection of the 2× 2 operator matrices with (1, 2)-entries having closed range by
S. In this paper, we study the relations between the operator matrices in the class S and their component
operators in terms of the Drazin spectrum and left Drazin spectrum, respectively. As some application of
them, we investigate how the generalized Weyl’s theorem and the generalized a-Weyl’s theorem hold for
operator matrices in S, respectively. In addition, we provide a simple example about an operator matrix in
S satisfying such Weyl type theorems.

1. Introduction

IfH is a complex Hilbert space and we decomposeH as a direct sum of two subspacesH1 andH2, each
bounded linear operator T can be expressed as the operator matrix form

T =

(
A C
Z B

)
with respect to the space of decomposition, where A,B,C,Z are operators fromHi intoH j for i, j = 1, 2. We
shall write N(T) and R(T) for the null space and the range of a bounded linear operator T onH , respectively.
Our goal is to find various connections between T and its components. However, it is not easy to find the
relations between them without any conditions. So we begin with the following notation.

Notation 1.1. Throughout this paper, we denote the collection S as follows:

S =
{ (A C

Z B

)
: H ⊕K → H ⊕K | R(C) is closed

}
. (1)
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The class S is unexpectedly large. For example, if C is a semi-Fredholm operator or semi-regular, i.e.,

N(C) ⊂ ∩n∈NR(Cn) and R(C) is closed, then the operator matrices
(
A C
Z B

)
are in the class S. For another

example, if for given x ∈ H there exists k > 0 and a y ∈ H such that (i) Cx = Cy and (ii) ‖y‖ ≤ k‖Cx‖, then

R(C) is closed. Hence the operator matrices
(
A C
Z B

)
are in the class S.

Lemma 1.2. ([5]) If M =

(
A C
Z B

)
∈ S, then M has the following matrix representation;

M =

A1 0 0
A2 0 C1
Z B1 B2

 (2)

which maps fromH ⊕N(C)⊕N(C)⊥ to R(C)⊥ ⊕R(C)⊕K where C1 = C|N(C)⊥ , A1 = PR(C)⊥A|H , A2 = PR(C)A|H , B1

denotes a mapping B from N(C) intoK , B2 denotes a mapping B from N(C)⊥ intoK , PR(C)⊥ denotes the projection of
H onto R(C)⊥, and PR(C) denotes the projection ofH onto R(C).

Weyl’s theorem for upper triangular operator matrices has been studied by many authors (see [5]-[7],
[13], [16], [18]-[20]). This paper is organized as follows. In Section 3, we study the relations between the
operator matrices in the class S and their component operators regarding the left Drazin spectrum. In
Section 4, we also explore how the generalized Weyl’s theorem and the generalized a-Weyl’s theorem hold
for operator matrices inS, respectively. As some applications of them, we give a simple example of operator
matrices in Swhich satisfy Weyl type theorems.

2. Preliminaries

LetH be a separable complex Hilbert space and letL(H) denote the algebra of bounded linear operators
on H . If T ∈ L(H), let α(T) := dim N(T), β(T) := dim N(T∗), and let σ(T), σp(T), σa(T), and σs(T) denote
the spectrum, the point spectrum, the approximate point spectrum, and the surjective spectrum of T,
respectively. For T ∈ L(H), the smallest nonnegative integer p such that N(Tp) = N(Tp+1) is called the ascent
of T and denoted by p(T). If no such integer exists, we set p(T) = ∞. The smallest nonnegative integer q
such that R(Tq) = R(Tq+1) is called the descent of T and denoted by q(T). If no such integer exists, we set
q(T) = ∞.

We now simply review several notions of various spectra, which are used in this paper. An operator T ∈
L(H) is called upper semi-Fredholm (resp., lower semi-Fredholm ) if it has closed range and finite dimensional
null space (resp., its range has finite co-dimension). If T ∈ L(H) is either upper or lower semi-Fredholm,
then T is called semi-Fredholm and index of a semi-Fredholm operator T is defined by i(T) := α(T)− β(T). If both
α(T) and β(T) are finite, then T is called Fredholm. An operator T ∈ L(H) is called Weyl if it is Fredholm
of index zero. For T ∈ L(H) and a nonnegative integer n, we define Tn to be the restriction of T to R(Tn)
viewed as a map from R(Tn) into R(Tn) where T0 = T. If for some integer n the range R(Tn) is closed and
Tn is upper (resp., lower) semi-Fredholm, then T is called upper (resp., lower) semi-B-Fredholm. Moreover, if
Tn is Fredholm, then T is called B-Fredholm. An operator T is called semi-B-Fredholm if it is upper or lower
semi-B-Fredholm. Let T ∈ L(H) and let

∆(T) := {n ∈N : m ∈N and m ≥ n⇒ (R(Tn) ∩N(T)) ⊆ (R(Tm) ∩N(T))}.

Then the degree of stable iteration dis(T) of T is defined as dis(T) := inf ∆(T). Let T be semi-B-Fredholm and
let d be the degree of stable iteration of T. It follows from [10, Proposition 2.1] that Tm is semi-Fredholm and
i(Tm) = i(Td) for each m ≥ d. This enables us to define the index of semi-B-Fredholm T as the index of semi-
Fredholm Td. Let BF(H) be the class of all B-Fredholm operators. In [8], he studied this class of operators
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and he proved [8, Theorem 2.7] that an operator T ∈ L(H) is B-Fredholm if and only if T = T1⊕T2 where T1
is Fredholm and T2 is nilpotent. It appears that the concept of Drazin invertibility plays an important role
for the class of B-Fredholm operators. Let A be a unital algebra. We say that an element x ∈ A is Drazin
invertible of degree k if there exists an element a ∈ A such that xkax = xk, axa = a, and xa = ax. Let a ∈ A.
Then the Drazin spectrum is defined by

σD(a) := {λ ∈ C : a − λ is not Drazin invertible}.

It is well known that T is Drazin invertible if and only if it has finite ascent and descent, which is also
equivalent to the fact that (see [17, Corollary 2.2]) T = T1 ⊕ T2 where T1 is invertible and T2 is nilpotent. An
operator T ∈ L(H) is called B-Weyl if it is B-Fredholm of index 0. We review some spectra as follows;

(1) the semi-B-Fredholm spectrum σSBF(T) := {λ ∈ C : T − λ is not semi-B-Fredholm},

(2) the B-Fredholm spectrum σBF(T) := {λ ∈ C : T − λ is not B-Fredholm},

(3) the B-Weyl spectrum σBW(T) := {λ ∈ C : T − λ is not B-Weyl}.

Now we define the next sets;

SBF+(H) := {T ∈ L(H) : T is upper semi-B-Fredholm},

SBF−(H) := {T ∈ L(H) : T is lower semi-B-Fredholm},

SBF−+(H) := {T ∈ L(H) : T ∈ SBF+(H) and i(T) ≤ 0},

SBF+
−

(H) := {T ∈ L(H) : T ∈ SBF−(H) and i(T) ≥ 0},

LD(H) := {T ∈ L(H) : p(T) < ∞ and R(Tp(T)+1) is closed},

RD(H) := {T ∈ L(H) : q(T) < ∞ and R(Tq(T)) is closed}.

By definitions, we recall the upper semi-B-essential approximate point spectrum σSBF−+ (T), the lower semi-B-
essential approximate point spectrum σSBF+

−
(T), the left Drazin spectrum σLD(T), and the right Drazin spectrum

σRD(T) given by

σSBF−+ (T) := {λ ∈ C : T − λ < SBF−+(H)},
σSBF+

−
(T) := {λ ∈ C : T − λ < SBF+

−(H)},
σLD(T) := {λ ∈ C : T − λ < LD(H)},
σRD(T) := {λ ∈ C : T − λ < RD(H)}.

It is well known that
σSBF−+ (T) ∪ σSBF+

−
(T) = σBW(T),

σSBF−+ (T) ⊆ σLD(T) = σSBF−+ (T) ∪ acc σa(T) ⊆ σD(T),

σSBF+
−
(T) ⊆ σRD(T) = σSBF+

−
(T) ∪ acc σs(T) ⊆ σD(T).

The notation p0(T) (resp., pa
0(T)) denotes the set of all poles (resp., left poles) of T, while π0(T) (resp., πa

0(T)) is
the set of all eigenvalues of T which is an isolated point in σ(T) (resp., σa(T)). We say that generalized Browder’s
theorem for T if σ(T)\σBW(T) = p0(T), generalized a-Browder’s theorem for T if σa(T)\σSBF−+ (T) = pa

0(T), generalized
Weyl’s theorem for T if σ(T) \ σBW(T) = π0(T), and generalized a-Weyl’s theorem for T if σa(T) \ σSBF−+ (T) = πa

0(T).
It is well known that

generalized a-Weyl’s theorem =⇒ generalized Weyl’s theorem

⇓ ⇓

generalized a-Browder’s theorem =⇒ generalized Browder’s theorem.
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3. The filling in holes of the spectra for operator matrices

Throughout this section, whenever M =

(
A C
Z B

)
is in the class S in Notation 1.1, we denote M by the matrix

representation as (2) for every Z ∈ L(H ,K ).

Let M =

(
A C
Z B

)
be an operator matrix in the class S. Since R(C) is closed, C1 = C|N(C)⊥ : N(C)⊥ → R(C)

is invertible. For a given complex number λ, using the representation of Lemma 1.2, we write M − λ as
follows;

M − λ =

A1 − λ 0 0
A2 − λ 0 C1

Z B1 − λ B2 − λ


=

0 I 0
0 0 I
I 0 (B2 − λ)C−1

1


B1 − λ 4λ 0

0 A1 − λ 0
0 0 C1


 0 I 0

I 0 0
C−1

1 (A2 − λ) 0 I

 (3)

where A1 − λ = PR(C)⊥ (A − λ)|H , A2 − λ = PR(C)(A − λ)|H , B1 − λ = (B − λ)|N(C), B2 − λ = (B − λ)|N(C)⊥ and
4λ = Z − (B2 − λ)C−1

1 (A2 − λ) (see [5, Page 714] for more details). Note that0 I 0
0 0 I
I 0 B2C−1

1

 and

 0 I 0
I 0 0

C−1
1 A2 0 I

 are invertible. (4)

From now on, we use the above matrix representation (3) for M − λ. We start with the filling in holes
problem for the Drazin spectrum of the operator matrices in the class S.

Lemma 3.1. Let S,T,A, and B ∈ L(H). Then the following statements hold.

(i) If ST is Drazin invertible and T is invertible, then S is also Drazin invertible.

(ii) If A and B are invertible, and T = ASB, then T is Drazin invertible if and only if S is Drazin invertible.

Proof. (i) Since U = ST is Drazin invertible, 0 is a pole of the resolvent operator U−1 of order p. Moreover,
R(Up) is closed and

H = R(Up) ⊕N(Up). (5)

On a direct sum ofH we can write U by U = U1⊕U2, where U1 is invertible on R(Up) and U2, the restriction
of U to N(Up), is nilpotent of order p. Suppose that T is invertible. From (5), we have

T−1(H) = H = R(Up) ⊕N(Up).

So S(H) = UT−1(H) = (U1⊕U2)(R(Up)⊕N(Up)) where U1 is invertible on R(Up) and U2 is nilpotent of order
p. Therefore S is Drazin invertible.

(ii) Suppose that A and B are invertible, and T = ASB. If T is Drazin invertible, it follows from (i) that
AS is Drazin invertible. By [21, Theorem 2.3], SA is also Drazin invertible. Since A is invertible, S is Drazin
invertible again from (i). The converse implication is satisfied by the same way.

Remark 3.2. In general, we observe that even though ST is Drazin invertible and S is invertible, T may not
be Drazin invertible. For example, let U be the unilateral shift operator on l2(N). Since the spectrum σ(U)
of U is the closed unit disc, both U and U∗ are not Drazin invertible. If S and T have the following operator
matrix forms;

S = I ⊕
(

I U
0 I

)
and T = I ⊕

(
−U 0

I 0

)
,

then ST = I⊕
(

0 0
I 0

)
is Drazin invertible and S is invertible. However, S−1(ST) = T is not Drazin invertible.
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Lemma 3.3. [6, Lemma 2.2] Let A ∈ B(H) and B ∈ B(K ) be given. Then the following implication holds for every
C ∈ B(K ,H). (

A C
0 B

)
is right Drazin invertible =⇒ B is right Drazin invertible.

Lemma 3.4. [12, Theorem 2.3] Let A ∈ B(H) and B ∈ B(K ) be given operators such that the ranges R(A) and R(B)

are closed. Then, the range R(
(
A C
0 B

)
) is closed for every C ∈ B(K ,H) if and only if at least one of dim N(A∗) and

dim N(B) is finite.

Lemma 3.5. Let M ∈ S. Then, with the same notation as in (3), the following statements hold.
(i) If M is Drazin invertible, then B1 is left Drazin invertible and A1 is right Drazin invertible.
(ii) If dim N(M) < ∞ and both A1 and B1 are left Drazin invertible, then so is M.

Proof. If M ∈ S, then M can be written as

M =

0 I 0
0 0 I
I 0 B2C−1

1


B1 40 0

0 A1 0
0 0 C1


 0 I 0

I 0 0
C−1

1 A2 0 I

 ,
where A1 = PR(C)⊥A|H , A2 = PR(C)A|H , B1 = B|N(C), B2 = B|N(C)⊥ and 40 = Z − B2C−1

1 A2.

(i) Suppose that M is Drazin invertible. By Lemma 3.1,
(
B1 40
0 A1

)
is Drazin invertible. Since σRD(T) ⊂

σD(T) for an arbitrary operator T ∈ L(H), it follows that
(
B1 40
0 A1

)
is right Drazin invertible. By Lemma 3.3,

we know that A1 is right Drazin invertible. Also, since
(
B1 40
0 A1

)
is left Drazin invertible, it follows from [2,

Theorem 2.1] that
(
B∗1 0
4
∗

0 A∗1

)
is right Drazin invertible. But, there exists a unitary operator

(
0 I
I 0

)
such that

(
0 I
I 0

) (
B∗1 0
4
∗

0 A∗1

) (
0 I
I 0

)−1

=

(
A∗1 4

∗

0
0 B∗1

)
.

Hence
(
B∗1 0
4
∗

0 A∗1

)
and

(
A∗1 4

∗

0
0 B∗1

)
are similar. Again by Lemma 3.3, B∗1 is right Drazin invertible. Therefore B1

is left Drazin invertible.
(ii) Suppose that both A1 and B1 are left Drazin invertible. Then p(A1) < ∞, p(B1) < ∞, and R(Tp(A1)+1)

and R(Tp(B1)+1) are closed. Let k := p(B1) < ∞ and l := p(A1) < ∞. Then we can choose n := max{k, l}. By

[11, Lemma 2.2], we know that p(
(
B1 40
0 A1

)
) ≤ 2n < ∞. In fact, it is known that for each positive integer k,

dim N(Mk) = dim N

(B1 40
0 A1

)k .
However, dim N(M) < ∞, thus M has finite ascent. So it suffices to show that the range of the next operator
matrix is closed; (

B1 40
0 A1

)2n+1

=

(
B1

2n+1 B1
2n
40 + · · · + 40A1

2n

0 A1
2n+1

)
.
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On the other hand, since R(A1
l+1) and R(B1

k+1) are closed, it follows from [2, Lemma 1.1] that both R(A1
2n+1)

and R(B1
2n+1) are closed for n := max{k, l}. Since A1 has finite ascent, it is well known that dim N(A1) < ∞,

so this implies from [2, Remark 2.3] that dim N(A1
2n+1) < ∞. Hence it follows from Lemma 3.4 that

R
[ (B1 40

0 A1

)2n+1 ]
is closed. Therefore R(M2n+1) is closed, so this means that M is left Drazin invertible.

In [22], Zhang et al. discussed that σD(
(
A C
0 B

)
)∪Q = σD(A)∪σD(B), whereQ is the union of certain holes

in σD(
(
A C
0 B

)
) which happen to be subsets of σD(A) ∩ σD(B). So it is naturally to ask what is exactly the set

Q for 2 × 2 operator matrices M in the class S. From this argument, we proved the following theorem.

Theorem 3.6. For M ∈ S, then the following property holds:

σD(A1) ∪ σD(B1) = σD(M) ∪ Q

where σD(·) denotes the Drazin spectrum of · and Q is the union of certain of the holes in σD(M) which happen to be
subsets of σD(A1) ∩ σD(B1).

Proof. We first show that for M ∈ S,

[σD(B1) ∪ σD(A1)] \ [σD(B1) ∩ σD(A1)] ⊂ σD(M) ⊂ σD(B1) ∪ σD(A1). (6)

Indeed, let λ < σD(B1)∪σD(A1). Then both B1−λ and A1−λ are Draizin invertible, so they have finite ascent

and descent. It follows from [14, Lemma 2.5] that
(
B1 − λ 4λ

0 A1 − λ

)
has also finite ascent and descent, so

this is Drazin invertible. From Lemma 3.1, M is also Drazin invertible. To show the first inclusion, we let
λ ∈ [σD(B1)∪ σD(A1)] \ σD(M). Then M− λ is Drazin invertible. Again from Lemma 3.1 and (3), we get thatB1 − λ 4λ 0

0 A1 − λ 0
0 0 C1

 is Drazin invertible. Since C1 is invertible, it follows that
(
B1 − λ 4λ

0 A1 − λ

)
is Drazin

invertible. Note that(
B1 − λ 4λ

0 A1 − λ

)
=

(
I 0
0 A1 − λ

) (
I 4λ

0 I

) (
B1 − λ 0

0 I

)
. (7)

If A1 − λ is Drazin invertible, then it follows from (7) that B1 − λ is Drazin invertible. Similarly, if B1 − λ is
Drazin invertible, then so is A1 − λ. This means that λ ∈ σD(B1) ∩ σD(A1). Thus (6) can be proved.

Next, we claim that for M ∈ S, we have

η(σD(M)) = η(σD(B1) ∪ σD(A1)), (8)

where η(K) denotes the polynomially convex hull of the compact set K ⊂ C. Indeed, if M − λ is Drazin

invertible, then
(
B1 − λ 4λ

0 A1 − λ

)
is Drazin invertible. By Lemma 3.5(i), we get that

σLD(B1) ∪ σRD(A1) ⊂ σD(M).

Since int(σD(M)) ⊂ int(σD(A1) ∪ σD(B1)) by (6), where the interior of a set S is denoted by int(S), it follows
from the previous fact and punctured neighborhood theorem ([22]) that

∂(σD(B1) ∪ σD(A1)) ⊂ ∂(σD(B1)) ∪ ∂(σD(A1))
⊂ σLD(B1) ∪ σRD(A1) ⊂ σD(M).

Therefore it follows from (6) that (8) can be proved, so that the passage from σD(B1)∪σD(A1) to σD(M) is the
filling in certain of the holes in σD(B1) ∩ σD(A1). Hence this completes the proof of this theorem.
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We recall that T ∈ L(H) is said to have the single valued extension property (or SVEP) if for every open
subset G of C and anyH-valued analytic function f on G such that (T − λ) f (λ) ≡ 0 on G, we have f (λ) ≡ 0
on G. Then we get the next corollary.

Corollary 3.7. Let M ∈ S. Assume that one of the following statements holds.
(i) σD(B1) ∩ σD(A1) has no interior points.
(ii) σi(M) = σi(B1) ∪ σi(A1) for σi ∈ {σ, σb, σw}.
(iii) B∗1 or A1 has the single valued extension property.
Then we have

σD(M) = σD(B1) ∪ σD(A1). (9)

Proof. If (i) holds, the proof is clear from Theorem 3.6.
Suppose that (ii) holds. It suffices to show that this inclusion σD(B1)∪σD(A1) ⊂ σD(M) are satisfied since

σD(M) ⊂ σD(B1)∪ σD(A1) by Theorem 3.6. Without loss of generality, it is enough to show that if 0 < σD(M),
then 0 < σD(B1) ∪ σD(A1). If 0 < σD(M), then M is Drazin invertible and 0 ∈ isoσ(M). Since 0 ∈ isoσ(M), then
there exists ε > 0 such that for 0 < |λ| < ε, M − λ is invertible. If σ(M) = σ(B1) ∪ σ(A1) holds, then both
B1 − λ and A1 − λ are invertibel for 0 < |λ| < ε, so this implies that B1 and A1 are Drazin invertible. We
now suppose that σb(M) = σb(B1) ∪ σb(A1) holds. Then from [7], B1 − λ is left invertible and A1 − λ is right
invertible for any 0 < |λ| < ε. Thus both the ascent of B1 − λ and the descent of A1 − λ are zero. Since M− λ
is invertible for 0 < |λ| < ε, it follows that 0 < σb(M) = σb(B1) ∪ σb(A1), so B1 − λ and A1 − λ are Browder.
Hence they are invertible for 0 < |λ| < ε. This means that 0 < σD(B1) ∪ σD(A1). So it remains to prove that
σw(M) = σw(B1) ∪ σw(A1) holds. The proof follows from [1, Theorem 3.4] by the similar method.

Finally, assume (iii) holds. Without loss of generality, if 0 < σD(M), then there exists ε > 0 such that

for every λ ∈ C, 0 < |λ| < ε, M − λ is invertible. Thus
(
B1 − λ 4λ

0 A1 − λ

)
is also invertible. So, B1 − λ is

left invertible and A1 − λ is right invertible. Since B∗ or A1 has the single valued extension property, both
A1 − λ and B1 − λ are invertible for 0 < |λ| < ε. This means that B1 and A1 are Drazin invertible. Hence
σD(A1) ∪ σD(B1) ⊂ σD(M).

Let ρD(T) = C \ σD(T) be the Drazin resolvent set of T ∈ L(H). Now we apply the main result in [22,
Theorem 3.1] to full matrix version M ∈ S.

Corollary 3.8. Suppose that M ∈ S. Then the following relation holds;

⋂
Z∈L(H ,K )

σD(M) ⊆

 ⋂
Z∈L(H ,K )

σ(M)

 \ [ρD(B1) ∩ ρD(A1)
]
.

Moreover, if one of the following conditions holds;
(1) σ(B1) ∩ σ(A1) = ∅; (2) int(σp(A1)) = ∅;
(3) int(σp(B∗1)) = ∅; (4) σs(A1) = σ(A1); (5) σa(B1) = σ(B1),

then we have ⋂
Z∈L(H ,K )

σD(M) =

 ⋂
Z∈L(H ,K )

σ(M)

 \ [ρD(B1) ∩ ρD(A1)
]

Proof. The proof follows from [22, Theorem 3.1].

Motivated by Theorem 3.6, we have a similar development for the left Drazin spectrum. So we first
recall the following lemma. Here, we say that η(K) denotes the polynomially convex hull of the compact set
K ⊂ C.
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Lemma 3.9. ([6]) Let T ∈ L(H). Then
η(στ(T)) = η(σD(T))

holds for στ ∈ {σSBF, σBWσLD, σRD}.

Lemma 3.10. If M ∈ S, then the following properties hold;

η(στ(M)) = η(στ(B1) ∪ στ(A1)), (10)

where στ ∈ {σSBF, σBW , σLD, σRD}.

Proof. Let στ ∈ {σSBF, σBW , σLD, σRD}. By Lemma 3.9, we obtain that η(στ(B1) ∪ στ(A1)) = η(σD(B1) ∪ σD(A1))
for B1 ∈ L(N(C)) and A1 ∈ L(H). Thus by [22, Theorem 2.9], we have

η(στ(
(
B1 40
0 A1

)
)) = η(σD(

(
B1 40
0 A1

)
))

= η(σD(B1) ∪ σD(A1)) = η(στ(B1) ∪ στ(A1)).

Therefore we have the desired result.

Theorem 3.11. Let M ∈ S and let every λ be a complex value of finite multiplicity for M. Then the next equality
holds;

σLD(B1) ∪ σLD(A1) = σLD(M) ∪W,

whereW is the union of the certain of the holes in σLD(M) which happen to be subsets of σLD(A1) \ σLD(B1).

Proof. We first show that

σLD(B1) ⊆ σLD(M) ⊆ σLD(B1) ∪ σLD(A1). (11)

Since the second inclusion in (11) holds from Lemma 3.5(ii), we only need to show the first inclusion in
(11). Suppose that M − λ is left Drazin invertible. Since dim N(M − λ) < ∞ for every λ ∈ C, it follows from

(3) and (4) that
(
B1 − λ 4λ

0 A1 − λ

)
is left Drazin invertible. By [2, Theorem 2.1] and Lemma 3.5(i), B1 − λ is

left Drazin invertible. Consequently, (11) is proved and this implies that

(σLD(B1) ∪ σLD(A1)) \ σLD(M) ⊆ σLD(A1) \ σLD(B1). (12)

Therefore, from Lemma 3.5(ii) the passage from σLD(B1) ∪ σLD(A1) to σLD

( (B1 40
0 A1

) )
is the filling in certain

of the holes in σLD

( (B1 40
0 A1

) )
. Moreover, the certain of the holes in σLD

( (B1 40
0 A1

) )
should occur in

σLD(A1) \ σLD(B1) from (12). This proof is complete.

In the following example, we observe an operator matrix M satisfying the assumptions in Theorem 3.11.

Example 3.12. Let U be the unilateral shift on l2(N). We denote an operator matrix M on l2(N) ⊕ l2(N) as
follows;

M :=
(
UU∗ −I

I I

)
.

Since the identity operator has closed range, M belongs to S. If x⊕ y ∈ N(M−λ) where x = (xn) and y = (yn)
for n = 1, 2, 3, · · · , then it follows from a simple calculation thatλx1 + y1 = 0

x1 + (1 − λ)y1 = 0
and

(1 − λ)xi − yi = 0
xi + (1 − λ)yi = 0 for i = 2, 3, · · · ,

so that x⊕ y = 0⊕ 0 for every λ ∈ C. This means that every λ is a complex value of finite multiplicity for M.
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Remark 3.13. Suppose that M ∈ S. Then we have the similar result as Theorem 3.11 in terms of the right
Drazin spectrum. This means that the following equality is satisfied.

σRD(B1) ∪ σRD(A1) = σRD(M) ∪W,

whereW is the union of the certain of the holes in σRD(M) which happen to be subsets of σRD(B1) \σRD(A1).

Corollary 3.14. Let M ∈ S. Then the following statements hold.

(i) If every λ is a complex value of finite multiplicity for M and σLD(A1) \ σLD(B1) has no interior points, then

σLD(M) = σLD(A1) ∪ σLD(B1).

(ii) If σRD(B1) \ σRD(A1) has no interior points, then

σRD(M) = σRD(A1) ∪ σRD(B1).

In [3, Theorem 2.5], Aiena et al. proved that every left Drazin invertible operator T ∈ L(H) is equivalent
to an upper semi-B-Fredholm operator having the single valued extension property at 0. So the next result
comes from this argument and Corollary 3.14.

Theorem 3.15. Let M ∈ S and let every λ be a complex value of finite multiplicity for M. Suppose that σLD(A1) \
σLD(B1) has no interior points and both A1 and B1 have the single valued extension property. Then

σSBF−+ (M) = σSBF−+ (A1) ∪ σSBF−+ (B1).

Proof. Let λ < σSBF−+ (M). Then M − λ is upper semi-B-Fredholm and i(M − λ) ≤ 0. Since M has the single
valued extension property by [1], we have that M is left Drazin invertible. So it follows from Corollary
3.14 that A1 − λ and B1 − λ are also left Drazin invertible, and hence this means that they are upper
semi-B-Fredholm and their indices are not positive, respectively. Consequently, we get the next inclusion,

σSBF−+ (B1) ∪ σSBF−+ (A1) ⊆ σSBF−+ (M). (13)

To show the opposite inclusion of (13), let λ < σSBF−+ (B1) ∪ σSBF−+ (A1). Then B1 − λ and A1 − λ are left
Drazin invertible from [3, Theorem 2.5]. Since σLD(A1) \ σLD(B1) has no interior points, M − λ is left Drazin
invertible. Therefore λ < σSBF−+ (M) and this implies that σSBF−+ (B1) ∪ σSBF−+ (A1) ⊇ σSBF−+ (M). Hence the proof
is completed.

Like the case of the upper semi-B-essential approximate point spectrum, we also observe the similar
results for the lower semi-B-essential approximate point spectrum and the B-weyl spectrum.

Remark 3.16. Let M ∈ S. If σRD(B1) \ σRD(A1) has no interior points, and both A∗1 and B∗1 have the single
valued extension property, then we have the next equality.

σSBF+
−
(M) = σSBF+

−
(A1) ∪ σSBF+

−
(B1).

As a consequence of Theorem 3.15, we get the following corollary.

Corollary 3.17. Let M ∈ S and let every λ be a complex value of finite multiplicity for M. Suppose that σLD(A1) \
σLD(B1) and σRD(B1) \ σRD(A1) have no interior points and both A1 and B1 (or A∗1 and B∗1) have the single valued
extension property. Then

σBW(M) = σBW(B1) ∪ σBW(A1).
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4. Weyl type theorems for operator matrices

In this section, we explore how generalized Weyl’s theorem and generalized a-Weyl’s theorem for
M ∈ S hold. We characterize the operator matrices M ∈ S satisfying generalized Browder’s theorem and
generalized a-Browder’s theorem, respectively, by means of localized single valued extension property
under the condition which σLD(A1) \ σLD(B1) has no interior points. We start with the following lemma.

Lemma 4.1. Let A1,B1 and M be the same notations as in (3). Suppose A1 and B1 have the single valued extension
property. Then M has also the single valued extension property.

Proof. Let D be an open set in C and f = f1 ⊕ f2 ⊕ f3 : D→ H ⊕N(C) ⊕N(C)⊥ be an analytic function such
that

(M − λ)

 f1(λ)
f2(λ)
f3(λ)

 =

0
0
0


on D. Since

0 I 0
0 0 I
I 0 (B2 − λ)C−1

1

 is invertible, it follows from (3) that

B1 − λ 4λ 0
0 A1 − λ 0
0 0 C1


11(λ)
12(λ)
13(λ)

 =

0
0
0


where

11(λ)
12(λ)
13(λ)

 =

 0 I 0
I 0 0

C−1
1 (A2 − λ) 0 I


 f1(λ)

f2(λ)
f3(λ)

. Therefore, we get that


(B1 − λ)11(λ) + 4λ12(λ) = 0
(A1 − λ)12(λ) = 0
C113(λ) = 0

on D. Since C1 is invertible, 13(λ) = 0. Moreover, since A1 and B1 have the single valued extension property,
it follows that 12(λ) = 0 and 11(λ) = 0. Therefore

0 =

11(λ)
12(λ)
13(λ)

 =

 0 I 0
I 0 0

C−1
1 (A2 − λ) 0 I


 f1(λ)

f2(λ)
f3(λ)

 .
Since

 0 I 0
I 0 0

C−1
1 (A2 − λ) 0 I

 is invertible, it follows that

 f1(λ)
f2(λ)
f3(λ)

 =

0
0
0


on D. Hence M has the single valued extension property.

Now, we examine necessary and sufficiant conditions for which operator matrices in the class S satisfy
generalized a-Browder’s (resp., Browder’s) theorem.

Theorem 4.2. Let M ∈ S and let every λ be a complex value of finite multiplicity for M. Suppose that σLD(A1) \
σLD(B1) has no interior points.
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(i) Generalized Browder’s theorem holds for M if and only if either A1 and B1 or A∗1 and B∗1 have the single valued
extension property at every λ < σBW(M).

(ii) Generalized a-Browder’s theorem holds for M if and only if A1 and B1 have the single valued extension property
at every λ < σSBF−+ (M).

Proof. (i) Suppose that A1 and B1 have the single valued extension property at λ < σBW(M). We will
show that σD(M) = σBW(M). Since σBW(M) ⊆ σD(M) holds, we will prove the opposite inclusion. Let
λ < σBW(M). Then A1 and B1 have the single valued extension property at λ and so M has the single valued
extension property at λ by Lemma 4.1. Since M − λ is B-Weyl, it follows from [1, Theorem 3.4] and (3)
that p(M − λ) = q(M − λ) < ∞. Thus M − λ is Drazin invertible, and hence σD(M) ⊆ σBW(M). Therefore
generalized Browder’s theorem holds for M. Assume that A∗1 and B∗1 have the single valued extension
property at λ < σBW(M). If λ < σBW(M), then M∗ has the single valued extension property at λ. Since M − λ
is B-Weyl, it follows that λ < σD(M). Thus σD(M) = σBW(M).

Conversely, we assume that generalized Browder’s theorem holds for M. Then σD(M) = σBW(M). Let
λ < σBW(M). Then M − λ is Drazin invertible. Since σLD(A1) \ σLD(B1) has no interior points, it follows from
Corollary 3.14 that B1 − λ and A1 − λ are both left Drazin invertible. Since A1 − λ is right Drazin invertible
by Lemma 3.5(i), it follows that A1 − λ is Drazin invertible. Thus B1 − λ is also Drazin invertible by [22,
Corollary 2.8]. Therefore A1 and B1, as well as, A∗1 and B∗1 have the single valued extension property at λ.
(ii) Suppose that A1 and B1 have the single valued extension property at λ < σSBF−+ (M). We will show that
σLD(M) = σSBF−+ (M). Since σSBF−+ (M) ⊆ σLD(M) holds, we only show the opposite inclusion. Let λ < σSBF−+ (M).
Then A1 and B1 have the single valued extension property at λ and so M has the single valued extension
property at λ by Lemma 4.1. Since M − λ is upper semi-B-Fredholm, it follows from [2, Theorem 2.5] that
M − λ is left Drazin invertible. Thus σLD(M) = σSBF−+ (M).

Conversely, we suppose that generalized a-Browder’s theorem holds for M. Then σLD(M) = σSBF−+ (M).
Let λ < σSBF−+ (M). Then M − λ is left Drazin invertible. Since σLD(A1) \ σLD(B1) has no interior points, it
follows from Corollary 3.14 that A1 −λ and B1 −λ are both left Drazin invertible. Therefore A1 and B1 have
the single valued extension property at λ.

Recall that an operator T ∈ L(H) is normal if T∗T = TT∗, hyponormal if T∗T ≥ TT∗, paranormal if
‖Tx‖2 ≤ ‖T2x‖‖x‖ for all x ∈ H , respectively.

Corollary 4.3. Let M ∈ S and let every λ be a complex value of finite multiplicity for M. If one of the following
statements holds;
(i) A has finite spectrum and B is paranormal,
(ii) A = I and B is paranormal,
then M satisfies the generalized a-Browder’s theorem.

Proof. (i) Suppose that A has finite spectrum and B is paranormal. Since M ∈ S, it follows that M has the
following matrix representation as in (2) ;

M =

A1 0 0
A2 0 C1
Z B1 B2

 .
Then B1 is also paranormal. In this case, A1 and B1 have the single valued extension property. Moreover,
σLD(A1) \ σLD(B1) has no interior points. Hence, from Theorem 4.2, M satisfies the generalized a-Browder’s
theorem.

(ii) If A = I and B is paranormal, then A1 and B1 are also paranormal. Moreover, in this case, σLD(A1) \
σLD(B1) has no interior points. In this case, since B1 and A1 have paranormal, they have the single valued
extension property. Hence M satisfies the generalized a-Browder’s theorem from Theorem 4.2.
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Example 4.4. Let M ∈ S and let every λ be a complex value of finite multiplicity for M. Suppose that
σ(A) = {0, 1} and B is a weighted shift defined by Ben = βnen+1 where βn = n+1

n+2 . Then B is clearly a
hyponormal operator. Hence M satisfies generalized a-Browder’s theorem from Corollary 4.3.

In [23, Theorem 3.1], Zguitti investigated how the generalized Weyl’s theorem holds for upper triangular
operator matrices. So we have naturally the next theorem for an operator matrix in the class S.

Theorem 4.5. Let M ∈ S and let every λ be a complex value of finite multiplicity for M. Suppose that σLD(A1) \
σLD(B1) have no interior points. Then the following statements hold.
(i) Suppose that A1 and B1 have the single valued extension property at every λ < σSBF−+ (M). If B1 ⊕ A1 satisfies
generalized a-Weyl’s theorem, then so does M.
(ii) Assume that either A1 and B1 or A∗1 and B∗1 have the single valued extension property at λ < σBW(M). If B1 ⊕A1
satisfies generalized Weyl’s theorem, then so does M.

Proof. (i) Let A1 and B1 have the single valued extension property at λ < σSBF−+ (M). Then generalized
a-Browder’s theorem holds for M by Theorem 4.2. This means that σa(M) \ σSBF−+ (M) ⊆ πa

0(M). So we will
show that πa

0(M) ⊆ σa(M) \ σSBF−+ (M). Let λ ∈ πa
0(M). Then λ ∈ iso σa(M) and α(M − λ) > 0. We first prove

that σa(M) = σa(B1 ⊕A1). By [20, (12)], it is obvious that σa(B1) ⊆ σa(B1 ⊕A1) ⊆ σa(B1)∪σa(A1). Thus we have

(σa(B1) ∪ σa(A1)) \ σa(M) ⊆ σa(A1) \ σa(B1). (14)

It follows from [20, Theorem 2] that the passage from σa(M) to σa(B1) ∪ σa(A1) is the filling in certain of the
holes in σa(M). But (14) says that the filling in certain of the holes in σa(M) should occur in σa(A1) \ σa(B1).
Since acc σa(A1) ⊆ σLD(A1), if σLD(A1) \ σLD(B1) has no interior points then σa(A1) \ σa(B1) also has no interior
points. Thus σa(M) = σa(B1) ∪ σa(A1). It follows that σa(M) = σa(B1 ⊕ A1), and so λ ∈ iso σa(B1 ⊕ A1). Since
α(M − λ) > 0 and

N(B1 − λ) ⊕ {0} ⊆ N(M − λ) ⊆ (B1 − λ)−1(40(N(A1 − λ))) ⊕N(A1 − λ),

it is obvious that α(B1 ⊕A1 − λ) > 0, and hence λ ∈ πa
0(B1 ⊕A1). Since B1 ⊕A1 satisfies generalized a-Weyl’s

theorem, λ ∈ σa(B1 ⊕A1) \σSBF−+ (B1 ⊕A1). Moreover, since the equality σLD(B1 ⊕A1) = σSBF−+ (B1 ⊕A1) holds, it
follows that B1⊕A1−λ is left Drazin invertible. Since σLD(A1)\σLD(B1) has no interior points, it follows from
Corollary 3.14 that λ < σLD(M). Thus λ ∈ σa(M) \ σSBF−+ (M), and hence πa

0(M) ⊆ σa(M) \ σSBF−+ (M). Therefore
generalized a-Weyl’s theorem holds for M.

(ii) Suppose that either A1 and B1 have the single valued extension property at λ < σBW(M). Then
generalized Browder’s theorem holds for M by Theorem 4.2 and so σ(M) \ σBW(M) ⊆ π0(M). So we will
prove that π0(M) ⊆ σ(M) \ σBW(M). Let λ ∈ π0(M). Since λ ∈ iso σ(M), there exists ε > 0 such that M − µ
is invertible for 0 < |λ − µ| < ε. It follows from [19, Theorem 2] that B1 − µ is left invertible and A1 − µ
is right invertible for 0 < |λ − µ| < ε. But σLD(B) \ σLD(A) has no interior points, hence B − µ is invertible
for 0 < |λ − µ| < ε. This implies by [19, Corollary 4] that A − µ is also invertible for 0 < |λ − µ| < ε.
Thus λ ∈ iso σ(B1 ⊕ A1). Since α(M − λ) > 0, it is obvious that α(B1 ⊕ A1 − λ) > 0. Thus λ ∈ π0(B1 ⊕ A1).
Since B1 ⊕ A1 satisfies generalized Weyl’s theorem, we have that λ ∈ σ(B1 ⊕ A1) \ σBW(B1 ⊕ A1). But
σD(B1 ⊕ A1) = σBW(B1 ⊕ A1), hence B1 ⊕ A1 has the single valued extension property at λ. By Lemma
3.5(ii), B1 − λ is left Drazin invertible, and so B1 has the single valued extension property at λ. It follows
that A1 − λ is also the single valued extension property at λ. On the other hand, A1 − λ is right Drazin
invertible by Lemma 3.5(i). Thus A1 − λ is Drazin invertible. Similarly, if A∗1 and B∗1 have the single valued
extension property at λ < σBW(M), then B∗1 ⊕ A∗1 has the single valued extension property at λ. Again by
Lemma 3.5(i), B1 −λ is Drazin invertible. Hence by [22, Theorem 2.9], M−λ is Drazin invertible. Therefore
λ ∈ σ(M) \ σBW(M), and so π0(M) ⊆ σ(M) \ σBW(M). Consequently, generalized Weyl’s theorem holds for
M.

As an application of Theorem 4.5, we get the following corollary.
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Corollary 4.6. Let M ∈ S and let every λ be a complex value of finite multiplicity for M. Then the following
statements hold.
(i) If A and B are compact and isoloid and B1 ⊕ A1 satisfies generalized Weyl’s theorem, then M satisfies generalized
a-Weyl’s theorem.
(ii) If A is compact and isoloid and B is hyponormal, then M satisfies generalized Weyl’s theorem.

Proof. (i) Suppose that A and B are compact and isoloid. Then A1, A1
∗, B1, and B1

∗ have the single
valued extension property from [1]. Moreover, σLD(A1) \ σLD(B1) has no interior points and B1 ⊕A1 satisfies
generalized a-Weyl’s theorem by [18]. Hence, from Theorem 4.5(i), M satisfies generalized a-Weyl’s theorem.

(ii) Suppose that A is compact and isoloid and B is hyponormal. Then A1 is decomposable and B1 is also
hyponormal. In this case, A1 and B1 have the single valued extension property. Moreover, σLD(A1) \σLD(B1)
has no interior points and B1⊕A1 satisfies generalized Weyl’s theorem by [18]. Hence, from Theorem 4.5(ii),
M satisfies generalized Weyl’s theorem.

Finally, we investigate an equivalent condition so that the operator matrix M ∈ S satisfies generalized
Weyl’s theorem.

Theorem 4.7. Let M ∈ S and let every λ be a complex value of finite multiplicity for M. Suppose A∗1 and B∗1 have
the single valued extension property at λ < σBW(M) ∪ σBW(B1 ⊕ A1). If A1 and B1 are isoloid, then the following
statements are equivalent :
(i) Generalized Weyl’s theorem holds for B1 ⊕ A1.
(ii) Generalized Weyl’s theorem holds for M.

Proof. Suppose that A∗1 and B∗1 have the single valued extension property at λ < σBW(M)∪ σBW(B1 ⊕A1). We
will first show that σ(M) = σ(B1 ⊕ A1) and σBW(M) = σBW(B1 ⊕ A1). Let λ < σ(B1 ⊕ A1). Then B1 − λ is left
invertible by [19, Theorem 2]. But B∗1 has the single valued extension property at λ, and hence B1 − λ is
invertible by Remark 2.4. Thus A1 − λ is also invertible by [19, Corollary 4]. Consequently, λ < σ(B1 ⊕ A1),
and so σ(B1 ⊕ A1) ⊆ σ(M). Since σ(M) ⊆ σ(B1 ⊕ A1) holds by [7, Lemma 3.1], we have σ(M) = σ(B1 ⊕ A1). If
λ < σBW(M), then M∗ has the single valued extension property at λ, and hence M − λ is Drazin invertible.
By Lemma 3.5(i), B1 − λ is left Drazin invertible. Since B∗1 has the single valued extension property at λ,
B1 − λ is Drazin invertible. It follows from [22, Corollary 2.8] that A1 − λ is also Drazin invertible. Hence
λ < σBW(B1 ⊕ A1) and so σBW(B1 ⊕ A1) ⊆ σBW(M).

Conversely, suppose that λ < σBW(B1 ⊕ A1). Then A∗1 and B∗1 have the single valued extension property
at λ, and so B∗1 ⊕ A∗1 has the single valued extension property at λ. Thus λ < σD(B1 ⊕ A1). It follows
from Lemma 3.5(i) and [22, Theorem 2.9] that M − λ is Drazin invertible. So λ < σBW(M). Therefore
σBW(M) ⊆ σBW(B1 ⊕ A1), and this implies that σBW(M) = σBW(B1 ⊕ A1).

Now, we shall prove that π0(M) = π0(B1 ⊕ A1). Let λ ∈ π0(M). Then λ ∈ iso σ(M) and α(M − λ) > 0.
Since σ(M) = σ(B1 ⊕ A1), it follows that λ ∈ iso σ(B1 ⊕ A1). Moreover, since

N(B1 − λ) ⊕ {0} ⊆ N(M − λ) ⊆ (B1 − λ)−1(40(N(A1 − λ))) ⊕N(A1 − λ),

it is clear that α(B1 ⊕ A1 − λ) > 0. Thus λ ∈ π0(B1 ⊕ A1), and so π0(M) ⊆ π0(B1 ⊕ A1).
Conversely, let λ ∈ π0(B1 ⊕ A1). Then λ ∈ iso σ(B1 ⊕ A1) and α(B1 ⊕ A1 − λ) > 0. Since A1 and B1 are

isoloid, it follows that α(A1 − λ) > 0 and α(B1 − λ) > 0. Since N(B1 − λ) ⊕ {0} ⊆ N(M − λ), α(M − λ) > 0. But
σ(M) = σ(B1 ⊕ A1), hence λ ∈ π0(M). Therefore π0(M) = π0(B1 ⊕ A1). Hence this completes the proof.

Example 4.8. Let C be the bilateral shift given by Cen = en+1 on L2(µ) with respect to en(z) = zn for n ∈ Z.
If A = I and B is a multiplication operator on a Lebesgue space L2(µ) where µ is a planar positive Borel

measure with compact support. Then
(
A C
Z B

)
∈ S. In this case, since A and B are normal, B1 and A1 are

also normal and isoloid. Therefore, B1 ⊕ A1 satisfies generalized Weyl’s theorem. On the other hand, since

B∗1 and A∗1 have the single-valued extension property, we conclude from Theorem 4.7 that
(
A C
Z B

)
satisfies

generalized Weyl’s theorem for every Z ∈ L(L2(µ),L2(µ)).
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